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Abstract

We consider the online setting of optimizing an unknown function, sampled from
a Gaussian Proccess, over a given bounded decision set so that that our cumulative
regret is low. Our analysis of an upper confidence algorithm provides sublinear
regret bounds for popular classes of kernels by exploiting a surprising connection
to optimal experimental design– in particular, our rates do no explicitly depend on
the dimensionality of the decision space, which need not even be a vector space.

1 Introduction
In many real-world problems, one needs to optimize a noisy function which is expensive to evaluate.
Recent examples of interest include choosing the advertisements in sponsored search to maximize
profit in a click-through model [1] and learning optimal control strategies for robots [2]. This prob-
lem can be naturally cast as a bandit optimization problem [3] with a large (possibly infinite) number
of arms.

Gaussian Process Optimization (GPO) is a natural framework for studying these problems. The
function to be optimized is assumed to reside in the Reproducing Kernel Hilbert Space (RKHS)
associated with a suitable kernel function. This framework is powerful, yet flexible; we can have
kernels over objects with structure, such as vectors, strings and graphs. The Upper Confidence
Bound (UCB) algorithm [4, 5] has been used successfully as a heuristic in several applications.
However, so far we are unaware of any theoretical performance analyses.

We analyze the UCB algorithm for GPO and prove sublinear regret bounds for popular classes of
kernels by exploiting a surprising link between bandit optimization and optimal experimental design.

2 Analysis of the Gaussian Bandit UCB
A Gaussian process (c.f., [6]) is a collection of random variables such that every finite subset shares
a joint Gaussian distribution. A GP f(x) ∼ GP (m(x), k(x, x′)) is completely specified by its mean
function m(x) = E[f(x)] and its covariance function k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))].
The smoothness we assume for our function is encoded by the covariance function. Some pop-
ular covariance functions include: the squared exponential kernel k(x, x′) = exp(− |x−x′|2

2l2 )
where l is the length-scale parameter, and the Matern class of covariance functions, given by
k(x, x′) = 21−ν

Γ(ν) (
√

2ν|x−x′|
l )νKν(

√
2ν|x−x′|

l ) where ν is a parameter that controls smoothness and
Kν is a modified Bessel function.

Our objective while sampling is to maximize the sum of the ‘rewards’ we get, i.e., to choose our
sampling points in order to maximize the sum of the function values obtained. If the decision set D
is continuous, we discretize it into a set V = VT . In our analysis, we assume that the decision region
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Algorithm 2.1: GAUSSIAN BANDIT UCB(D, δ)

V : Discretization of decision space using n points
Prior : µ̂1 ≡ 0 , Σ̂1 = Σ
for t← 1 to T

Choose xt = argmaxD(µ̂t(i) +
√

βtΣ̂t(i, i))
Sample yt = f(xt) + εt

Bayesian update:
µ̂t+1 = K(X∗, X)[K(X, X) + σ2I]−1yt

Σ̂t+1 = K(X∗, X∗)−K(X∗, X)[K(X, X) + σ2I]−1K(X, X∗)

Figure 1: The Gaussian bandit UCB algorithm. Hereby, βt = 4(log( 2T τ+1

δ ))2, X∗ is the set of test
points, i.e., all points in V . X is the set of training points xt, and y are the function values yt.

is bounded. For bounded decision spaces in Rd and many kernels, a polynomial increase (for fixed
d) of n = |VT | = O(T τ ) for some τ > 0 suffices to ensure that the discretization error shrinks at a
rate of 1/

√
T .

Sampling to maximize sum of the rewards is analogous to the classical multi-armed bandit problem,
where we have one arm for each possible decision. In bandit problems, we have the exploration-
exploitation trade-off; between the need to explore various possible options and the desire to con-
stantly choose the empirically best option. The Upper Confidence Bound (UCB) algorithm chooses
the arm by maximizing an upper confidence index. For each arm, the index is obtained by adding
the current estimate of the mean and a measure of uncertainty for that estimate. So, if an arm lies
in an unexplored region, its index is likely to be high even if its initial mean estimate is low. In this
way, the UCB algorithm implicitly negotiates the exploration-exploitation trade-off.

Algorithms for bandit problems are usually analyzed in terms of their ‘cumulative regret’. For a
particular choice of arm xt, the instantaneous regret is rt = E(f(x∗) − f(xt)) where E(f(x))
is maximized at x∗, and the expectation is with respect to the function f being drawn from the
Gaussian process prior. Essentially, rt it is the expected loss of reward we incur due to our lack of
knowledge of the best arm to play. The cumulative regret RT at time T is the sum of instantaneous
regrets: RT =

∑T
t=1 rt. In a multi-armed bandit problem, the quest is to find a no-regret algorithm

for choosing the arms to play; an algorithm A is said to be no-regret if RA(T ) ∼ o(T ).

