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I. INTRODUCTION

In many natural settings training data is gained interactively,
by taking actions, making queries, or performing experiments.
In such a situation agent’s most powerful tool is its ability
to act, to gather data, and to influence the world it is trying
to understand [1]. Most of research on active learning relies
on black-box approach by assuming free-of-cost availability
of required training data through a query, e.g., [13], [14].
An embodied agent, however, has to consider many aspects
such as sensori-motor capabilities, ability to design experi-
ments to generate required training examples, cost of such
interventional experiments, and so on. Such characteristics of
real world demand a careful analysis of otherwise theoretically
near-optimal active learning algorithms.

Research on active learning for embodied agent has recently
received more attention. Most of this work deals with sensory-
motor learning such as learning forward model [2], [3], [4]
or autonomous exploration, e.g., importance resampling for
simultaneous localization and mapping (SLAM)[5]. On a
higher level of abstraction, several discovery systems have
exploited active learning for improving domain knowledge
for planning [6], [7], [8]. Except a recent experimentation
strategy for learning qualitative models through sensory motor
exploration [9] , there is hardly any research work in field of
active concept learning by an embodied agent.

To address open ended concept leanring by an autonomous
robot, EU project XPERO 1 aims to develop an embodied
cognitive system, which is able to conduct experiments in
the real world with the purpose of gaining new knowledge
about the world and to develop and improve its own cognitive
skills and overall performance. XPERO provides an ideal
environment for robotic discovery by defining several real
world scenarios. The underlying learning challenges, for the
robot, range from learning ego-motion from sensorimotor data
to learning high level concepts such as movability of light-
weight boxes as result of its action. The robot not only learns
qualitative and quantitative laws but also gains new insight
which enables it to simplify its theory about environment
[10], [11], [9]. Gaining insight, requires that learned concepts
be interpretable - this rules out many otherwise established

1More information can be found at www.xpero.org

machine learning schemes such as neural networks and support
vector machines.

In this work, we investigate several active learning ap-
proaches on a real world scenario and present an emerging
approach for cost-effective active concept learning in physical
world. The approach exploits different query selection criteria
such as learning progress[2], low confidence[13], and explo-
ration.

II. A SCENARIO FOR EMBODIED CONCEPT LEARNING

For analysis of our proposed approach we chose the
Bouncing Ball scenario, from XPERO, which consists of a
robot, a ball, and a wall. The robot’s initial model about the
environment predicts that when the ball is pushed towards
the wall, distance of the ball to the wall decreases up to a
certain point (determined by its velocity and physical model
of environment, e.g. friction) and the angle of the ball to the
wall remains constant. However soon, this prediction fails, for
example when the ball is pushed from near the wall with a high
velocity. In cases like these, the actual outcome, i.e., bouncing
of the ball from the wall shows an unexpected behavior of
the world. This invokes improvement of model through active
learning. Figure 1 shows two cases without and with prediction
failure.

Fig. 1. On the left side, the robot pushes a ball which rolls until it naturally
comes to rest (due to friction) without hitting the wall. On the right side,
when pushed towards the wall the ball bounces back after hitting the wall.

The underlying concept learning problem can be modeled
through different model types such as decision trees, neural
networks, and predicates. For reason interpretability, we chose
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classification trees. Although classification trees are highly
interpretable, they are unstable models [16], i.e., a small
change in training data may result in a very different model.
So the active learner can not exploit structure of the model for
instance selection.

III. PREVIOUS WORK

The simple schemes such as uncertainty sampling [12]
which focus on instances closest to decision boundary of the
model not only lack generality but are also infeasible for
the unstable model types such as decision trees. Query by
committee (QBC) approaches [13], [15] have shown signifi-
cant results for classification as well as for regression. These
approaches assumes that initial hypotheses are significantly
different from each other. Most of active learning algorithms,
including those discussed earlier, follow similar instance se-
lection strategy, i.e., select instances from regions where
learner performs poorly. This uncertainty is not the ultimate
measure of importance and agent may stuck into too difficult
situations or too easy situations [2]. To cope with that [2]
presents intelligent adaptive curiosity (IAC), an active learning
scheme for learning forward models, which enables a robot to
systemetically explore regions of progressive complexity.

The main idea of IAC is to divide experimentation space
in region and keeping track of agent’s performance in each
region through a so called measure learning progress (LP)
on the regression task. IAC is intuitive to autonomous exper-
imentation but its application to embodied concept learning
is subject to several constraints including: (i) the prediction
errors in concept learning are either 1 or 0 and not continuous
values, (ii) we can not afford a large history window size in
the given circumstances, and (iii) we can not afford a separate
prediction model for each region. Thus evaluation of so called
LP measure with discrete error values and small window size
do not leave much room to distinguish the regions.

IV. THE APPROACH

To cope with above issues, we first devise an enhanced
criteria for evaluation of regions which not only consider
absolute difference of recent and old errors but also take
into account the variation within these sets as well as if a
region has previously contributed in learning the concept. To
choose expectedly most informative instance within selected
region, we exploit query by committee approach. The proposed
hybrid scheme first divides experimentation space in uniform
regions and after performing some initial experiments build
a committee of models for global space. Then active learning
loop continues to select select a region and query instance. The
region is selected using enhanced learning progress measure,
whereas candidate instance within a region is selected for
experimentation if the committee disagree on the prediction.

The algorithm along with the newely defined learning
progress measure applies several query selection criteria in
parall. These include: selecting regions of optimal learning
progress, selecting regions with low confidence, selecting
regions where less experiments are carried out and selecting

regions which have high entropy. We implemented several
strategies for the Bouncing Ball scenario and found promising
results of the hybrid approach in comparison to random
strategy, query by committee, and IAC-CL - a naive imple-
mentation of IAC to concept learning. With hybrid and IAC-
CL approaches, we were able to show that the robot exhibits
adaptive behavior by progressively experimenting regions of
increasing complexity.
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