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I. I NTRODUCTION

We consider combining thenon-linear dynamicalsystems’
motion representation with theactive learning paradigm as an
approach to enhance motion learning and generalization abilities in
robots. We suggest to design the learning process so that a robot
can gradually expandits generalizationcapacities by requesting
new demonstrations that extend a region of the applicability of the
learned dynamics of a motion; see Figure1. To allow for such a
learning process, we extend our previous work on learning motion
dynamics [1] with the iterative algorithm for estimating the region
of applicability and the algorithm for estimating the consistency of
new demonstrations with respect to the learned model.

In the previous work of ours [1], we propose an algorithm for
estimating thenon-linear dynamicsof motion in thestate-space.
Our system encapsulates local correlation patterns between the
motion’s variables and provides the actual temporal robustness. The
dynamics learned this way has a local character due to its non-
linear form (local stability) and the limited generalization power
of the statistical inference (farther from the demonstrated data the
reliability of the inferences degrades.)1 To be efficiently applied in
practice, the learned dynamical model requires an estimate of its
region of applicability, i.e. the estimate of the boundaries of the
invariant sub-space where all trajectories converge to the target and
where the confidence of the statistical inference allows generating
the relevant trajectories. The size of this region determines the
generalization abilities of the learned representation. Here we
discuss how this region can be systematically expanded through
additional demonstrations obtained with support of the suggested
active learning interface.

Our approach to motion learning combines several demonstra-
tions and, therefore, introduces a view on motion learning which is
essentially different than the one, adopted in the other approaches
to learning motion dynamics, where the authors consider learn-
ing from a single demonstration [2]. It has been acknowledged
that combining several demonstrations is advantageous for motion
learning [3]. Indeed, in our case, this allows a robot to generalize
its knowledge from sub-optimal demonstrations and accurately
reproduce the task’s trajectories, starting from any point in the
region of applicability.

However, while introducing the advantages in terms of improved
generalization, learning from multiple demonstrations requires
more efforts from a human teacher. In addition to repeating a
motion several times, he/she should control the variability and
consistency of the demonstrations. As an attempt to support the
human during the teaching process, we present a generic interface
for robot active learning that allows the robot learner to become

1This, however, should not be considered as a principal drawback as the non-
linear motions demonstrated in the vicinity of manipulated objects, are not equally
relevant far from these objects.

Fig. 1. Improvements in the generalization abilities of the i-Cub robot as a
human teacher provides additional demonstrations (in dotted red) requested by the
active learning system. The growth of the sub-space where the i-Cub can accurately
accomplish the task and put the ball into the box while avoiding the box’ boundaries,
is represented by the increase in the volume of the trajectories’ flow which the
learned dynamical model can generate (reproduced trajectories are in blue). Note
the expansion of the region of applicability after providing two, three, and four
demonstrations.
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cognitively involved in the process and support the teacher through
querying for new demonstrations and by providing the feedback
on those that have been acquired. We report on some preliminary
experiments conducted with the i-Cub robot.

II. M ODEL OVERVIEW

The overview of the learning process is presented in Figure2.
The details of the approach used to learn motion dynamics can be
found in [1]. In essence, learning consists in estimating a dynamical
function ξ̇ = f̂(ξ) (ξ ∈ RN is the state of the robot’s end-effector)
through the encoding of the training data as a joint probability
distributionP(ξ, ξ̇) represented with the Gaussian Mixture Models
and ensuring the stability of the estimate. We further briefly review
the major components of the proposed active learning interface.
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Fig. 3. The problem arising while applying a SoS-based approach to estimating the
region of attraction (ROA) of a learned dynamics: the assumption of the polynomial
form of the ROA’s boundaries cannot be hold in general, as the learned dynamical
vector flow is often asymmetric around the attractor. (a) An originaltheoretical
dynamics is non-linear and locally stable. The ROA (thick blue) is symmetric and
can be estimated as a level-set of the 7-th order polynomial. (b) The dynamics
learned from the several samples (dashed lines), the reproduced vector flow (solid
lines) is asymmetrical and the SoS estimate of the ROA is negligibly small. The
estimate of the ROA generated with our incremental algorithm is highlighted in
blue.
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Incremental estimation of the region of applicability of a learned
dynamical representation. We define the region of applicability
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Fig. 2. Overview of the interactive learning process. In our framework learning is a bidirectional process, the direction of the information exchange between the human
teacher and the robot learner is presented with arrows. Different colors of the blocks on the schema represent the different stages of active learning: the green blocks in
the learner flow denote to theacquisitionof new knowledge andconsolidationof information; the light grey blocks in the same flow specifybehavioral responsesof the
learner which aim at communicating a current level of understanding to the teacher. The dark grey blocks in the teacher flow relate to thescaffolding process, in which
the teacher estimates the learned model and provides additional demonstrations to improve performance.
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as the region of attraction (ROA) of a learned dynamics with an
additional constraint that the likelihood of the points inside this
region with respect to the learned model should exceed a given
threshold.

