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Abstract— This paper describes a method to consider active
sensing strategies in order to map the position of a set of
nodes with a mobile robot using radio signal measurements.
The method employs Gaussian Mixtures Models (GMM) for
undelayed initialization of the position of the wireless nodes
within a SLAM filter. An upper bound of the entropy of the
GMM is used as a measurement of information gain, and allows
to prioritize control actions of the robot.

I. INTRODUCTION

Range-only mapping in wireless sensor networks is an
active research area that poses a number of challenges, from
range computation to map building. One of the key issues
is the lack of bearing information in the measurements.
The receiver must receive information in different positions
(trilateration) to properly localize the emitter.

Some approaches use delayed initialization through trilat-
eration or employ other means to determine the bearing, like
partial directivity [1] or time of arrival [2] information. [3,
4, 5] employ delayed initialization through trilateration. The
problems related with multiple hypotheses in the early steps of
the estimation in range-only localization approaches have been
recently addressed in [6] and [7]. In the latter, the authors make
use of Gaussian Mixtures Models (GMM) to represent the
non-Gaussian prior distribution of the node position allowing
un-delayed initialization for wireless network mapping using
range-only measurements.

Most of the previous approaches do not take into account
the possibility of controlling the robot, and the robot is
just commanded a predefined path. However, active sensing
strategies may lead to more efficient exploration and mapping
using radio-signals. The robot can adapt its trajectory, avoiding
for instance non-observable motions or following those paths
which are most informative, in the sense of reducing the
uncertainty on the nodes’ positions. Fig. 1 illustrates the
benefit of considering active sensing strategies.

Active sensing requires a measurement on the information
gain obtained when executing a certain task or action. For
Bayesian approaches, one possibility is to use the (expected)
variation on the entropy of the beliefs on the nodes’ positions
as a measure of information gain, as for instance in [8]. In
[9], the same ideas about active sensing are applied to a set-
theoretic framework used to represent and handle uncertainty.

The main contribution of the paper is an extension of
the approach presented in [7] for node mapping based on
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Fig. 1: Range-only mapping. The robot (red triangle) receives
range data from the beacon (green square) at three different
positions. Yellow areas denote possible localizations of the
beacon (as more intense is the yellow color, more likely this
localization is). (a) Result of the node localization using a
straight robot trajectory (there are two possible solutions for
the localization). (b) Results of the node localization if the
robot trajectory is adapted from active sensing considerations
(the localization converges to single correct solution)

a weighted GMM, with an active sensing strategy in order
to gather as much information as possible for localizing the
nodes. Entropy variation is considered in this paper to measure
the information gained by a given robot motion considering all
node position hypotheses. As the computation of the entropy
of GMM has not a closed form, entropy bounds are used in
this approach. The paper will show how these bounds provide
an effective way for active sensing.

II. RANGE-ONLY MAPPING AND SLAM USING GAUSSIAN
MIXTURES

The objective can be summarized as estimating the position
of wireless sensor nodes based on the received signal strength
on a node attached to the robot. This process is depicted in
Fig. 1.

The state vector of the filter will be composed by the
estimated 2D position and orientation of the robot, and the
estimated 2D position of all the nodes:

x = [xr, yr, θr,bt1,b
t
2, . . . ,b

t
n]t (1)

where (xr, yr, θr) represent the Euclidean position and ori-
entation of the robot and bi represents the position of the
i-th beacon considered in the filter. The beacon position bi



will be expressed in polar coordinates (ρi, θi) with respect to
the position from which the robot received the very first range
information (xi, yi). However, non prior information about the
angle of arrival of the beacon information is assumed, so the
value of θi is unknown. We propose quantizing the space of
possible values of θi into k possible hypotheses. Thus, each
beacon will be expressed as follows:

bi = [xi, yi, ρi, θi0, θi2, . . . , θi(k−1)]t (2)

All the hypotheses θij , together with their weights wij , will
compose a GMM representing the probability mass functions
of θi, fθi

(x):

fθi
(x) = U(0, 2π) '

k∑
j=1

wijN (θij , σij) (3)

After the first range information of a beacon is considered,
the probability mass function of its position will be uniformly
distributed around the robot location. This uniform probability
function will be approximated by a GMM using (3), and
each of these Gaussians will be considered as an independent
hypothesis into the localization filter. Once the beacon has
been initialized into the filter with the first range information,
next measurements will be used to update the estimation of
each hypothesis and also to refine the weights wij associated
to them.

