On the automatic Entropy-based construction of Probabilistic
Automata in a Learning Robotic Scenario

Sergio Roa and Geert-Jan Kruijff
German Research Center for Artificial Intelligence / DFKI GmbH
{sergio.roa,gj}@dfki.de

Abstract— When a robot interacts with the environment pro-
ducing changes through its own actions, it should find opportuni-
ties for learning and updating its own models of the environment.
A robot that is able to construct discrete models of the underlying
dynamical system which emerges from this interaction can guide
its own behavior and adapt it based on feedback from the
environment. Thus, the induction of probabilistic automata from
this sensorimotor loop might be useful for planning/learning
tasks. These probabilistic automata can be used as a prediction
tool, as a means to assess the uncertainty or predictability of
specific action consequences and thus, as a tool for an active
learning method.

I. INTRODUCTION

In the face of continuously changing environments, a robot
needs to learn from the world by interacting with it. A robot
should then accurately predict the consequences of actions on
an object given its own body configuration. With the acquired
skills knowledge, it can then solve more complex tasks in a
hierarchical manner. We consider here the task of predicting
consequences of pushing simple geometrical objects called
polyflaps. Polyflaps have been proposed to design simple
learning scenarios [1].

In this paper we discuss a scenario where a simulated
robotic arm interacts with a polyflap. In the implementa-
tion we use the NVidia® PhysX™ library that allows us
to perform realistic physical simulations and to obtain 3-
dimensional feature vectors. The learning machines we use are
able to process spatio-temporal features. Specifically, we use
the Crystallizing Substochastic Sequential Machine Extractor
(CrySSMEXx) [2] algorithm for the extraction of probabilistic
finite state automata. The robotic arm pushes the object and
then a sequence of polyflap poses is stored, encoded as rigid
body transformations during a certain time interval. To reduce
the space- and time complexity of the problem, we select
a discrete set of possible actions and starting positions for
the arm to start the pushing movement. This reduction of
dimensionality affords us also to evaluate and analyse more
easily and carefully the inference algorithm and its correspond-
ing outcomes. In general, sliding and flipping affordances are
obtained by applying pushing actions. The experiments show
that the machines are able to model the tuples (action, state,
output, next state).

But how can we find state abstractions? Since we want
to understand the behaviour of an object given a specific
action, it is reasonable to encode a state on the basis of
polyflap poses (rigid body transformations). A sequence of
polyflap poses will then be encoded as a sequence of states

(not necessarily a 1 to 1 relation), where transitions depend
on the corresponding action. Moreover, state abstractions can
possibly be obtained not only from quantized vectors but also
from the output dynamics. Given the complexity of these
physical processes, transition probabilities between states are
also quite possible and an information-theoretic measure is
used to help quantize the space and to generate the transitions
by using the CrySSMEX algorithm. The extracted automata are
useful as a verification tool, that can be employed by active
learning techniques in order to evaluate uncertainty in specific
actions.

II. LEARNING SCENARIO

Fig. 1. Learning scenario with a polyflap

The learning scenario is shown in Fig. 1. The simulated arm
corresponds to a Neuronics® Katana 6M™ arm with a ball
as a simple finger. In order to simulate a pushing action we
apply a linear trajectory over a specified time period until it
reaches the desired pose. The arm has 6 joints, including the
last joint for the finger which is static. The representation of
object poses are in Euler angles with respect to a reference
frame which is the origin in the scene (6-D pose).

The features corresponding to the arm are a starting 6-D
pose vector for the finger arm f, a feature value s encoding 3
velocity values (low, medium, high), obtained from applying
3 different movement durations, and an integer value denoting
a direction angle © ranging from 60 to 120 degrees, par-
allel to the ground plane in the direction to the center of
the standing polyflap side. Together, these features form the
motor command feature vector denoted as m; at time ¢. The
values are all normalized to obtain vectors with mean O and
standard deviation 1.0. A 6-D pose vector corresponding to the
polyflap pose is denoted as p;. In order to perform preliminary
experiments and avoid ambiguities and difficulties in analyzing
data (cf. section III), we artificially enumerate (discretize) the
set of possible actions. Therefore, we obtain a symbolic feature
my denoting the motor information. In the enumeration, we
encode the time step ¢ into the symbol m; in order to discretely

represent the finger transformations (change of poses) through
an action sequence. Moreover, CrySSMex requires that we
define an output label associated to each state or transition.
This feature is very useful for evaluation and also for the
convergence of the CrySSMEXx algorithm itself (cf. section III).
We then define the set Y = {—1,1,0,—0.5,0.5} of possible
values for an output symbol y;, denoting respectively when
0 polyflap angle decreases (this happens when the polyflap
tilts but does not completely flips over, so that it returns
to the original angle), # angle increases (polyflap falling
down), polyflap does not move, polyflap moves backwards
(negative X direction without angle change) and polyflap
moves forwards. Thus, the tuples (my, ps,y:), encode the
rigid body transformations of polyflaps through these n steps
and also encode the given robot control command and abstract
behaviour after the pushing movement. In order to discretize
and reduce the dimensionality of the task, we only used 18
different starting positions for the arm to start the pushing
movement.

