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1 Introduction

We describe a Bayesian formalism for the intelligent selection of observations from sources that
may intermittently undergo faults or changepoints. Such active data selection is performed with
the goal of taking as few observations as necessary in order to maintain a reasonable level of un-
certainty about the variables of interest. The presence of faults/changepoints is not always obvious
and therefore our algorithm must first detect their occurrence. Having done so, our selection of
observations must be appropriately altered. Faults corrupt our observations, reducing their impact;
changepoints (abrupt changes in the characteristics of data) may require the transition to an entirely
different sampling schedule. Our solution is to employ a Gaussian process formalism that allows for
sequential time-series prediction about variables of interest along with a decision theoretic approach
to the problem of selecting observations.

2 Gaussian process prediction in the presence of changepoints

Gaussian processes (GPs) offer a powerful method to performBayesian inference about func-
tions [1]. For a functiony(x), the GP gives a prior distribution over its valuesy on a sub-
setx of its domain that are completely specified by a mean vectorµ and covariance matrixK,
p(y | I ) , N(y; µ(x),K(x, x)). HereI, thecontext, includes prior knowledge of both the mean
and covariance functions, which generateµ andK respectively. We will incorporate knowledge of
relevant functional inputs, such asx, into I for notational convenience.

An example is the squared exponential covariance function,given by K(SE)(x1, x2; {λ, σ}) ,

λ2 exp
(

− 1
2 ( |x1−x2|

σ
)2

)

. The parametersλ andσ represent respectively the characteristicoutput and
input scales of the process. They are examples of the set of hyperparameters, collectively denoted as
θ, that are required to specify our covariance and mean functions. Other covariance functions can be
constructed for a wide variety of problems [1]. We have developed covariance functions that allow
us to model changepoints and faults of many different types [2]. Changepoint covariances are also
specified by hyperparameters, such as the location and type of each changepoint.

Note that we typically do not receive observations ofy directly, but rather of potentially noise cor-
rupted versionsz of y. We consider the Gaussian observation likelihoodp(z | y, θ, I ), and usually
take simple independent, stationary noise contributions.A sensor fault implies that the relationship
betweeny and the observed valuesz is temporarily altered [2]. In order to describe such faults, we
include additional hyperparameters intoθ specifying their time of occurrence, duration and type.
Our principled probabilistic approach will allow us to extract whatever information faulty observa-
tions may contain that is pertinent to inference about the plant process.

We define the set of observations available to us as(xd, zd). Conditioning on these observations,I,
andθ, we are able to analytically derive our predictive equations for the vector of function values
y⋆ at inputsx⋆ p(y⋆ | zd, θ, I) [1]. We use the sequential formulation of a GP given by [3] to
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Figure 1: Active data selection over intermittently faultytide height data from the Sotonmet sensor—
above, the selected observations and consequent predictions (with lookaheadǫ = 5 mins), below, the
posterior probability that an observation taken at a timet + ǫ would be faulty, given all observations
taken up to and including timet.

perform sequential prediction using an adaptive moving window. After each new observation, we
use rank-one updates to the covariance matrix to efficientlyupdate our predictions in light of the
new information received. The computational savings made by these choices mean our algorithm
can be feasibly run on-line.

Of course, we can rarely be certain aboutθ a priori. These hyperparameters must hence be as-
signed an appropriate prior distribution and then marginalized to givep(y⋆ | zd, I ). Although the
required integrals are non-analytic, we can efficiently approximate them by use of Bayesian Monte
Carlo [4] techniques, giving a meanm(y⋆ |zd, I) and covarianceC(y⋆ |zd, I) for p(y⋆ | zd, I ).
Effectively, we average over a range of models compatible with the data, giving a covariance that
captures our underlying uncertainty about the correct model. This includes uncertainty about the
faultiness of data. A similar approximation can also be madeto evaluate the non-analytic integrals
required to determine the posterior distribution for any hyperparameter [2].

3 Active data selection in the presence of changepoints

Consider the decision about sampling facing us at an arbitrary time t. Our goals in making this
decision are two-fold. Firstly, we aim to minimise the uncertainty we possess about variables of
interesty⋆ , {yl, l = 1, . . . , L}, whereyl is the value of our field at the location of sensorl for
the lookahead-shifted timet + ǫ. Secondly, we aim to minimise the number of costly observations.
We can now define the expected loss associated with choosing an observation from sensorlc as

Λ(lc | zd, I) ,
∫

(

∑L

l=1

√

C(yl |zc, zd, I)
)

p(zc | zd, I) dzc + Cc, where we have marginalised

over the possible observationszc received from sensorlc. This integral is non-analytic, and as such
will be approximated by further application of Bayesian Monte Carlo techniques. The termCc

denotes the cost of the observation. We also have the loss associated with not taking an observation
at all Λ(∅ | zd, I) ,

∑L

l=1

√

C(yl |zd, I). So, defininglm , argminlc=1, ..., L Λ (lc | zd, I), if
Λ (lm | zd, I) < Λ(∅ | zd, I), we sample atlm; otherwise, we do not sample at all.

4 Results

We have applied our methods to data drawn from two sensor networks. Selected observations,
plotted as black diamonds, were used to generate predictions, plotted using a red line for the mean
and pink for the±1 SD error bars. The full list of all available observations serves as a measure of
“ground truth” (in the absence of faults), plotted as a blackline.
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Figure 2: Active data selection of ambient temperatures at16 Wannengrat sensor stations forǫ = 0.

4.1 Bramblemet weather sensor network

We tested our algorithm on a network of weather sensors located on the south coast of England
[3]. In particular, we performed active data selection overtide height data in which readings from a
sensor became stuck at an incorrect value. As such, we used a model that allowed for such changes
in the observation likelihood. Results are plotted in Figure 1. Here, the run length is the number of
days since the last changepoint. Our model correctly identified the beginning and end of the fault,
and schedules more observations as it begins to suspect thatthe fault may have ended.

4.2 Wannengrat weather sensor network

Our second dataset was drawn from the Wannengrat Alpine Observatory be-
ing built above and around the town of Davos as part of Swiss Experiment (see
http://www.swiss-experiment.ch/index.php/Wannengrat :Home). The change-
points in output scale that exist within this dataset , alongwith the limited battery life of the remote
sensors, make it a natural fit for our methods. Figure 2 demonstrates active data selection over a
16-sensor ambient temperature dataset. Note that the algorithm becomes more reluctant to make
simultaneous observations from multiple sensors subsequent to learning that their readings are
strongly correlated. It can be seen that there is a dramatic increase in sampling frequency coincident
with the volatile fluctuations in temperature (registered at all sensors) that begin at aboutt = 0.7
days.

5 Conclusion

We have introduced a new sequential algorithm for performing active data selection in the presence
of changepoints or faults. We employ a principled, Bayesianframework throughout, performing
prediction using a Gaussian process with an appropriate changepoint covariance. We then used those
predictions to evaluate the optimal decision-theoretic sampling policy, given the goal of minimising
the average uncertainty for a defined cost of taking an observation. Tests on real sensor networks
demonstrate the efficacy of our approach.
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