For the K-armed bandit problem, the UCB algorithm is no-regret; however, RT = O(
√

KT ) and
therefore the bound is vacuous for infinitely many arms (or if K = Ω(T )). We provide a no-
regret bound for infinitely armed bandits in a GP framework by replacing K in the bound by the
maximum possible information gain due to sampling, thus connecting GP bandit optimization and
optimal experimental design. In the finite arms case, the regret grows polynomially with the number
of arms because each is independent. However, the GP setting imposes smoothness through the
covariance structure, and therefore playing one ‘arm’ gives more information about other ‘arms’ in
its neighbourhood – therefore the information gain grows sublinearly during the sampling process.

Let V represent the discretization of the decision set. We observe points ys = xT
s FV + εs, where F

is the unknown reward function, εi is a Gaussian white noise process with variance σ2 and xs is an
indicator vector which refers to the particular member s of V we choose to observe. We can think
of picking the set of vectors xi in terms of choosing the matrix A with xi as the columns. Then, we
observe YA = AT FV + ε, where ε ∼ N(0, σ2I).

We define the information gain to be

γT = max
A

I(FV ;YA) = max
A

(H(YA)−H(YA|FV )) (1)

where I(·, ·) stands for mutual information.

Our main result is the following regret bound in terms of maximal information gain. This connects
the GP bandit problem with the problem of experimental design, where points of measurement need
to be chosen in order to maximize the information gain.
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Theorem 1 Let 0 < δ < 1. If we run the Gaussian Bandit UCB algorithm with discretization V ,
|V | = T τ and parameter δ, the cumulative regret RT after T plays is bounded as:

Prob(∀T,RT ≤
√

8TβT γT ) ≥ 1− δ

where βT = 4(log( 2T τ+1

δ ))2.

In order to bound γT , we exploit the fact that information gain is submodular, i.e., the information
gain on sampling from one point is larger when our number of earlier sample points is low than
when it is high [7]. That is, I(A ∪ {s}) − I(A) ≥ I(A′ ∪ {s}) − I(A′) whenever A ⊆ A′ and
s /∈ A. Submodularity implies a performance guarantee on the ‘greedy’ algorithm for maximizing
the information gain.

Which inputs does the greedy algorithm pick? If we allow selecting arbitrary vectors of unit norm
(instead of point evaluations), maximizing the RHS of (1) reduces to

max
A

H(YA) = max
A

AT ΣA.

When A = v is just a vector, i.e., we sample just one point at a time, we have

max
A

H(YA) = max
‖v‖2≤1

vT Σv (2)

We know that (2) is maximized by selecting the eigenvector v of Σ with maximal absolute eigen-
value. This insight shows that the worst case bound occurs when the UCB algorithm is allowed to
sample eigenvectors of Σ. Further, the submodularity of information gain allows us to choose the
sampling points greedily - picking eigenvectors with maximal eigenvalues maximizes information
gain. Formally:

Theorem 2 The maximal information gain γT is bounded as follows:

γT ≤ (1− 1
e
)−1 max

m1,...,mn

n∑
t=1

log(1 +
mtλt

σ2
)

Thus, in order to bound the maximal information gain, we need to understand the spectral properties
of the kernel matrices involved, and how they affect the optimal allocation m1, . . . ,mn. If we know
the decay of the eigenvalues λi, we can bound the optimal allocation m1, . . . ,mn using a fractional
relaxation. We present the regret bounds for three popular classes of kernels below by exploiting
their known spectral properties.

Consider finite-dimensional Bayesian linear regression, with Lipschitz-continuous basis functions
φ(x)T = (φ1(x), φ2(x), ..., φq(x)). We show that γT = O(log(T )). So, from Theorem 1, since
βT = O(log2(T )),

RT = O(
√

T log3(T ))

For the squared-exponential kernel with fixed lengthscale (i.e., independent of the discretization),
we exploit the exponential decay of the eigenvalues to show that γT = O(log2(T )) and therefore,
reasoning as before,

RT = O(
√

T log4(T ))

If the eigenvalues decay in a power law fashion, say with index α, we show that γT = O(T
τ+1

α )
and reasoning as earlier,

RT = O(T
1
2+ τ+1

2α ) (3)
From (3), the average regret vanishes asymptotically if α > τ+1 - this is true for all Sacks-Ylvisaker
kernels of order r > τ−1 (such as the Matern class, with smoothness parameter ν = r+ 1

2 , provided
ν > 2).

Therefore, we have sublinear regret bounds for Bayesian linear regression, the squared exponential
kernel and a large class of Sacks-Ylvisaker kernels. We believe that the above analysis presents a
natural framework to analyze Gaussian process optimization for a variety of kernels.
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