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I. INTRODUCTION

In 1966, psychologist J. J. Gibson wrote, ”we see because
we move; we move because we see.” While the latter state-
ment is often taken for granted, the former is important,
as well. We have developed a robotic system that can find
and identify objects whether or not they are initially visible
and update knowledge of the locations of such objects. To
that end, our system combines a number of key components:
visual-inertial Structure from Motion with topological map-
building to localize the robot and map the environment,
real-time occlusion detection to guide an efficient search of
the environment, object recognition/categorization, and path
planning/navigation to guide low-level control.

This abstract will briefly describe the overall system and
these components, with references to longer works for details.
A real-time demo will be on-site at the workshop.

II. SYSTEM COMPONENTS

We have incorporated a number of new and existing com-
ponents in the development of this system. They are briefly
described here.
A. Vision + Inertial SFM and Topological Map-Building

In order for the robot to navigate, it must be able to
determine its pose in space and the relative positions of
obstacles in its vicinity. For this task, we build upon an existing
system developed by [3] that fuses visual information and
inertial measurements in a monolithic structure from motion
(SFM) + inertial measurement unit (IMU) extended Kalman
filter. The Corvis system determines at any time the robot’s
position and orientation, as well as the 3D positions of a
sparse set of points, relative to its initial reference frame.
This information allows the robot to localize itself and detect
obstacles in its environment. A topological map is built along
with the geometric SFM, which allows the system to locally
preserve fine-scale geometry while globally maintaining a
coarse map of distant locations. Loop detection and closure
is achieved by storing SIFT descriptors of the environment,
then using a bag-of-features approach to recognize locations
when the egomotion indicates a loop closure is possible.

Unified SFM+IMU: [3] demonstrates an observable ex-
tended Kalman filter for fusing visual and inertial measure-
ments with bounded bias and automatic camera-IMU calibra-
tion. The system augments [2], which presents a real-time

causal structure from motion system based on a similar filter.
Both incorporate visual data in the form of feature tracks –
sparse sets of points on the image plane that are continually
measured – and the former adds linear acceleration and angular
velocity measurements from an IMU.

Of particular importance for the current work is the contin-
ual updating of egomotion (R(t), T (t)) and the determination
of the 3D structure of the environment (X) relative to the
initial reference frame. This information is directly used by the
robot’s navigation system to localize itself and avoid obstacles
when path planning.

B. Occlusion Detection

To find objects not immediately visible, the robot must know
where to look. Rather than randomly searching for objects, the
robot explores areas of the environment that likely to hide
the target, namely behind occlusions. To do so, we adopt
the strategy of detecting occluding boundaries and navigating
around them.

Occluding Boundaries: An occlusion is a surface in the
scene that lies between the camera in its current pose and
a more distant surface. We determine which portions of the
scene may be occluded by looking for occluding boundaries,
which are 1D visual structures arising where the visible
portions of two surfaces at different depths project to the same
locations in an image. It is not possible to detect occluding
boundaries with a single image, but motion of a single camera
(or the use of a stereo camera) can reveal these boundaries. We
have developed a novel real-time occlusion detection algorithm
that finds the image coordinates of occluding boundaries with
a single moving camera. The locations of these boundaries are
provided to the navigation system to plan paths around them.

Occluding Boundary Detection: Our approach leverages
feature tracking [1] and techniques from descriptor generation
and matching [5] to find portions of the scene that contain
possible occluding boundaries. We begin with the following
observation: when viewing a continuous Lambertian surface,
relative motion of the camera induces a continuous diffeo-
morphic warping of the image. [8] This is the fundamental
principle behind most feature descriptors used for visual
matching. However, at an occluding boundary, where the
surface is not continuous, no such warping is possible. One
can thus determine the position of an occluding boundary by



finding where this principle is violated.
To begin feature tracking, we select points using the method

