
Active Map Learning for Robots:

Insights into Statistical Consistency

Ruben Martinez-Cantin

Ph.D. Dissertation

Main advisor D. José Ángel Castellanos Gómez

Departamento de Informática e Ingenieŕıa de Sistemas

Centro Politécnico Superior

University of Zaragoza, Spain

September 2008

ii

Resumen

El problema de aprendizaje de entornos desconocidos en robótica móvil recibe
el nombre de SLAM (Simultaneous Localization and Mapping). Si además el
robot tiene que tomar decisiones en este ámbito se denomina SLAM activo
o simplemente, exploración. Dada la naturaleza del problema, los métodos
actuales de SLAM están basados en una fuerte formulación probabilista, en
la forma de filtros Bayesianos. Extensiones de esta formulación en el ámbito
de la toma de decisiones en entornos inciertos permiten resolver el problema
de forma activa y autónoma, usando, por ejemplo, MDPs (Markov Decision
Processes).

Por un lado, la enorme dimensionalidad (temporal, espacial y estad́ıstica)
del problema de SLAM hace que, matemáticamente, no exista solución com-
pleta. Existen soluciones subóptimas presentadas en la literatura actual basadas
en aproximaciones lineales de primer orden, como el filtro de Kalman extendido
(EKF) o métodos de muestreo, como el filtro de part́ıculas Rao-Blackwellizado
(RBPF), pero que sufren de cierta inconsistencia estad́ıstica que provoca resul-
tados corruptos o totalmente erróneos a largo plazo. Por otro lado, esta enorme
complejidad también implica que las técnicas actuales de MDPs -iteración de
valor, iteración de poĺıtica y búsqueda de poĺıtica con árboles o gradientes-
solo aportan soluciones parciales o se reducen a problemas muy básicos y no
realistas.

En esta tesis se analizan las propiedades estad́ısticas del problema de
SLAM y los algoritmos comúnmente empleados, especialmente las fuentes de
error. En ese sentido, se investiga la aplicación de aproximaciones lineales
de segundo orden como el filtro de Kalman unscented (UKF), métodos de
muestreo más avanzados, como el filtro de part́ıculas marginal (MPF), o es-
timación basada en aproximación estocástica. Estos algoritmos teóricamente
mejoran la consistencia estad́ıstica de los anteriores, lo cual se demuestra con
los correspondientes experimentos.

Por otro lado, se investigan nuevos algoritmos de búsqueda de poĺıticas

iii

iv Resumen

más eficientes que permitan solucionar el problema completo de decisión. En
este sentido se trabaja con algoritmos de optimización global eficiente para la
búsqueda de poĺıticas. Este trabajo esta relacionado con el aprendizaje activo
de parámetros usando procesos Gaussianos.

La exploración inteligente de entornos desconocidos puede ampliar los cam-
pos de aplicación de la robótica, favoreciendo la integración de los robots en
la vida cotidiana. El objetivo final es la combinación de todos estos sistemas,
de manera fiable y robusta en una plataforma autónoma que permita al robot
realizar tareas peligrosas o repetitivas, con poca o nula supervisión. De este
modo, se consigue una mayor robustez frente a situaciones inesperadas y se
suprime la necesidad de personal cualificado para su uso.

Abstract

The problem of learning unknown environments in mobile robotics is called
SLAM (Simultaneous Localization and Mapping). Furthermore, if the robot
has to take some decision, it is called active SLAM or just exploration. The
current SLAM methods are rooted on the strong probabilistic formulation
in the form of Bayesian filters. There are extensions of this formulation in
the field of decision making in uncertain environments that allows to solve the
problem in an active and autonomous way, using, for example, MDPs (Markov
Decision Processes).

On the one hand, the huge dimensionality of the SLAM problem (tem-
poral, spacial and statistical), make it mathematically intractable. There is
no optimal solution. However, there are suboptimal solutions presented in
the current literature based on approximations of the Extended Kalman Fil-
ter (EKF) or in sampling methods, like the Rao-Blackwellized Particle Filter
(RBPF), but they suffer from certain statistical inconsistency that results in
corrupt or totally wrong solutions in the long term. On the other hand, that
huge complexity also implies that current MDPs techniques -value iteration,
policy iteration and trees or gradients based policy search- only provide partial
solutions or they can only solve unrealistic toy problems.

