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A. Self-organizing control

Animals process sensory information in order to generate
behavior that matches the affordances of their environment.
The statistical properties of an environment, however, ap-
pear substantially different to an inexperienced individual and
to its more skilled fellow. On the one hand, appropriate
learning opportunities may rarely occur by chance, while
on the other hand a concentration on well-learned behaviors
tends to reduce the frequency of errors although these are
important indicators of the environmental dynamics. In order
to extract the currently relevant aspects of the sensory world,
the agent should thus aim at performing coherent behavior
based on incident regularities as well as maintain a constant
excitation of the controlled systems in order to escape from
suboptimal behaviors and track the environmental dynamics.
The strategies for departing from either of these uninformative
situations requires the agent to engage actively in the learning
process [1].

In the present contribution we will show that homeokinetic
learning [2] is an expedient method to achieve this goal
and that it presents a viable approach to active learning.
This method comprises the simultaneous maximization of the
sensitivity of an agent with respect to its stimuli and the pre-
dictability of these stimuli. Sensitization leads to exploratory
behavior which is counterbalanced by the requirement of
predictability by means of an internal model. As a theoretically
provable consequence, the motor activity becomes distributed
over many degrees of freedom of a robotic system. Homeo-
kinetic learning leads to flexible, versatile and body-specific
behaviors [3] that can be characterized by their controllability.

B. Spherical robots as an exemplary implementation

Among a number of implementations of the learning
scheme [3] we focus here on the simulated robot SPHERICAL

(Fig. 1b) which is of a relatively simple design, but involves
a non-trivial control problem. It is actuated by three weights
that are movable inside the robot along orthogonal axes. Any
change of the positions of the weights affects the center of
mass of the robot and results in a certain rolling movement.
Control of this system must account for inertia effects and the
intricate relation between motor actions and body movements.

At each time step the controller receives the current posi-
tions of the masses as input and calculates new target positions
of the three weights on their axes. Simulated motors are
used to move the weights to these positions which might be
compromised by centrifugal forces. Initially the robot does not

move, but as a consequence of the learning rule the controller
becomes more and more sensitive to any changes of its sensor
values by amplification of small noisy fluctuations until a more
coherent physical movement develops. Later a regular rolling
behavior is executed which breaks down infrequently to give
way for different movement patterns. Typically, rolling modes
around one of the internal axes are seen to occur, see Fig. 1.

C. Exploratory control

The homeokinetic controller produces behavior by self-
organization of the sensorimotor dynamics of the robot in-
cluding physical states and internal parameters. The function
of the controller is best understood by considering the map
from the sensory state at one time step to the next time step.
This map depends both on the actions of the robot and on the
environment. The agent has an adaptive internal model that
learns to represent an approximation of this map. Those effects
of the map that are not captured by the model are considered
as errors may they be due to noise, to immaturity, or to a com-
plexity gap between model and environment. Analogously, we
can consider the inverse map describing the sensory dynamics
in inverse time as well as an corresponding model of this
dynamics, which gives rise to a different error. In first order
these two errors are related by the Jacobian of the sensory map.
The homeokinetic learning rule, in particular, minimizes the
backward error and thus simultaneously the inverse Jacobian
(maximizing sensitivity), and the forward error (maximizing
predictability). This is obviously only feasible when the errors
actually have been caused by recent motor actions. Behavioral
modes outside the known behavioral manifold correspond to
small eigenvalues of the Jacobian, otherwise random fluc-
tuation in these directions had caused corresponding motor
actions. This has an interesting consequence for the internal
models. If the backward error was indeed determined by a
backward model or by a pseudo-inverse of the forward model
it would correctly predict small values and had little effect on
the learning rule. If, however, the backward error is determined
by regularized on-line inversion of the forward model then
small sensitivity leads typically to big effects in the learning
rule for the controller and hence in the behavior of the robot.
The effect depends on the regularization which is to be chosen
such that the linear approximation underlying to the approach
is not compromised. A further condition is the positivity of
the Jacobian. If this is violated fast oscillatory behavioris
produced which is, however, typically damped in real robots.
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Fig. 1. SPHERICAL robot exploring behavioral modes. The three internal masses are actuated each along its axis. Axes orientations serve as sensors.
(a) Typical behaviors: rolling modes about each of the three internal axes (A-C) keeping one weight still, and intermittent rotation aboutany other (unstable)
axis (D); (b) Screen shot taken from computer simulation;(c) Amplitudes of the motor value oscillations (y1...3) and the objective function (ETLE (time
loop error)) averaged over 10 seconds and scaled for better visibility. An infrequent switching of behaviors is observed and corresponding modes from the
panel(a) are labeled. The qualitative behavior is independent of theinitial condition.

D. Exploitation of the low-level control structures

As an immediate result of the learning rule, a flexible coor-
dination of movements is observed to appear in more complex
robot morphologies [3]. It is also possible to modulate the self-
organization process in order to develop specific preferences,
cf. [4]. Further applications of homeokinesis include control of
myoelectric prostheses, brain-machine interfaces, active signal
processing and the interaction of adaptive agents [3].

More interesting is the composition of more complex goal-
directed behaviors based on elementary sensorimotor relations
that are extracted from the waxing and waning of the emergent
behaviors during homeokinetic learning [5]. Typical behaviors
for the spherical robot are represented in Fig. 2. Using dif-
ferent phase relations among the actuators the controller is
able to stabilize the “natural” behaviors at different speeds.
The controllability of such elementary behaviors entails their
occurrence and thus their chance to find a representation within
the model which in turn improves controllability. In this way,
learning becomes a self-stabilizing process that selects certain
modes of operation.

On the slower time scale of the learning of the model,
however, these modes tend to be destabilized again such that
a number of behavior is sequentially activated and learned
limited only by the complexity of the internal model. Because
the extractable behaviors are negotiated between the dynamics
of the robot and the internal model they are well-suited
as a set of representative behaviors that can be used in
symbolic higher-order learning. Eventually, by a concatenation
of several elementary behaviors regions in the environment
become reachable that are unlikely to be found by random or
quasi-random exploration.
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Fig. 2. Partition of the space of angular velocities of the spherical robot by
a collective of expert networks. The key on the right assignsexpert labels to
colors in the picture. The clustering of the data is based on prediction quality
achieved by the experts. The angular velocities are the critical variables in
the physical dynamics of the robot, they are, however, not directly accessible
by the robot, only the axis orientations are sensed and the position of the
movable masses are controlled.
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