The measurements provided by the system are the distances
of the robot to the set of nodes that are in communication
range. The question now is how to deal with the variance
associated with the measurement, σ2

i . A single measurement is
available but it has to be applied to all the existing hypotheses
for beacon i. The solution to this problem consist of dividing
the actual measurement into k new measurements with the
same mean and with covariances proportional to the likelihood
of each hypothesis such as in [10].

Finally, some heuristic rules are applied to remove those
hypotheses with very small weight (see [7] for further details).

III. ACTIVE SENSING FOR WSN MAPPING

The benefit of using a mobile robot to estimate the position
of a set of nodes is that its motion can be adapted in order
to take the most informative actions. In one hand, from the
set of possible motions of the robot, it should take those that
allows to estimate the position of the nodes more accurately.
On the other hand, the robot should try to avoid motions that
decrease the observability of the node position.

Our robot uses a combination of behaviors: basically the
robot tries to follow a given path as accurately as possible,
but at the same time minimizing a combined cost related
to obstacle avoidance, etc. The idea is to include, in the
computation of the control commands, a cost related to the
gain of information.

A general measure about the information of a probability
distribution p(x) is its entropy, H(p(x)), defined as the ex-
pected value of the information − log[p(x)]. The information
gain is defined as the variation in the entropy of the distribution
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Fig. 2: Comparison between the paths followed by the robot.
The hypotheses maintained by the filter are represented as
ellipses. The colors indicate the weight of the hypothesis (the
redder, the lower). (a) non-active control. (b) active sensing
control.

after carrying an information gathering action ut. When exe-
cuting this action, a new distribution p(xt+∆t|ut, zt+∆t) will
be obtained from the future measurement zt+∆t, by using the
filtering algorithm described in Section II. The entropy of this
new distribution will be denoted by H(p(xt+∆t|zt+∆t,ut)).

However, only the action ut can be controlled. Then, we
should take the expectation of the entropy for all potential
measurements zt+∆t that can be obtained after executing the
action. Therefore, the (expected) information gain associated
to action ut is defined as follows:

∆(ut) = H(p(xt))− Ezt+∆t
[H(p(xt+∆t|zt+∆t,ut))] (4)

This metric can be used to establish preferences among
actions, favoring those that maximize the value ∆(ut).

However, a closed form for the entropy of a Gaussian
Mixture does not exist. One option is to obtain it numerically
(for instance by sampling), but this is discarded because
of computational requirements. The proposed approach uses
upper bounds of the entropy as an approximation to the
actual entropy value. Thus, instead of analyzing the expected
variation in entropy for a particular action, the expected
variation of the entropy bound will be considered.

In [11], Huber et al. derive analytical approximations to
the entropy of a Gaussian mixture; moreover, some analytical
upper and lower bounds of the entropy of a Gaussian Mixture
are presented as well. Among them, the following expression
gives an upper bound of the entropy of a Gaussian Mixture
f(x) =

∑k
i=1 wiN (µi,Σi), which is very cheap to compute:

H(f(x)) ≤
∑
i

ωi(− logωi +
1
2

log((2πe)N |Σi|)) (5)

with N the dimension of x.
Therefore, a possible strategy is to compare actions taking

into account how they affect not the entropy itself, but the
upper bound.

Figures 2 and 3 show some results using such an strategy.
While in theory a decreasing in the bound could not reflect
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Fig. 3: (a) Estimated value of θ (solid line) and its 3σ
confidence interval (dashed) for node 27. (b) Estimated value
of ρ (solid line) and its 3σ confidence interval (dashed line)
for node 27. The active sensing strategy in green, and the
non-active in red.

on a decreasing of the actual entropy, it can be seen that
the procedure is effective reducing the actual entropy of the
distributions.
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