
Active Learning with an ERM Oracle

Alina Beygelzimer
IBM Research

Daniel Hsu
UC San Diego

John Langford
Yahoo! Research

Tong Zhang
Rutgers University

1 Introduction

An active learning algorithm adaptively chooses which unlabeled data to obtain labels for. The hope
is that the active learner can query for labels on just a small fraction of the data set, and otherwise
perform as well as a fully supervised learning method. In this work, we are interested in agnostic
active learning algorithms for binary classification that are provably consistent.

One technique that has proved theoretically profitable is to maintain a candidate set of hypotheses
(sometimes called a version space), and to query the label of a point if and only if there is disagree-
ment within this set about how to label the point. The criteria for membership in this candidate set
need to be carefully defined so that the optimal hypothesis h∗ is always included, but otherwise this
set can be quickly whittled down as more labels are queried. This technique is rather straightforward
in the realizable setting [3], and it can be extended to the agnostic setting with the use of confidence
bounds and hard example constraints [1, 4]. One of the algorithms in [2] uses large importance
weights to essentially achieve the same effect.

A drawback of this version space approach is its computational intractability. Maintaining a version
space and guaranteeing that only valid hypotheses are returned is difficult for linear predictors and
appears intractable for interesting nonlinear predictors. Here, we develop a new strategy which is
computationally tractable given an oracle that returns an empirical error minimizing hypothesis.
As this oracle matches our abstraction of many supervised learning algorithms, we believe active
learning algorithms built using this oracle are immediately and widely applicable.

This approach also has a substantial secondary advantage. Version space algorithms must be very
conservative in defining the version space, because any error could result in discarding the optimal
hypothesis h∗. This conservative behavior implies that in many practical applications, version space
algorithms fail to improve on the label complexity of supervised learning. We expect an active
learning algorithm based on an empirical error minimization oracle to be substantially more robust
(and hence, aggressive) in practice as errors can be recovered from.

In this work, we present an algorithm that avoids the rigidity of hard example constraints and the
like. It is similar to the algorithm of [4] in that it only accesses hypotheses via a supervised learning
oracle. However, the oracle required is simpler than that used in [4] and also avoids strict adherence
to a candidate set of hypotheses. We prove that the algorithm is consistent and has a label complexity
analysis comparable to that of previous consistent active learning algorithms.

2 Preliminaries

Let D be a distribution over X ×{±1}, where X is the input space and the labels are ±1. An active
learning algorithm receives a stream of examples (x, y) drawn i.i.d. from D with y hidden unless it
is explicitly queried. Let H be a set of hypotheses mapping from X to {±1}. For simplicity, we
assume H is finite; our results can be extended to infinite H with finite VC dimension. Denote the
(true) error of a hypothesis h by err(h) := Pr(x,y)∼D[h(x) 6= y]; and denote the empirical error of
h on a sample Z ⊂ X ×{±1} by err(h, Z) := (1/|Z|)

∑
(x,y)∈Z I[h(x) 6= y], where I[·] is the 0-1

indicator function. Let h∗ := arg min{err(h) : h ∈ H} be a hypothesis of minimum error in H .

1

3 Algorithm

Our algorithm is as follows. Initially, Z̃0 := ∅.
For t = 1, 2, . . .:

1. Get xt, sampled from the distribution D (with label yt hidden).

2. Let ht := arg min{err(h, Z̃t−1) : h ∈ H}
and h′t := arg min{err(h, Z̃t−1) : h ∈ H ∧ h(xt) 6= ht(xt)}.

3. If err(h′t, Z̃t−1)− err(ht, Z̃t−1) > ∆t−1

(a) Then: Assign ỹt := ht(xt), and let Z̃t := Z̃t−1 ∪ {(xt, ỹt)}.
(b) Else: Query true label yt, and let Z̃t := Z̃t−1 ∪ {(xt, yt)}.

Note that ht minimizes the empirical error on Z̃t−1 (the previous t − 1 examples), and h′t does
the same except over just those hypotheses that disagree with ht on xt. The decision to query
the t-th label or not is based on the outcome of a simple test involving the error difference dt :=
err(h′t, Z̃t−1)− err(ht, Z̃t−1) and a threshold ∆t−1. The threshold, specified in the next section, is
based on deviation bounds for i.i.d. samples.

Here we give some intuition behind the above algorithm. First, because h′t minimizes the empirical
error on Z̃t−1 among all hypotheses that disagree with ht on xt, a sufficiently large error difference
dt implies that any hypothesis disagreeing with ht on xt must have larger true error than ht. The
optimal hypothesis h∗ cannot have larger true error than ht, so it must agree with ht on xt. In this
way, we can deduce ỹt = ht(xt) = h∗(xt) whenever dt is large. Second, substituting any true labels
yt with the labels assigned by ht(xt) only works to bias a learner towards h∗, since hypotheses that
disagree with h∗ on these examples are penalized by the substitution. Finally, if a hypothesis h′

disagrees with h∗ on xt, and dt is large enough, then h′ will never minimize the error on Z̃τ at any
time τ > t in the future. Therefore we are sure that ht always agrees with h∗ on examples with
synthesized labels, which is essential to avoid using an explicit candidate set of hypotheses (c.f. [4]).