In this thesis, we analize the statistical properties of the SLAM prob-
lem and the most extended algorithms, especially their error sources. In this
way, we investigate the applicability of second order linear approximations
like the Unscented Kalman Filter (UKF), advanced sampling methods like
the Marginal Particle Filter (MPF) or stochastic approximation based esti-
mation. In theory, these algorithms outperform the statistical consistency of
the previous ones, this is validated in the corresponding experiments.

Additionally, we investigate more efficient policy search algorithms to solve
the complex problem of decision making. In this way, we work with efficient
global optimization algorithms for policy search. This work is highly related
with active parameter learning using Gaussian processes.

v

vi Abstract

The intelligent exploration of unknown environments may broaden the
application fields of robotics, improving the integration of robots in everyday
life. The final target is the combination of all these systems, in a reliable
and robust way, in an autonomous platform that allows the robot to perform
dangerous or repetitive task, with few or none supervision. In this way, we
achieve a better robustness to unexpected situations and we eliminate the
necessity of qualified personnel for the use of the robot.

Acknowledgements

During the course of this thesis, I had the fortune of having two persons over-
seeing my work. First, I am indebted to my advisor José Ángel Castellanos,
for believing in me, for all the support and enthusiasm during these years and
for helping me to explore my own path while ensuring that I keep on track.
I am also indebted to Nando de Freitas, who I had the honor to work with
during my visits to UBC and afterwards. He is an excellent professor, an
inspiring researcher and, above all, a good friend.

It has been also a pleasure to work in the Robotics, Perception and Real-
Time group. I am specially indebted to José Maŕıa Mart́ınez Montiel, José
Neira and Juan Domingo Tardós. I learned so much from you, and you have
been a source of inspiration. I owe gratitude also to Josechu Guerrero and
Carlos Sagüés. They introduce me in research and encourage me to start the
thesis. Finally, I really thank Luis Montano for his support during this thesis.

During my time in Vancouver, I enjoyed working and discussing with the
people at LCI. I would like to thank Eric Brochu, Peter Carbonetto, Mike Chi-
ang, Pantelis Elinas, Per-Erik Forssén, Firas Hamze, Matt Hoffman, Hendrik
Kueck, Jim Little, David Lowe, David Meger, Kevin Murphy, Kenji Okuma,
Robert Sim and Julia Voguel. In particular, I would like to thank Arnaud
Doucet for our fruitful discussions.

At the begging of this thesis, Carlos Orrite gave me the opportunity to
work at the Computer Vision Lab, in Zaragoza. I wish to thank my friends
and colleagues Jorge Raul Gómez, Juan José Gracia, José Eĺıas Herrero, Jesús
Mart́ınez and Greg Rogez

I would like to thank Tim Bailey, Frank Dellaert, Dieter Fox, Udo Frese,
Florent Lamiraux, Andrew Ng, Nick Roy and all the anonymous reviewers
of my papers for their comments and contributions. Thanks to José Guivant
and Eduardo Nebot, for making public the Victoria Park dataset, thanks to
George Poyadjis for figure 4.1 and thanks to Rudolph van der Merwe for the
ReBeL toolkit.

vii

viii Acknowledgements

I also would like to thank all my labmates in Zaragoza, the DIISasters, for
all the good time I spend there. I would need another section just to put all the
names and to express my gratitude. In particular for this thesis, I would like to
thank Javier Civera, Javier Minguez, Luis Montesano, Alejandro Mosteo, Ana
Cristina Murillo, Lina Maŕıa Paz and Pedro Piniés for our long discussions
about robotics and also Maŕıa López-Valdés for our long discussions about
mathematics. Thank you.

Last but not least, I wish to thank my family and friends for their support,
encouragement and patience during these years. And most of all, thank you
Maŕıa for all the love you gave me.

This thesis has been supported by the Dirección General de Investigación
of Spain, projects DPI2003-07986 and DPI2006-13578. My stay at UBC was
partly supported by Bancaja and NSERC.

Notation

Symbols

x vector of latent random variables.

y vector of observed random variables.

θ vector of unknown parameters.

x1:t Stacked vector x1:t ≡ {x1, . . . ,xt}T .

p(x) Distribution of x.

p(x|y) Conditional distribution of x given y.

z ∼ p(x) z is distributed acording to p(x).

A Matrix formed by elements Aij .

AT Transpose of matrix A.

A−1 Inverse of matrix A.

|A| Determinant of matrix A.

Ep(x)(x) Expectation of the random variable x according to the distribution p(x).

IS(x) Indicator function of the set S (1 if x ∈ S, 0 otherwise).

δ
x(i)(dx) Dirac delta function with mean x(i).

Γ(·) Gamma function.

exp(·) Exponential funtion.

log(·) Natural logarithmic funtion.

