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1 Introduction

We describe a Bayesian formalism for the intelligent s@acbf observations from sources that
may intermittently undergo faults or changepoints. Sudivaalata selection is performed with
the goal of taking as few observations as necessary in ood®atntain a reasonable level of un-
certainty about the variables of interest. The presencaudfd/changepoints is not always obvious
and therefore our algorithm must first detect their occureenHaving done so, our selection of
observations must be appropriately altered. Faults cooupobservations, reducing their impact;
changepoints (abrupt changes in the characteristics aj daty require the transition to an entirely
different sampling schedule. Our solution is to employ a$3&an process formalism that allows for
sequential time-series prediction about variables of@stealong with a decision theoretic approach
to the problem of selecting observations.

2 Gaussian process prediction in the presence of changepoints

Gaussian processes (GPs) offer a powerful method to perBayesian inference about func-
tions [1]. For a functiony(z), the GP gives a prior distribution over its valugson a sub-
setx of its domain that are completely specified by a mean vegtand covariance matrik,
p(y | 1) 2 N(y; u(x),K(x,x)). Herel, thecontext, includes prior knowledge of both the mean
and covariance functions, which generatandK respectively. We will incorporate knowledge of
relevant functional inputs, such asinto I for notational convenience.

An example is the squared exponential covariance functisren by K55 (z1, z9; {\, 0'})

A2 exp ( ('*10—“") ) The parametersando represent respectively the characteneuqout and
input scaleﬁof the process. They are examples of the set of hyperparesnetdiectively denoted as
0, that are required to specify our covariance and mean fumetiOther covariance functions can be
constructed for a wide variety of problems [1]. We have depetl covariance functions that allow
us to model changepoints and faults of many different tyggs@hangepoint covariances are also
specified by hyperparameters, such as the location and fygsech changepoint.

Note that we typically do not receive observationgafirectly, but rather of potentially noise cor-
rupted versions of y. We consider the Gaussian observation likelihp6d | y, 6, '), and usually
take simple independent, stationary noise contributidnsensor fault implies that the relationship
betweerny and the observed valueds temporarily altered [2]. In order to describe such fauite
include additional hyperparameters iftspecifying their time of occurrence, duration and type.
Our principled probabilistic approach will allow us to eatt whatever information faulty observa-
tions may contain that is pertinent to inference about thetgbrocess.

We define the set of observations available to ugm@asz,). Conditioning on these observatiods,
andd, we are able to analytically derive our predictive equagitor the vector of function values
y, at inputsx, p(y, | z4, 0, I) [1]. We use the sequential formulation of a GP given lby [3] to



Tide height data at Sotonmet sensor
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Figure 1. Active data selection over intermittently faultje height data from the Sotonmet sensor—
above, the selected observations and consequent predi¢idh lookahead = 5 mins), below, the
posterior probability that an observation taken at a time: would be faulty, given all observations
taken up to and including time

perform sequential prediction using an adaptive movingdewm After each new observation, we
use rank-one updates to the covariance matrix to efficiargtjate our predictions in light of the
new information received. The computational savings madthese choices mean our algorithm
can be feasibly run on-line.

Of course, we can rarely be certain abéu priori. These hyperparameters must hence be as-
signed an appropriate prior distribution and then margedlto givep(y, | z4, I ). Although the
required integrals are non-analytic, we can efficientlyragjmate them by use of Bayesian Monte
Carlo 4] techniques, giving a mean(y, | z4, I) and covarianc€(y, |zq, I) for p(y, | zq, I).
Effectively, we average over a range of models compatibth thie data, giving a covariance that
captures our underlying uncertainty about the correct modlkis includes uncertainty about the
faultiness of data. A similar approximation can also be ntadevaluate the non-analytic integrals
required to determine the posterior distribution for anpénparameter[2].

3 Activedata selection in the presence of changepoints

Consider the decision about sampling facing us at an arpitime ¢. Our goals in making this
decision are two-fold. Firstly, we aim to minimise the urteérty we possess about variables of
interesty, = {y;, | = 1, ..., L}, wherey, is the value of our field at the location of sengdor
the lookahead-shifted time+ e. Secondly, we aim to minimise the number of costly obseowesti
We can now define the expected loss associated with choosifpservation from sensaf as

Al |z, I) & [ (Zle C(yi|ze, 2a, I)) p(2c | za, I)dz. + C., where we have marginalised

over the possible observationsreceived from sensdg. This integral is non-analytic, and as such
will be approximated by further application of Bayesian N®Carlo techniques. The terdi.
denotes the cost of the observation. We also have the logsiates] with not taking an observation

atall A(0 | zq, I) 2 X0 v/Clyi|za, 1). So, defining,,, 2 argmin, _; _ ; A(le | za, 1), if
A(lm | za, I) < A0 | 24, I), we sample ak,,; otherwise, we do not sample at all.

4 Results

We have applied our methods to data drawn from two sensoromk$w Selected observations,
plotted as black diamonds, were used to generate prediciidoited using a red line for the mean
and pink for thet1 SD error bars. The full list of all available observatiorsvgs as a measure of
“ground truth” (in the absence of faults), plotted as a bl



Wannengrat Station 16 Observation Times and Stations
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Figure 2: Active data selection of ambient temperaturd$ &/annengrat sensor stations ot 0.

4.1 Bramblemet weather sensor network

We tested our algorithm on a network of weather sensorsddcan the south coast of England
[3]. In particular, we performed active data selection did# height data in which readings from a
sensor became stuck at an incorrect value. As such, we usede that allowed for such changes
in the observation likelihood. Results are plotted in Feflir Here, the run length is the number of
days since the last changepoint. Our model correctly ifledtthe beginning and end of the fault,
and schedules more observations as it begins to suspethéfault may have ended.

4.2 Wannengrat weather sensor network

Our second dataset was drawn from the Wannengrat Alpine rQiisey be-
ing built above and around the town of Davos as part of SwispeBment (see
http://www.swiss-experiment.ch/index.php/Wannengrat :Home). The change-
points in output scale that exist within this dataset , alwith the limited battery life of the remote
sensors, make it a natural fit for our methods. Fidiire 2 detrates active data selection over a
16-sensor ambient temperature dataset. Note that theithlgdoecomes more reluctant to make
simultaneous observations from multiple sensors subsgdoelearning that their readings are
strongly correlated. It can be seen that there is a drammtieése in sampling frequency coincident
with the volatile fluctuations in temperature (registerealasensors) that begin at abaut= 0.7
days.

5 Conclusion

We have introduced a new sequential algorithm for perfognaictive data selection in the presence
of changepoints or faults. We employ a principled, Baye$iamework throughout, performing
prediction using a Gaussian process with an appropriateggpint covariance. We then used those
predictions to evaluate the optimal decision-theoretioang policy, given the goal of minimising
the average uncertainty for a defined cost of taking an ober: Tests on real sensor networks
demonstrate the efficacy of our approach.
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