III. AUTOMATA INDUCTION METHOD

Let us define a substochastic sequential machine (SSM) as
a quadruple (Q, M,Y, P = {p(q;,yi|¢;.mx)}) where Q is a
finite set of state elements (SEs), M is a finite set of input
symbols, i.e. our motor command representation, Y is a finite
set of output symbols, and P is a finite set of conditional
probabilities (cf. explanation in [2] and egs.1-3) where ¢;, q; €
Q,mi € M and y; € Y. In practice, CrySSMEX can
automatically induce discretizations of the input and output
spaces by means of quantizer functions on these spaces but we
will avoid this step in order to not introduce more difficulties
in analyzing data and to increase the chance of convergence
of the CrySSMEx algorithm. Thus, we assume the artificial
enumeration for input and output spaces described in section
IT and we use the vector quantization method described in [2]
for state discretization. A SSM models a situated discrete time
dynamical system for which input (M), output (Y') and state
(P) spaces are defined and a transition function v : P x M —
P x O. A stochastic dynamical model of such a system is a
joint probability mass function pq induced from a transition
event set), and quantizers A,, A,, and A, for output, input
and state spaces respectively. (2 consists of selected transition
events recorded from a given set of input sequences. Thus,
the joint probabilities of observed and quantized transitions
(pq) are translated into joint probabilities of SSM transitions
according to P. As already mentioned, we define A,,(m;)
and A, (t) according to the discretization described above and
A, (p¢) using the vector quantization method. Thus, we have:

p(qiv mg, Y, QJ) =
pa(Ap(pt) =i A (my) = KAy (8 +1) =1, Ap(Prt1) = J)
(D
The conditional probability is calculated with:

QI Y]

P(Qi;mk):ZZP((]i;mkayla%‘) (2)

j=11=1

W if p(qi,mg) >0)

B iy T = .
(a5, yilqi, mx) {0 if plgs, i) = 0

The substochasticity of the extracted machines is due to the
possibility that the sample of input sequences in will not
necessarily provide examples of all possible input symbols in
all possible enumerations of the quantized space of the dynam-
ical system. As a consequence, the probability distributions
can become substochastic [2]. The details of the procedure
for extracting substochastic sequential machines is described
in [2]. In summary, there is a recursive state splitting starting
from only one SE. Then, a decision to split data into different
SEs is based primarily on the output entropy H(Y|Q =
qi, M = my) = H(Py(qi,mx)) and then on the next state
entropy H(QIQ = g M = myg) = H(Py(gi,my)), ie.
choosing state vectors that convey the most information (i.e.,
highly indeterministic) [2], where H(P) = —>_"" | p;logp;
and p(gi+1) = Py(qi,mk) and p(ye+1) = Pylqi, my) are
marginal distributions of P. Additionally, states are possibly
merged if there exists an equivalence relation between two
states based on determining when two SEs are not equivalent
if they, in their outgoing transitions, share some input symbols
and transitions that lead to discrepancies in the future output.
The procedure finishes when the machine is deterministic, i.e.,
when the entropies for all states equal to 0.

IV. PRELIMINARY EXPERIMENTAL RESULTS

We extracted an event set consisting of 90 actions. The
algorithm converges after 45 iterations, when 74 states were
obtained. Due to space constraints we do not show the
extracted automaton, but for illustration purposes we show an
automaton (Moore machine) extracted from 5 actions (cf. fig.
2) after convergence. Not all possible input symbols (in the
boxes) are shown.

Fig. 2. Extracted finite state automaton from 5 actions. Circles are states
and boxes contain input symbols

REFERENCES

[1] A. Sloman, “Polyflaps as a domain for perceiving, acting and
learning in a 3-D world,” in Position Papers for 2006 AAAI Fellows
Symposium. Menlo Park, CA: AAAIL 2006. [Online]. Available:
http://www.cognitivesystems.org/publications/Fellows16.pdf

[2] H. Jacobsson, “The crystallizing substochastic sequential machine extrac-
tor - CrySSMEx,” Neural Computation, vol. 18, no. 9, pp. 2211-2255,
2006.