O(N) The computation complexity is order N operations.

⊕ Euclidean vector composition.

⊖ Euclidean vector inversion.

ix

x Notation

Distributions

Gaussian N (x;µ,Σ) = |2πΣ|− 1
2 exp

(
−1

2(x − µ)T Σ−1(x − µ)
)

Inverse-Gamma IG(x;α, β) = βα
Γ(α)x

−α−1 exp(−β
x
)I[0,+∞)(x)

Abbreviations

AMSE Average Mean Square Error

ASSC Adaptive Scale Sample Consensus

EI Expected Improvement

EKF Extended Kalman Filter

GP Gaussian Process

KF Kalman Filter

MAP Maximum A Posteriori

MCMC Markov Chain Monte Carlo

MDP Markov Decision Process

ML Maximum Likelihood

MPF Marginal Particle Filter

OLC Open Loop Control

OLFC Open Loop Feedback Control

PCRB Posterior Cramer-Rao Bound

pdf probability density function

PF Particle Filter

POMDP Partially Observable Markov Decision Process

RBPF Rao-Blackwellized Particle Filter

RLS Recursive Least Square

SA Stochastic Approximation

SIR Sequential Importance Resampling

SLAM Simultaneous Localization and Mapping

SMC Sequential Monte Carlo

TLS Total Least Square

UKF Unscented Kalman Filter

w.r.t. with respect to

Contents

Resumen iii

Abstract v

Acknowledgements vii

Notation ix

1 Introduction 1

1.1 A formal introduction to SLAM 6

1.1.1 Modelling Dynamic Systems 6

1.1.2 Probabilistic State-Space SLAM 7

1.1.3 SLAM as a dimensionality reduction problem 8

1.2 Feature-based SLAM . 11

1.3 Recursive estimation in SLAM 13

1.4 Data Association . 14

1.5 Active SLAM . 15

1.6 Publications . 17

2 Feature detection and extraction 19

2.1 Introduction . 19

2.2 State of the art . 22

2.2.1 Line-building Algorithms 22

2.2.2 Hough Transform . 23

2.2.3 Random Sampling Segmentation Algorithms 23

2.3 ASSC: A Kernel-Based Scale Estimator 25

2.3.1 Kernels for Density Approximation and Gradient Clus-
tering . 25

2.3.2 Mean Shift Clustering 26

xi

xii CONTENTS

2.3.3 Adaptive Scale Sample Consensus (ASSC) 29
2.4 Experiments . 31
2.5 Conclusion . 37

3 Gaussian-SLAM 39

3.1 Introduction . 39
3.2 Gaussian state-space SLAM . 45
3.3 The Curse of Dimensionality in Gaussian SLAM 47
3.4 Linearizations in the Classical EKF-SLAM Algorithm 48

3.4.1 The prediction step . 48
3.4.2 The update step . 49

3.5 The Inconsistency of EKF-SLAM 49
3.5.1 Empirical proof of EKF-SLAM inconsistency 50

3.6 Improving the consistency of EKF-SLAM 53

3.6.1 Robocentric Mapping 53
3.6.2 Robocentric Map Joining 55
3.6.3 Experiments . 58

3.7 Unscented Filtering . 68

3.7.1 Unscented SLAM . 70
3.7.2 Experiments . 72

3.8 Conclusion . 75

4 Filtering and learning in Sequential Monte Carlo SLAM 79

4.1 Introduction . 79
4.2 Introduction to Sequential Monte Carlo 81
4.3 Parameter learning for SLAM 86

4.3.1 Stochastic Approximation for SLAM 86

4.3.2 Monte Carlo Implementation 91
4.3.3 Pseudo-Code for Marginal-SLAM 97

4.4 Experiments . 97
4.5 Discusion . 101

4.5.1 Convergence of the Stochastic Approximation algorithm 101

4.5.2 Subspace methods for SLAM 102
4.6 Conclusions . 103

5 Active Policy Learning 105

5.1 Introduction . 105
5.2 Robot Exploration and Planning 108

5.2.1 Simulation of the cost function 111
5.3 Active Policy Learning . 113

CONTENTS xiii

5.3.1 Gaussian processes . 115
5.3.2 Infill Function . 118

5.4 A Cheaper Cost: The Posterior Cramér-Rao Bound 121
5.4.1 PCRB for nonlinear models 122
5.4.2 PCRB for jump Markov linear models 123

