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. MOTIVATION in machine learning. What is a rather unexplored field in

Enabling machines to autonomously learn how to deal wif@chine learning is inductively learning new concept from
novel situations, and to generalize the acquired knowlédgeth® sensory data of a robot in order to improve and increase
order to apply it to different situations, is a major chatjen itS understanding of naive physical phenomena. One irapbrt
on the way towards building intelligent autonomous robbts. challenge with using these learning techniques in robasics
the past years, a number of approaches have attemptedrio |€&ining meaningful and comprehensive data sets to trigge
relational knowledge that is general enough to be applied {if 1€arning process, after having observed a phenomegon th
different domains and contexts [2, 11, 8]. What is howevdfSt time. In the following, we present the general arcliitee
still missing is a general architecture in which autonomoii§veloped in XPERO for autonomous robotic Learning by
robotic learning for usage in everyday environments can B&Perimentation.
structured well [6]. _ ~Il. THREE BEHAVIOURAL LOOPS INROBOTIC DISCOVERY

In pursuit of enabling truly autonomous robotic learning, , , o
the work in the XPERO proje(ﬂ set out to design compu- One important question when designing an agent that should
tational methods and mechanisms which enable an embod@@nand interact with the environment is how to initiate the
intelligent agent (robot) to learn naive physics concepizh Iearni_ng process._ln learning by experimentation, t_hishis t
as the geometry of motion or articulation only from reg/duestion “What stimulates a robot to .conduct experlmepts?”
world perceptions in a fully unsupervised way. By promoting e assume that our robot has in the past acquired a
the paradigm oLearning by Experimentatiorthis approach certam amount of kn_owled_ge Wh|c_h allow_s it to perform
significantly differs from other implementations of Rofwti Mé@ningful tasks. While doing so, it uses its knowledge to

Discovery and Experimentation such as [16, 1, 12]. Instegfjan its actions and to predict their outcomes. If the robots
Learning by Experimentatioaims at enabling the agent topre_dictions are consistent with observed consequences of i
learn incrementally in an "evolution of theories”. It shdul 2ctions then apparently the robots knowledge is compréfens

develop new theories and gain new insights by systematica"Ugh to understand and explain the surrounding world.
investigating unknown phenomena and discovering regidari ©ccasionally the robot, however, will make an observation,
in the observed data. Depending on the observed phenomeW&ifh is inconsistent with its model of the world [4, 9]. Weeus

the new theory might be a revision of an existing theory or [RCh prediction failures as a trigger to investigate thesolex
built upon existing theories. phenomenon. This investigation involves steps such asifigrm

Learning by experimentation is a discovery process if°me first educated guesses regarding the physical qeantiti
volving a sequence of steps, which finally terminate in thhich might be relevant to model the phenomenon, designing

generation of a new or revised theory. The process is trighe€XPeriments, collecting data, refining the educated gsesse
by a failure to predict and explain a phenomenon that has b&gntually understanding the regularities behind the vise
observed during the execution of everyday activities. phenomenon [3]. _ _

In XPERO, inductive learning paradigms such as ILP (in- FOr switching between learning and task execution, we
ductive logic programming) [7], qualitative model treerlgag PrOPOSe an archnecture supporting three operationakztmt
[15] or learning of qualitative differential equations carfial for the robot. Figurd]l shows these contexts and the three

derivatives [14, 13] were used to infer new concepts fropghavioural loops in which the robot might operate.
real-world perceptions of naive physical phenomena. dtide: While the first loop models the robot’s everyday behaviour,

learning paradigms are not particularly new research fiellfi second and the third loop actually model the learning by
experimentation process. In the following we describe g¢hes

IMore information can be found mwwv. xperv:ory loops in somewhat more detail.
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guesses. These data sets should contain a sufficient number

ﬁ of (uniformly distributed) samples within the ranges sfiedi
P'ae"r predict, o in the educated guesses [10]. The data sets that result from
oﬁ‘;ﬁ prediction failure & the design, execution, and observation of these expergment
el %’ are then forwarded to a learning component to induce a
__________________________ refined theory or model, which best explains the data and
the observed phenomenon underlying these data. Ideally the
learning component, which is involved in this loop, will be
fgt;getigagie;saigg able to generate from these data one single and robust theory
select features) g which explains the underlying phenomenon.
g [Il. RESULTS
(desi;xapnirirxurlia!xﬁﬁenE’ g The proposed architecture was implemented and tested with

different embodiments, among others a Nao robot, in a simple
real world environment for learning naive physics concepts

While very basic concepts such as the movability of objects
could be learned, we still see a great need for generalizatio

and extension of the framework.

observe and evaluate experiments
gain new insights, learn new concepts)
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Using its innate planning and perceptual sk|ll§ and avmlabProject XPERO ("Robotic Learning by Experimentation”).
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