However recently the Sum-of-Square optimization methods
(SoS) have been intensively applied to estimating the ROA of non-
linear systems [4], application of these methods to the motion
dynamics learned from the human demonstrations is associated
with some difficulties; see Figure3. Here we develop an iterative
computational approach to estimating the ROA; see Figure4 for
illustration and the brief explanation.

Assessing the consistency of a new demonstration with respect
to the learned model. For efficient learning the demonstrated
data should represent a consistent pattern, however, among the
demonstrations provided by the human teacher outlier trajectories2

are inevitable even if a task is demonstrated by an experienced
user. To endow the robot with an ability to check the validity of a
new demonstration and, if necessary, to discard it, we integrate an
algorithm for estimating thelearner variance3 similar to [5]. The
learner variance controls an error of the statistical inference, i.e.
an average statistical error of an estimate˙̂

ξ = f̂(ξ) in comparison
with an actual unknown valuėξ = f(ξ). Therefore, before adding
a new demonstration into the training set, the robot verifies how
this demonstration will affect the inference accuracy of the already
existing model. If the estimated variance of the learned model
increases above a given threshold (which means the decrease in
the accuracy) the robot queries the teacher whether he/she prefers
to keep the demonstration or it may be discarded.

III. R ESULTS AND CONCLUSION

To validate the performance of our interface, we conducted two
experiments: (1) the i-Cub should have learned to put the ball into
the box; see Figure1. (2) The ping-pong task, where the robot
had to learn how to approach the ping-pong ball with the rocket
in its hand. This experiment has been conducted with four users
to verify the consistency of improvements in the generalization
abilities provided by the proposed method; as ameasureof the
generalization abilities we chose thevolume of the region of
applicability. The preliminary results confirmed that the use of our
interactive interface allowed to expand the robot’s generalization
abilities; and that the expansion has been consistent across the
users.

In our work we address the problem of active involvement of a
robot learner into the teacher-learner communication; which allows

2The trajectories exhibiting the shape different than other demonstrations in the
dataset or following a distorted velocity profile.

3The expected average output variance of the learned model if the new demon-
stration would be added into the training set
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Fig. 4. An example of expanding the region of applicability of the learned
dynamics with the support of the suggested active learning algorithm (the demon-
strations are generated from a given theoretical dynamical system.) The initial
model is learned from two demonstrations. The active learning system then starts
suggesting the human teacher the new starting positions for demonstrations. The
candidate points are those that lie outside of the current region of attraction and
have the maximum likelihood with respect to the current learned model. The
region of applicability gradually expands once a user adds demonstrations. Here we
develop an iterative computational approach to estimating the ROA. The general idea
consists in covering the volume containing demonstrated trajectories with a mesh
and gradually expanding this mesh depending on whether a trajectory starting from
a particular node converges to the origin. The convergence is verified by forward
integration of the trajectories starting at the nodes of the mesh. The verification of
stability on the boundaries of the region of attraction is sufficient to guarantee the
stability inside. This property also allows to decrease the computational load: the
complete forward integration of trajectories is only required to get the first estimate
of the region of applicability; further, during the expansion, the algorithm only
verifies the convergence of the trajectories towards the boundaries of the previous
estimate of the ROA. This allows to apply the algorithm to real-time interactive
learning.
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improving the generalization abilities of the robot, that are of the
important concern in the state-of-the-art Learning from Demonstra-
tion. The results obtained so far, though being promising, are still
preliminary and require additional experiments with unexperienced
users. We also planning to consider another alternatives of the
constructive active learning to choose the regions to be queried
for demonstrations.
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