Visual gaze selection modeling from visual input
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Abstract—1In this work we present a biologically motivated
framework for the modeling of the visual scene exploration
preference. We aim at capturing the statistical patterns that are
elicited by the subjective visual selection and reproduce them via
a computational system.

I. INTRODUCTION

The visual exploration of the world, the scan-path, is
performed by human beings in a very efficient way by
programming a sequence of saccades on the visual scene in
order to project the selected spatial focus of attention onto the
higher resolution surface of the retina. A crucial aspect that has
gained lot of interest is how the early visual system encodes
and processes the visual stimuli reaching the retina [2]. Lot
of effort has been devoted to the discovery of the sensory
coding mechanism. Early works on this subject highlighted the
importance in modeling the statistical regularities of the visual
input, following the assumption that the visual system exploits
those regularities to efficiently code the visual information [1].
Nonetheless as argued in several works [3], the purpose of the
early visual processing is to produce a sparsified representation
of the visual input rather than a compression (in the minimum
code length interpretation) [8]. A very simple but successful
model assumes that any given set of natural images (or
patches) I(z,y) can be generated by a linear combination of
features W or basis vectors B:

I(z,y) = ZBi(m,y)si , 8= Z Wi(z,y) I(z,y) (1)
i=1 x,y

where the coefficients s; are the coefficients weighting the i-th

basis vector.

A sparse code is a code whose response distribution is
usually sharply peaked and long tailed. The idea supporting
sparseness is therefore that only a small subset of a large
population of cells will be active when presented to a specific
family of visual stimuli. In this work we focus exclusively on
the characterisation on the sensory model of the simple and
complex cells at the early stages of cortical processing (V1)
which exhibit a localised, oriented and bandpass behaviour [4].
In this work we are using a standard dataset comprising 101
images depicting urban and natural scenes with corresponding
eye-tracked data from 31 subjects. Each image has associated
an individual (per subject) and a cumulative fixation distance-
map, for further reference see [6].

II. OUR APPROACH

We suggest a workflow combining several aspects of com-
putational neuroscience and machine learning which aim at
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Fig. 1. From the scanpath to the Mixture of Bernoulli. Projection to the
ISA feature space, binarization and finally EM estimation of the mixture
parameters.

identifying those statistical patterns which trigger a subject’s
spot of attention towards specific locations.

A computational model is derived by firstly estimating a
mixture of multivariate Bernoulli variables out of a binary
activation map representing the visual receptive field responses
to a target sequence of fixation patches, Fig. 1. Afterwards,
each component of the mixture is taken as modeling a specific
family of receptive field responses which (statistically) share
a common pattern of activation. A dichotomized Gaussian
representation lets us select for each component the most
representative sample that we elect as prototypal example of
the population. The set of prototypal samples are related to a
binary representation which bring us to a natural interpretation
of the patterns as a collection of on and off maps. The on-off
channels map respectively those channels whose response are
expected to lie on the tail (a relatively high value) or the peak
(close to zero), Fig. 2.

A. Receptive field estimation

The Independent Subspace Analysis (ISA) [5] is based on
the maximisation of independence between linear subspaces.
ISA is configured as a first linear filtering followed by an
energy pooling stage. The result is a set of linear filters whose
pooled response reproduce closely the response properties of
complex cells in V1 (independence of the response magnitude
w.r.t. the phase of the signal). The output response u; of the
j-th subspace S; is computed as follows:

y= |3 s @)
i€S;

where the s; are computed as in Eq. 1.
The ISA basis is computed on a set of 60000 (24 x 24) pixel
image patches randomly selected from the image collection.

B. Scan-path projection on ISA basis and Mixture of Bernoulli
estimation

We define the target scanpath SP as a set of fixation
patches filtered out from a gaze-tracked sequence. The matrix
F contains on each row the u; coefficients computed as in
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Fig. 2. From the MoB to the final linear filtering cascade.

Eq. 2. The size of F depends on the number N of fixations
and on the geometry of the used ISA basis. In our experiments
we computed a complete linear basis of dimension 576 for a
24 x 24 image space. The subspace size was set to 8, thus the
pooled feature space has dimension 72. The F € R™V*"? is
therefore our input dataset. Our goal is to capture the general
pattern of activation of the single subspace feature channels,
therefore we binarize each scan-path feature vector setting to
1 all the values which are above the standard deviation of the
overall values (w.r.t. the single vector) and to O the values
below. We obtain Fy; a binary matrix of the same size as
F which is the spike train activation map corresponding to
the original train of scan-path patches. We model the Fy;
as samples of a mixture of multivariate Bernoulli (MoB).The
parameters of the mixture have been estimated via expectation-
maximisation (EM) algorithm for Bernoulli mixtures Fig. 1.

III. THE COMPUTATIONAL MODEL

We link the binary spike population estimated mixture to
its corresponding dichotomized Gaussian (DG) [7] genera-
tive counterpart. The properties of such decomposition are
exploited by finding out the most probable subspace (in the DG
space). We show how such subspace encodes a representative
activity pattern of the receptive field responses elicited by the
target visual input.

The DG distribution is a statistical tool described in [7]
used to generate spike trains with given first and second
order statistics by considering dicothomized samples of a
multivariate Gaussian distribution N(y, A). For each of the M
components the set Fj} € Fo; is the subset of the binarized
scan-path samples that are more likely to belong to the m-th
component . From each F{] we estimate the corresponding
DG model NV (v, Ay ). At this point, we have at our disposal
a generative model of the binarized input dataset representing
the full scan-path. It inherits the structure from the previously
estimated MoB, resulting in a weighted sum of M multivariate
DG distributions. The idea is to make use of the MoB and its
DG model decomposition to implement a filtering cascade that
will output a high saliency value corresponding to local images
patches that have a receptive field pattern of responses which is
close to the modeled scan-path. Intuitively, in the dicothomized
representation we can identify the most probable binary pattern
that can occur by considering the sign of ~,,. In fact, in a
N dimensional space there are 2V subspaces centered on the
origin depending on the sign chosen on the n-th individual
dimension. Each of these subspaces by definition is mapped to
a specific binary pattern.We want to identify the most probable
binary pattern that can be sampled from A (v, Ay,). The
subspace where the mean of the DG falls it is of course

=

Fig. 3. An input test image, its computed saliency map and the reference
fixation distance map.

the subspace whose cumulative distribution is greater than the
others. Therefore we take sign(v,,) as the prototypical binary
activation pattern which approximates the m-th component.
The negative sign will be mapped to a 0 and the positive to
a 1. The ISA-subspace feature channels corresponding to the
ones and the zeroes will model respectively the on and off
linear filtering cascades for each DG component. The on and
off responses to a single patch input are given by:

M D M D
on:ZmHujbij 5 Off:ZWiHuj(lfbij) &)
i=1 j=1 =1 j=1

where 7; are the mixture coefficients of the :-th component,
u; are the subspace coefficients as in Eq.2 for the input patch
and the b;; are 1 or 0 depending on the previous interpretation
of the mean of the DG model of the i-th component. The on-
off maps computed on every (24 x 24) patch of the input image
are then merged together to get the final saliency map SM
Fig.2. In Fig.3 a test image from the category “buildings”
of the dataset, the saliency map and the fixation distance-
map representing the eye-tracking data of all the 31 subjects.
The brighter regions (red in the color version) indicate high
saliency values.
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