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I. M OTIVATION

Enabling machines to autonomously learn how to deal with
novel situations, and to generalize the acquired knowledgein
order to apply it to different situations, is a major challenge
on the way towards building intelligent autonomous robots.In
the past years, a number of approaches have attempted to learn
relational knowledge that is general enough to be applied to
different domains and contexts [2, 11, 8]. What is however
still missing is a general architecture in which autonomous
robotic learning for usage in everyday environments can be
structured well [6].

In pursuit of enabling truly autonomous robotic learning,
the work in the XPERO project1 set out to design compu-
tational methods and mechanisms which enable an embodied
intelligent agent (robot) to learn naı̈ve physics conceptssuch
as the geometry of motion or articulation only from real-
world perceptions in a fully unsupervised way. By promoting
the paradigm ofLearning by Experimentation, this approach
significantly differs from other implementations of Robotic
Discovery and Experimentation such as [16, 1, 12]. Instead,
Learning by Experimentationaims at enabling the agent to
learn incrementally in an ”evolution of theories”. It should
develop new theories and gain new insights by systematically
investigating unknown phenomena and discovering regularities
in the observed data. Depending on the observed phenomenon
the new theory might be a revision of an existing theory or be
built upon existing theories.

Learning by experimentation is a discovery process in-
volving a sequence of steps, which finally terminate in the
generation of a new or revised theory. The process is triggered
by a failure to predict and explain a phenomenon that has been
observed during the execution of everyday activities.

In XPERO, inductive learning paradigms such as ILP (in-
ductive logic programming) [7], qualitative model tree learning
[15] or learning of qualitative differential equations or partial
derivatives [14, 13] were used to infer new concepts from
real-world perceptions of naı̈ve physical phenomena. Inductive
learning paradigms are not particularly new research fields

1More information can be found atwww.xpero.org

in machine learning. What is a rather unexplored field in
machine learning is inductively learning new concept from
the sensory data of a robot in order to improve and increase
its understanding of naı̈ve physical phenomena. One important
challenge with using these learning techniques in roboticsis
obtaining meaningful and comprehensive data sets to trigger
the learning process, after having observed a phenomenon the
first time. In the following, we present the general architecture
developed in XPERO for autonomous robotic Learning by
Experimentation.

II. T HREE BEHAVIOURAL LOOPS INROBOTIC DISCOVERY

One important question when designing an agent that should
learnand interact with the environment is how to initiate the
learning process. In learning by experimentation, this is the
question “What stimulates a robot to conduct experiments?”

We assume that our robot has in the past acquired a
certain amount of knowledge which allows it to perform
meaningful tasks. While doing so, it uses its knowledge to
plan its actions and to predict their outcomes. If the robots
predictions are consistent with observed consequences of its
actions then apparently the robots knowledge is comprehensive
enough to understand and explain the surrounding world.
Occasionally the robot, however, will make an observation,
which is inconsistent with its model of the world [4, 9]. We use
such prediction failures as a trigger to investigate the observed
phenomenon. This investigation involves steps such as forming
some first educated guesses regarding the physical quantities,
which might be relevant to model the phenomenon, designing
experiments, collecting data, refining the educated guesses and
eventually understanding the regularities behind the observed
phenomenon [3].

For switching between learning and task execution, we
propose an architecture supporting three operational contexts
for the robot. Figure 1 shows these contexts and the three
behavioural loops in which the robot might operate.

While the first loop models the robot’s everyday behaviour,
the second and the third loop actually model the learning by
experimentation process. In the following we describe these
loops in somewhat more detail.
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Fig. 1. Three Behavioural Loops in Robotic Discovery

A. The plan, predict, execute, observe loop

Using its innate planning and perceptual skills and available
knowledge the robot can create and execute simple plans and
perform simple tasks. While doing so, the robot will match its
observations with what it already knows about the world. As
long as the robot observes only ”known” things and as long as
its predictions match its observations, the robot will remain in
this loop since there is actually nothing ”new” to learn. If the
robot, however, observes something which it cannot predict
from its current knowledge, a switch to the learning mode is
triggered, and the robot enters the educated guessing loop.

B. The educated guessing loop

One major purpose of the experimental loop is to collect
a set of meaningful data from which the learning algorithms
can infer a revised, refined or even a new theory. In order
to guide this data collection process effectively, at the entry
point of this loop we formulate aneducated guess[5]. This
educated guess identifies the physical quantities which may
have contributed to the observed phenomenon and thus might
be part of a theory explaining the phenomenon. An educated
guess is mainly a subset of the power set of features, which
might be directly extracted or constructed from the robot’s
sensor data. Hence we denote this operation also asfeature
selectionin accordance with the standard Machine Learning
terminology. Additionally, to guide the design of experiments,
those ranges of feature values are specified which appear as
relevant for explaining the observed phenomenon.

C. The experimental loop

The ultimate objective of the experimental loop is to gain
insights about an unknown phenomenon and to learn new
concepts. For this purpose the robot designs and executes
a series of experiments to create meaningful data sets for
the features sets specified in the previous step as educated

guesses. These data sets should contain a sufficient number
of (uniformly distributed) samples within the ranges specified
in the educated guesses [10]. The data sets that result from
the design, execution, and observation of these experiments
are then forwarded to a learning component to induce a
refined theory or model, which best explains the data and
the observed phenomenon underlying these data. Ideally the
learning component, which is involved in this loop, will be
able to generate from these data one single and robust theory,
which explains the underlying phenomenon.

III. R ESULTS

The proposed architecture was implemented and tested with
different embodiments, among others a Nao robot, in a simple
real world environment for learning naive physics concepts.
While very basic concepts such as the movability of objects
could be learned, we still see a great need for generalization
and extension of the framework.
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