of [6] on the first image and when more features are required.
An affine tracker [1] tracks these points over time, returning
their new image-plane positions, as well as orientations, scales,
and skews relative to the initial frame. We place a circular
occlusion detection region of radius σ around each feature.
This region is broken into a spatial grid in the manner of SIFT
([5]), and we construct a multi-dimensional histogram of both
normalized intensities and weighted gradient orientations on
this grid. On subsequent frames, feature points are tracked
and these regions are warped according to an affine warping
determined by the tracker. A new histogram is built, which can
be compared with the statistics of prior histograms. Within
a spatial bin that contains an occluding boundary, a large
discrepancy will be observed over time within that bin’s
histogram. A statistical test is used to determine which spatial
bins contain occluding boundaries. These are then searched
for strong edges, which are flagged as occluding boundaries.
This information is continually updated and supplied to the
navigation system for path planning.

C. Object Recognition

We use a modified type of bag of features to detect and
recognize objects, similar to [4]. Since our system seeks to
recognize and localize objects, we do not want binary classi-
fication of an entire image, but rather recognition confidence
in image sub-windows. This allows the robot to localize the
object of interest in its map and to boost its confidence of
recognition by moving toward and around the object until
confidence is sufficiently high.

We combine the scale-invariant selection technique of [5]
and windowed bags-of-features to classify image regions as
particular objects with some level of confidence (the TF-IDF
score). The system only needs to do scale and orientation
selection once per feature, since we update a region’s scale
and orientation based on the egomotion reported by the SFM-
IMU system. This contributes greatly to efficiency as scale
selection is computationally intensive.

D. Path Planning and Navigation

The output of SFM-IMU, occlusion detection, and recogni-
tion all converge in the path planning and navigation module.
Standard techniques are used to compute a path through con-
figuration space and to command the drive motors. The set of
3D feature points estimated by the SFM module are projected
in a 2D occupancy grid map that holds the probabilities that
cells are occupied by obstacles. Only features that fall within
a minimum and maximum height are projected into the grid.
The probabilities of the cells that lie inside the current filed-
of-view are cyclically decreased, thus features observed only
briefly will vanish from the grid.

A binarized version of the occupancy grid is supplied to the
NF1 planner (or grassfire): at every time step, we perform a
wavefront expansion inside the free space of the grid from the
goal cell to the cell representing the robot’s position. Every

free cell is marked with its distance to the goal cell, and the
planner computes a solution trajectory by linking adjacent cells
closest to the goal. In order to drive the robot to the goal
position, we define a set of intermediate positions lying on
the path. The robot then follows the planned trajectory using
a stabilizing feedback control for differential-drive robots. [7]

A novel exploration strategy is used to search for objects.
First, the robot scans the environment that is immediately
visible, using the object recognition module to determine if
any recognizable object may be in view. Any such candidate is
immediately explored further by moving in its direction until a
determination of its identity can be made with high confidence.
Whenever the robot moves, the occlusion detection module
indicates locations of occluding boundaries, which are stored
in the navigation map. When no candidate objects are in view,
the robot explores the space behind occluded portions of the
environment by navigating around occluding boundaries. The
navigation map stores what portions of the environment have
been explored by the robot’s camera and the locations and
identities of objects recognized. The robot finishes exploration
when the entire workspace has been explored.

As the map is stored on disk, the robot may revisit any
object at some later time. Future work will explore ways to
update this map to account for moved or manipulated objects.

E. Hardware
The robot’s hardware consists of the following devices:

Camera: A wide-angle FireWire camera (1024x768, 30fps) is
used for all vision on the robot.
BEI C-MIGITS III: The IMU provides high-resolution linear
acceleration and rotational velocity at 100Hz.
Evolution Robotics ER1 Control Module: The ER1 control
module and stepper motor wheels provide mobility through an
interface with the Player/Stage software.
Computing: A MacBook Pro/4GB is used for all computing.
Point Grey LadyBug II: While not currently used, a Point
Grey LadyBug II 6-camera color omnicam is installed on the
robot. It will be used for object recognition and occlusion
detection in future versions of the system.
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