5.5 Experiments . 125
5.5.1 Fixed-horizon planning 126
5.5.2 Receding-horizon planning 128

5.6 Conclusions . 131

6 Conclusions 133

A Transformation and Jacobians in 2D 137

B Kernel Methods for Learning 139
B.1 Kernel trick . 139
B.2 Type of kernels . 140

B.2.1 Epanechnikov kernel . 140
B.2.2 Exponential/Gaussian kernel 141
B.2.3 Matérn kernel . 141
B.2.4 Piecewise polynomial kernels 141

xiv CONTENTS

Chapter 1

Introduction

Industrial robots are tied to a controlled and perfectly known environment.
Its application is strict and clearly defined. In contrast, service robots have to
interact with humans in all kind of situations and scenarios. That means an
unknown, uncontrolled and evolving environment. It is impossible to predict
in advance the vastness of scenarios, situations and events. There is no gen-
erative model of the world. Mobile robots must take decisions based only on
internal models and sensory information, which can be proprioceptive or ex-
tereoceptive. However, sensing capabilities only provides partial information,
no matter how accurate or broad they are.

In this set up, it is logical to claim that mobile robots require the ability
to adapt and confront different scenarios, also those not specifically included
in their internal models or behaviors. In such a way, the system must create,
update and refine the models and behaviors to incorporate new information.
Nevertheless, from a technical point of view, it is more important to consider
the applicability of the system. For instance, to actually be successfully applied
in different situations and events. Thus, the system must accomplish the
required task even if the original conditions are not satisfied.

Analogously to psychological studies, the first and easiest approach to ap-
plicability comes from the behavior based research. Behaviors are functions
that directly map observations into actions. However, due to the locality of
sensor readings, decisions are limited to very simple local tasks, like obsta-
cle avoidance. It is impossible to execute long term plans efficiently. Those
are purely sensor driven systems where the uncertainty in the sensors and
actuators is typically neglected.

Probabilistic approaches include uncertainty management in the algorithm.
They allow to integrate past observations to discover some latent variables or

1

2 Chapter 1. Introduction

patterns, reducing the total amount of uncertainty. In addition, they can be
used to compute ambiguous decisions based on partial information, which are
required to interact with humans. Those decisions are based on certain pa-
rameters or models that are learnt based on the data gathered. In dynamic
systems, like moving robots or people interaction, probabilistic approaches in-
troduce the idea of state, which is a concept inherited from the physics and
control literature. It is the minimal set of independent latent variables that
represent the internal parameters of the system. In certain manner, proba-
bilistic approaches build cognitive systems with internal representations of the
world, splitting the observation/action loop in several cognitive processes.

Furthermore, when we split the decision process, we can add some intu-
itions about what we expect to find in certain parts of the cognitive process.
This is specially interesting using Bayesian statistics, where the intuition can
be expressed as prior information. Also, Bayesian methods can be easily ex-
tended to recursively update and refine the current models.

Finally, probabilistic methods provide a way to simplify the necessary data
in order to make a decision. Actual robots and sensors provide huge amounts
of data at high frequency. For example, a cheap camera produces more than 9
million pixels per second. Optimal decisions are intractable in that framework,
but data mining can provide enough information to achieve an approximate
decision under real-time constraints. For example, we can learn a parametric
model to abstract the information provided and represent it in a low dimen-
sional space; like learning the shape of an object before grasping it. Hence,
decisions can be made on the low dimensional parametric model, instead of
the whole dataset.

Let us assume, that a mobile robot has to accomplish a task like “fetch
me a beer”. The first thing to do is to navigate where the beer is. In every
moment, the navigation system needs to know where is the location of the beer
with respect to the robot. Also, it has to maintain the knowledge about the
current location to come back. Finally, while the robot is moving, it can gather
new information from different locations which may improve the knowledge of
the environment for current and future tasks.

The problem to recursively determine the localization of an autonomous
vehicle navigating in an unknown environment and, concurrently, to learn the
underlying structure of the environment is called Simultaneous Localization
And Mapping (SLAM). During the last decade, the robotics literature has
been populated with scientific work on this field.

From a theoretical point of view, the SLAM problem can be viewed as the
problem of estimating an autorregresive latent stochastic process {xt}t≥1 -the

3

state of the robot- and a set of M parameters -the model of the environment-
{θn}M

n=1, given a second stochastic process {yt}t≥1. This is known as the dual
estimation problem, that combines filtering and learning.