4 Analysis (sketch)

Let S̃n ⊆ Z̃n denote the set of examples (xt, ỹt) for which the algorithm synthesizes the label ỹt,
and let Qn := Z̃n \ S̃n be the remaining examples (xt, yt) for which the algorithm queries the label
yt. Also, let Sn := {(xt, yt) : (xt, ỹt) ∈ S̃n} be the same as S̃n except with the synthesized labels
replaced with the true labels. Note that Zn := Sn ∪ Qn is an i.i.d. sample from D while Z̃n is
generally not.

As mentioned before, the threshold ∆n will be based on (non-uniform) deviation bounds βn : H →
R+ that guarantee, with probability at least 1− δ,

|(err(h)− err(h∗))− (err(h, Zn)− err(h∗, Zn))| ≤ βn(h)

for all h ∈ H and all n ≥ 1. Using non-uniform bounds allows for tighter guarantees when h is
close to h∗, which is crucial to obtain our label complexity bounds. Applying Chernoff bounds to
the error differences err(h, Zn)− err(h∗, Zn), we can set

βn(h) := O

αn +

√√√√αn ·
1
n

n∑
t=1

I[h(xt) 6= h∗(xt)]


where αn := log(|H|n/δ)/n. Note that βn(h) interpolates between O(1/n), when h = h∗, and
O(1/

√
n), when h and h∗ disagree on all examples.

Let Hn := {h ∈ H : h(x) = h∗(x) ∀(x, ỹ) ∈ S̃n}. This serves as a candidate set for the sake of
analysis, but note that the algorithm never explicitly restricts its attention to Hn. We consider Hn in
the analysis because the h ∈ Hn enjoy a tighter deviation bound. Indeed, let β̄n := max{βn(h) :
h ∈ Hn}; we will show that β̄n is roughly bounded by αn +

√
αn|Qn|/n, so it suffices to define

the threshold as ∆n := 5β̄n ≈ 5(αn +
√
αn|Qn|/n).

2

The first lemma makes clear the intuition that replacing labels with those assigned by h∗ favorably
biases us towards h∗.
Lemma 1. Assume ỹt = h∗(xt) for all (xt, ỹt) ∈ S̃n. Then err(h, Z̃n) − err(h∗, Z̃n) ≥
err(h, Zn)− err(h∗, Zn) for all h ∈ H .

This bias essentially lets us think of Z̃n as an i.i.d. sample in the subsequent analysis.

The next lemma captures several intuitions: when the error difference err(h′n, Z̃n−1) −
err(hn, Z̃n−1) is large, then the algorithm correctly determines hn(xn) = h∗(xn) (so the previous
lemma applies); and hn always agrees with h∗ where labels are synthesized on previous examples.
Lemma 2. With probability at least 1− δ,

1. For n ≥ 1: (xn, ỹn) ∈ S̃n ⇒ hn(xn) = h∗(xn);

2. For n ≥ 0: h′ 6∈ Hn ⇒ err(h′)− err(h∗) > 3βn(h′);

3. For n ≥ 0: hn+1 ∈ Hn.

Some consequences of this lemma are: (1) β̄n ≤ O(αn +
√
αn|Qn|/n), which justifies the setting

of the threshold ∆n, and (2) err(hn) ≤ err(h∗)+βn−1(hn). The latter in turn implies the following
consistency guarantee.
Theorem 1. For any T , H , and δ, with probability at least 1− δ,

err(hT+1) ≤ err(h∗) +O

(
log(T |H|/δ)

T
+

√
err(h∗) · log(T |H|/δ)

T

)
.

In other words, the label complexity of the active learning algorithm is no worse than the sample
complexity of supervised learning.

Finally, we give a bound on the label complexity of the algorithm in terms of the disagreement
coefficient [5], defined as follows. Let d(h, h′) = Pr(x,y)∼D[h(x) 6= h′(x)] and B(h, r) = {h′ ∈
H : d(h, h′) ≤ r}. Let Disagree(r) = {x : ∃h ∈ B(h∗, r) s.t. h(x) 6= h∗(x)}. The disagreement
coefficient is

θ := sup
{

Pr(x,y)∼D[x ∈ Disagree(r)]
r

: r > 0
}
.

Theorem 2. For any T , H , and δ, with probability at least 1 − δ, the expected number of labels
queried by the algorithm after seeing T unlabeled examples is bounded as

E|QT | ≤ O
(
θ · err(h∗) · T + θ2 · log(|H|/δ) · log3 T

)
.

In comparison, the number of labels requested by the algorithms of [1] and [4] is O(θ · err(h∗) ·
T + θ · log(|H|/δ) · log2 T). So, we are worse by a factor of θ · log T in the second term. Note that
the factor err(h∗) · T in the first term is generally unavoidable due to lower bounds for any active
learner [2]. However, in some cases, the quantity

κ := sup
{

d(h, h∗)
err(h)− err(h∗)

: h ∈ H
}

may be bounded, in which case we can provide an improved guarantee of
E|QT | ≤ O

(
κ · θ2 · log(|H|/δ) · log3 T

)
.

So, when the leading terms are small, the active learner is exponentially more efficient than a super-
vised learner that requests all T labels.

References
[1] M.-F. Balcan, A. Beygelzimer, and J. Langford. Agnostic active learning. In ICML, 2006.
[2] A. Beygelzimer, S. Dasgupta, and J. Langford. Importance weighted active learning. In ICML, 2009.
[3] D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine Learning,

15(2):201–221, 1994.
[4] S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. In NIPS, 2007.
[5] S. Hanneke. A bound on the label complexity of agnostic active learning. In ICML, 2007.

3

