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I. INTRODUCTION

The active vision paradigm directly addresses the question
of how limited sensing and computationally resources can be
best employed to understand a visual scene. Our concern in
the present work is the observation of a scene by multiple pan-
tilt-zoom cameras and our goal is to control the parameters of
each camera in real-time in order to arbitrate between different
and potentially conflicting aims. One interest is to obtain the
maximum resolution of a target to facilitate classification (e.g.
facial recognition, closeups to disambiguate specific gestures,
or properties such as their direction of gaze). A second
interest is the accuracy of target tracking which is improved
by zooming in. But this must be traded off against other
interests such as that of minimising the risk of losing a target
once it has been detected, or of ongoing observation of the
environment in order to minimise the risk of not recording
events of importance. Both of these latter interests aims tend
to require a wider field of view. In the present abstract we
summarise results from various prior aspects of our work [11,
10, 12].

In common with [6, 7, 5, 9], we argue that an objective
function based on expected mutual information between sensor
data and scene representation is an appropriate metric to
maximise, but to our knowledge we are the first to employ
this in the context of multi-active-camera, multi-target tracking
and scene exploration. Before making an observation at time
k, we select the best parameter ak for this future time step.
The parameter ak contains all settings for the cameras in our
system, i.e. pan, tilt and zoom settings, and is chosen to be
the one which is expected maximally to increase knowledge
about the state of the scene, xk. The resulting observations
from applying this observation parameter are ok, which finally
update the distribution p(x).

The process of parameter selection at time k − 1 can thus
be summarised as

a∗k = arg max
ak

Iak
(xk;ok) (1)

In our application, the state vector x comprises two ele-
ments. One part contains all targets currently being tracked,
and addresses aims related to tracking, e.g. zoom selection

for a particular target and hand-off between cameras. This is
explained in more detail in section III.

The other part of the state vector contains the belief about
existence of targets at a discrete set of scene points. These
targets are to be tracked, but have not been detected yet. How
this triggers explorative behaviour of the scene is detailed in
the next section.

The resulting behaviours in typical situations for multi-
camera systems, such as camera hand-off, acquisition of close-
ups and scene exploration, are emergent and intuitive. We
quantitatively show that without the need for hand crafted rules
they address the given objectives.

II. SCENE EXPLORATION

In order to quantify the information gain of searching for a
target, we consider both the prior probabilty on the existence of
a target, and the performance of a generic object detector. The
former is modelled with a birth-and-death process with equal
rates λ, i.e. the appearance of an object is equally likely as a
disappearance [4]. Some locations – doorways, for instance –
are more liklely to give rise to new targets than others, and
so the rate λ is set in a location-dependent manner. Presently
this is done from off-line learned patterns of activity, but a
sensible future extension would be for this paranmeter to be
learned on-line.

Typical object detectors are trained for certain resolution
targets and therefore their performance is zoom-dependent. We
characterize the performancer of a detector by two functions
of zoom level z, pz(d|e = 0, 1), (i.e. the chance of a detection
given existence or not) representing the performance in terms
of true and false positives. These are also learned off-line;
in our work we use Histogram of Oriented Gradient whole
and upper body detectors [3], and evaluate the true and false
positive distributions on data acquired from our cameras and
hand-labelled.

Several cameras can observe the same scene location, and so
the final information gain (assuming independent observations)
gain for C cameras and N locations is thus:

I =
∑

i=1...N

H({di,c}C)−
∑

c=1...C

Ĥ(di,c|ei) (2)

where H({di,c}C), which is the joint entropy of all measure-
ments for location i. This then is a relatively simple formula



calculated from the detector performance characterizations and
the birth-death process.

While the MI does indeed increase for more observations,
there are diminishing returns for more and more cameras ob-
serving the same location. For better raw detector performance
the effect is more pronounced (a perfect detector would have
H(d) = 0 and no further observations would add information).
This tradeoff is important for the collaborative exploration
of the scene by several cameras – extensive overlap of the
supervised area does not necessarily yield more information
than a disparate setting, and thus the MI gain objective
naturally leads to cooperative exploration.

III. TRACKING WITH MULTIPLE TARGETS

We represent the motion of a target in the scene in ground
plane coordinates, facilitating integration of measurements
from different cameras. The position of each target is estimated
using a sequential Kalman filter [1]. The mutual information
gain associated with each tracked target is computed as a
function of the differential entropy of a Gaussian (from the
Kalman filter) modulated by the overall chance of making an
observation, which is governed by the field of view of the
camera.

Omitting the derivation, we obtain the mutual information
gain for each target as:

Ia(x;o) = H(x)− Ĥa(x|o)

= −n/2
∑

c∈C∗

log |I− wc(a)KcHc|. (3)

where wc(a) is the probabilty that the target is in the field of
view of camera c with parameters a.

This objective leads to natural behaviours such as (i) camera
hand-off; (ii) prioiritization of targets in a round-robin fashion.

IV. COMBINING OBJECTIVES

We follow Manyika ([7], p129), and note that we can
express our multi-objective optimization based on mutual
information gains as a single utility which is a simple linear
combination of the individual ones. We thus compose the
two information gains from detection and tracking via linear
blending, which yields a combined utility for both goals –
exploration and investigation – of the control:

U = ζIT,a(x;o)/IT,max + (1− ζ)ÎN,at
/ÎN,max (4)

The parameter ζ can be seen as the control that balances be-
tween different objectives: target tracking, versus exploration
for new targets.

V. IMPLEMENTATION AND RESULTS

We have implemented the theory above on two systems.
The first is a simulation environment comprising real high-
defintion video of a surveillance scene (PETS 2001) in which
we simulate pan, tilt and zoom via image scaling and cropping.
This allows experiments under exactly repeated conditions and
has therefore been crucial in exanining and evaluating the
ideas.

In order to implement our objective function for scene
exploration, we have quantized the pan and tilt values into
M values (not necessarily evenly spaced) and zoom into N
steps. The choice of parameters then reduces to an exhaustive
search over the (M2N)C parameters. For modest C (i.e. 2
or 3) the search space is not unreasonably large, but rapidly
becomes unwieldy for four or more cameras.

The second system is a live, real-time system compris-
ing two pan-tilt-zoom cameras. The architecture of this
system, which supports a variety of heterogeneous cam-
eras and visual processing is detailed in [2]. For our MI-
based control, we perform target detection using a GPU-
accelerated implementation [3] (described in [8]). Once de-
tected for the first time, targets are tracked using repeated
detection and simple nearest neighbour data association.
Example videos showing target hand-off can be seen at
http://www.youtube.com/user/PTZEric.

VI. CONCULSIONS

We have presented a unified method using maximisation
of mutual information to control multiple heterogeneous cam-
eras observing a common environment with multiple targets.
Basing our system’s overall objective function on the mutual
information between observations and the scene representation
means that we can naturally combine apparently disparate
aspects of the problem, such as detector performance, and
actor appearance and disappearance rates, and disparate goals,
such as exploration and tracking.
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