In SLAM, like most tracking applications, the data arrive sequentially.
Then, a standard approach in control literature consist of modelling the latent
process as a discrete-time dynamic system. Furthermore, the algorithm should
find a recursive estimate as new data become available. The estimate com-
prises both the state and the parameters. From a Bayesian viewpoint, learning
is basically the problem of finding the maximum likelihood (ML) p(y1:t|θ) or
maximum a posteriori (MAP) distribution of the parameters p(θ|y1:t), given
all the available data. From a frequentist viewpoint, we are interested only in
the optimal value of either function:

θ∗ML = arg max
θ
p(y1:t|θ) (1.1)

θ∗MAP = arg max
θ
p(θ|y1:t) (1.2)

Similarly, filtering is the problem of finding the belief (Bayesian) or the opti-
mal value (frequentist) in the state space. In practice, most of the applications
require only an estimate of the current state of the system, like the robot pose.
Then, the solution consists of the recursive computation of the posterior dis-
tribution over the parameters and the filtering distribution over the state1 of
the state variables xt given the observations in the past y1:t and the initial
distribution of the state p(x0). Integrating new data in the current estimate
can be done using Bayes rule. We can apply recursive estimation of the filter-
ing distribution, provided that the marginal estimate is a sufficient statistic.
For certain models, sufficient statistics are intractable. Then, the filtering
distribution can be obtained through variable marginalization of the full pos-
terior distribution. In SLAM literature, this is sometimes referred to as the
full-SLAM problem.

For linear models, like:

yt = Htθt + wt

a recursive least squares (RLS) algorithm provides an optimal performance of
the recursive parameter estimation [Spall 03]. In fact, the recursive solution
quickly converge to the batch solution. Assuming that the underlying distribu-
tion is Gaussian, the frequentist and Bayesian versions of RLS are equivalent,
since the optimal value of the distribution is the mean and the learning rate is

1The filtering distribution of a discrete time dynamic system is the marginal distribution
at current time step p(xt|y1:t) of the full posterior distribution p(x0:t|y1:t) .

4 Chapter 1. Introduction

proportional to the covariance, which needs to be computed recursively. Hav-
ing the mean vector and the covariance matrix, the Gaussian distribution is
completely defined. The extension of RLS to the filtering problem was done
by R.E. Kalman in his celebrated Kalman filter (KF) [Kalman 60], assuming
that a dynamic model of the latent process is provided:

xt+1 = Ftxt + vt (1.3)

yt = Htxt + wt (1.4)

His main contribution was to represent the signal processing problem as a
state space dynamic system and find the dual solution to the control problem.
Therefore, the latent variables do not represent the value of an arbitrary signal,
but the evolution of the state of a dynamic physical system. Although this
was intended as a mathematical trick for modeling data, we have seen that
the notion of state is more intuitive in many applications, like robotics.

Thanks to the similarities between RLS and KF, joint state and parameter
estimation can be easily implemented increasing the dimensionality of the
latent space to include the parameters as static elements:

xt+1 = Ftxt + vt (1.5)

yt = Ht[xt, θt] + wt (1.6)

Thus, the problem becomes a single multidimensional estimation problem.
This approach was first suggested in [Kopp 63, Cox 64]. A theoretical study
with convergence and stability results were provided in [Ljung 79]. Ljung’s
work also related KF inference with a more general Stochastic Approximation
(SA) algorithm. We introduce a similar theoretical analysis in section 4.3.1.

However, to guarantee that the estimated values of the posterior and filter-
ing distribution are sufficient statistics, either Gaussianity of the underlaying
density functions or linearity in the dynamic model is assumed. Furthermore,
Kalman proved that under those assumptions, the estimated latent variables
are the orthogonal projection of the observations in the state space. For in-
stance, the solution is unbiased and optimal in terms of variance. These results
also applies for the joint state and parameter estimation if the linear-Gaussian
assumptions are still satisfied. Thus, as reported in [Dissanayake 01] a the-
oretical solution of the KF-based SLAM, given that the hypotheses are ful-
filled, is consistent and optimal in terms of convergence. Dissanayake et al.
[Dissanayake 01] proved three important convergence properties of the EKF-
SLAM: (1) the determinant of any submatrix of the map covariance matrix
decreases monotonically as observations are successively made; (2) in the limit

5

as the number of observations increases, the landmark estimates become fully
correlated; and (3) in the limit, the covariance associated with any single land-
mark location estimate reaches a lower bound determined only by the initial
covariance in the vehicle location estimate at the time of the first sighting
of the first landmark. This sound approach in conjunction with considerable
heuristic engineering has produced reasonable solutions; to the point that some
researchers have begun voicing the opinion that “the SLAM problem is solved”.

While not endorsing the view that SLAM should occupy the center-stage,
it is the thesis of this work that the existing SLAM solutions are built upon
questionable assumptions and procedures, including linearity, Gaussian distri-
butions, treating static maps with dynamic models and neglecting the variance
increase due to sampling in spaces of increasing (potentially unbounded) di-
mension. This thesis provides some arguments as well as empirical evidence
to substantiate this statement.

In general, SLAM models are nonlinear, even when the relationship be-
tween parameters and state elements is linear. It has been proved that the gen-
eral nonlinear filtering problem do not admit a close form solution [Kushner 67].
Many probabilistic algorithms have appeared in the literature to find an effi-
cient and reliable approximation to the solution. However, none of them have
proved to be statistically consistent for the SLAM problem, which is nonlinear,
nonergodic and nonstationary. In fact, all of them suffer from correlated errors
every time step that produce an increasing global error. From an engineering
view point, the approximation errors can be acceptable if the global error re-
mains under a reasonable threshold. However, SLAM algorithms accumulate
those errors, reaching any upper bound. Also, the lack of prior models of the
environment results in a lack of error models. Thus, we are unable to compute
tight upper bounds for long term navigation. Hence, the algorithms become
unreliable from a practical point of view. The bottom line is that there is an
urgent need for designing a principled SLAM framework so as to relax these
assumptions and eliminate the need for brittle heuristics. It is the intent of
this thesis to take a step in this direction and to note that the problem is still
open.

An additional problem appears when the information obtained through
the sensors is not enough to achieve the mission. For example, the estimation
of the object location with respect to the robot may not be accurate enough
to grasp it. Sometimes, the robot has to learn the environment actively, gath-
ering enough information to achieve the required level of accuracy as we will
introduce in chapter 5. Also, some observations provide more information for
the filtering or posterior distribution than others. For example, if we use a

6 Chapter 1. Introduction

single camera, we do not have depth information. We need to move laterally
to be able to triangulate the location of the object. Intuitively, when we are
confronted to new tasks, objects or environments, the first reaction is to ex-
plore the situation, using conservative actions until we get enough information
to be confident.

1.1 A formal introduction to SLAM

This section is intended to provide a precise mathematical formulation of the
SLAM problem and introduce different approaches to the solution.

1.1.1 Modelling Dynamic Systems

In the time domain, a dynamic system can be compactly described as a set
of state transitions. Intuitively, the state of a dynamic system contains some
quantitative information (a set of numbers, a function, etc.) which is the least
amount of data one has to know about the past behavior of the system in
order to predict its future behavior. The transitions represent the evolution of
the state, i.e. one must specify how one state is transformed into another as
time passes [Kalman 60]. Although the trajectory of a robot is a continuous
function, the controller and sensors provide discrete information, which is
simpler to model in a time discrete model. Therefore, transition functions are
represented as difference equations.

In Engineering and Physics, a dynamical system has some elements and
perturbations that can not be directly included in the model or even observed.
For example, many microscopic or internal effects in sensors and actuators or
the unpredictable evolution of the environment. Those perturbations are con-
sidered as random noise [Thrun 05a]. The presence of this noise also explains
the statistical dependence between random observations of the dynamic sys-
tem at different times.

At a macroscopic level, we can consider macroscopic random phenomena
as the combination of many microscopic effects. For instance, the pixel level
noise in a digital image is the combination of the quantum properties of the
light source, the reflected material and the CCD sensor, but also the injected
noise in the electrical signal during transport and conversions.

Thus, under very week assumptions, the central limit theorem guarantees
that the random variable resulting of the addition of all those microscopic
events converges in distribution to a Gaussian distribution. Furthermore, mi-
croscopic phenomena tend to take place much more rapidly than macroscopic

1.1. A formal introduction to SLAM 7

phenomena; therefore, random effects would appear to be independent on a
macroscopic time scale. Then, the random noise is called white, that is, all
the elements in the sequence are independent

p(vt|vl) = p(vt) ∀ t > l (1.7)

Under this assumption, a first order difference equation represents a Markov
sequence [Jazwinski 70].

1.1.2 Probabilistic State-Space SLAM

As we have seen in the previous section, the SLAM problem can be interpreted
as a sequential estimation and optimization problem which involves a pair of
nonstationary discrete-time stochastic processes, {xt}t≥1 named latent process,
and {yt}t≥1, named observation process, both defined on a probability space.
Those processes are related through a mapping function yt = ψ(xt) which
is also unknown. In general, the latent process {xt}t≥1 represents the robot
location and any other dynamic object included in the models, which is the
state of the system. The evolution of the state is represented by a first order
(Markovian) autoregressive model xt+1 = f(xt). The unknown observation
mapping ψ(·) captures the information from the environment.

When the vehicle moves from position at step t − 1 to position at step
t, proprioceptive sensors provide measurements ut of relations between robot
locations. Thus, the stochastic state vector is updated according to the non-
linear autorregressive model:

xt = f(xt−1,ut) (1.8)

where the sensor reading ut = ût + vt corresponds to the relative motion
ût perturbed by some (typically) white Gaussian noise vt ∼ N (0,Rût

), de-
pendent on the actual motion. Given that any dead-reckoning measurement
is independent on the state and the past dead-reckoning measurements, we
can assume a nonstationary Markov process with the corresponding Markov
transition density p(xt|xt−1,ut).

The latent process {xt}t≥1 is partially observed through the observation
process {yt}t≥1. On-board sensors provide, at time t, partial observations yt

related to the state vector xt by the nonlinear measurement model:

yt = ψ(xt) + wt (1.9)

where wt ∼ N (0,Qt) represents a white Gaussian perturbation on the obser-
vations yt.

8 Chapter 1. Introduction

Again, we can assume that the observations conditioned on the latent
process {xt}t≥1 are independent, with the corresponding marginal density
p(yt|xt).

Depending on the sensor, the observation process can provide direct read-
ings of the robot location -for example, GPS-, or relative measurements -for
example, LIDAR or cameras- that observe environment evolution from the
robot point of view. In the first case, the mapping function can be known
a priori and the problem becomes only a tracking problem [Bar-Shalom 01].
But direct readings require an external facility that may not be accessible in
some situations, reducing the applicability of the system. Therefore, we can
consider that all observations are related to unknown elements in the environ-
ment, being the tracking problem a special case.

1.1.3 SLAM as a dimensionality reduction problem

The joint localization and mapping problem can be seen as a dimensionality
reduction problem. The observations follow a manifold, which is the map
ψ(·), related to a set of time-varying variables xt. Also, we have a model of
the evolution of xt, i.e. the state transition function.

The SLAM problem consists in learning the manifold structure while com-
puting the maximum likelihood, or maximum a posteriori, state variables. As
can be seen in figure 1.1, this problem is ill-posed. Intuitively, SLAM can be
thought as the problem of understanding a message in a completely new lan-
guage, with unknown vocabulary and alphabet. That problem is, in principle,
undecible. But we know that the message is written using some grammar and
it requires certain logical structure, like verbs, nouns, etc. In our case, the
dynamic model is the grammar, while the mapping function corresponds to
the vocabulary.

However, robot mapping is a special case where the observation function
can be defined in such a way that the joint estimation become computable.
For example, the sensor model is known and that information can be included
in the observation function. Also, the sensor noise can be determined before-
hand using calibration. From a Bayesian viewpoint, these are the ingredients
to fix a prior distribution on the mapping function ψ(·). The sensor model
provides enough prior information on the variables to include the learning
step in the Bayesian recursion presented in section 1.1.2, even when the actual
prior distribution is unknown [Maybeck 82]. Finally, raw sensor data can be
preprocessed beforehand. Then, observations can be represented in a feature
space which can be accessible through the sensor model.

1.1. A formal introduction to SLAM 9

y
Observations

t

xt

t = 2 3 41

3
2

4

1

Mapping functions

t =

Latent variables

Figure 1.1: The general approach to SLAM problem requires to compute the latent

variables and mapping function for a set of observations. The figure shows, in a simple

1D case, that different mapping functions and state evolutions are admissible for the

same set of observations. The problem is ill-conditioned and does not have a unique

solution no matter how many observations we can get, unless the latent process is

deterministic.

Physical map models

The simplest sensor model for mobile robots is the obstacle detector, which
returns information about obstacles in the field of view. It assumes that the
sensor is based on some kind of ray or beam that impacts any surface with
certain properties and it is reflected back towards the sensor. Sonars, lidars,
radars and even cameras can be modeled in such a way. The resulting function
is a coloring function that labels every point in the space with its corresponding
property. To reduce the complexity of obstacle reconstruction, the environ-
ment is discretized and represented with a fixed resolution grid, where the only
information that we store is the occupancy [Elfes 87]. A simple sensor model
using occupancy grid is show in figure 1.2. Some authors has extended the
occupancy grids to add new properties to each cell [Stachniss 06, Mozos 05].
Also, Paskin et at. [Paskin 05] propposed an mathematically elegant solution
to occupancy mapping of structured environments without grid discretization.

Sensor data can also be modelled as a set of constraints in a graphical
model [Gutmann 99, Thrun 05b, Dellaert 06]. Therefore, we can build the

10 Chapter 1. Introduction

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Figure 1.2: Occupancy map of a single observation. We assume that the robot is

moving in a planar surface -the floor- and that an obstacle is any element above that

surface, thus a simple 2D representation is enough.

−2 0 2 4 6 8 10 12 14 16 18

−4

−2

0

2

4

6

8

10

12

[m]

[m
]

−2 0 2 4 6 8 10 12 14 16 18

−4

−2

0

2

4

6

8

10

12

[m]

[m
]

Figure 1.3: Laser scan in a manmade environment. Walls and structures are based

on planar surfaces which produces alignments in consecutive scan points. Extracting

these lines simplifies the data and increases the robustness of the SLAM algorithm.

1.2. Feature-based SLAM 11

map, computing the posterior distribution as a stochastic optimization prob-
lem. For example, similarities in subsequent observations provide relations
between robot poses. Batch algorithms provide elegant solutions, but the
computational cost is high and require to save and process all the data off-
line. Incremental approaches are more tractable, but rely on approximations
or exploit local properties that reduce the global quality. Also, the trajectory
increases every step, gathering new data, increasing the computational cost in-
definitively even when the robot is navigating in a compact region. Moreover,
the latent variables become nonstationary and global consistency can not be
guaranteed, except for the batch algorithm. This property will be analyzed in
detail in section 4.5.1.

Finally, sensor data can be preprocessed to identify salient features or
abstract models of elements of the environment. Using a set of sparse features,
we try to capture all the information contained in the raw data, reducing input
dimensionality. Also, we can simplify the process of detecting and eliminating
spurious readings. This has been extensively studied in related fields like
computer vision. Dimensionality reduction can be directly applied to the
SLAM problem [Brunskill 05]. Since the features are based on a physical
model, we can also include prior knowledge about the type of features and
abstract models. Then, the mapping problem is regularized. For example, we
can expect to find sharp corners in images which correspond to object borders
or surface boundaries. As can be seen in figure 1.3, planar surfaces and straight
angles can be found in manmade environments [Martinez-Cantin 06b]. This
method will be discussed in chapter 2.

Hereinafter, we are going the use the feature based maps. They provide
a compact representation of the environment, the complexity is bounded in
compact regions and they admit any level of accuracy, provided enough infor-
mation is available.

1.2 Feature-based SLAM

In the seminal formulation of the probabilistic state-space SLAM [Smith 88],
the stochastic variables represent a set of rigid body transformations that in-
cludes the location of the vehicle R with respect to an arbitrary reference B
and a set of environment features F = {F1, . . . , Fn} w.r.t. the same reference.
The feature locations and base reference are assumed to be fixed, i.e. the en-
vironment is static. Then, feature locations are not part of the dynamic state,
but fixed parameters of the system. In the control literature, the joint state
and parameter estimation is called adaptive filtering. As we have seen, the

12 Chapter 1. Introduction

most extended and simple approach consist in extending the state vector with
the corresponding parameters [Ljung 79]. This is also the standard approach
in SLAM literature. Then, the estimation process can be defined in terms
of a Kalman filter approach, where the estimate includes both state variables
-robot location- and parameters -structural map features-. That is, rt = xB

R is
the estimated location of the vehicle at time t w.r.t. the base reference frame
B and θ = xB

F is the estimated location of the features also w.r.t. B. For
notation simplicity, we drop the base reference frame when the base reference
is common or not relevant for the algorithm. Then, the joint state vector at
time t is xt = [rt, θ].

When the vehicle moves from position at step t − 1 to position at step
t, proprioceptive sensors provide measurements of relations between robot
locations ut = x

Rt−1

Rt
. Thus, the stochastic state vector is updated according

to the nonlinear autorregressive model:

xt = ft(xt−1,ut) (1.10)

where the sensor reading ut = ût + vt corresponds to the relative motion ût

perturbed by some (typically) white Gaussian noise vt ∼ N (0,Rût
), depen-

dent on the actual motion. Assuming that any dead-reckoning measurement2

is independent on the state and the past dead-reckoning measurements, we
can assume a nonstationary Markov process with the corresponding Markov
transition density p(xt|xt−1,ut).

In the feature based SLAM framework, the model can be simplified to

rt = ft(rt−1,ut) (1.11)

because the parameters θ remain constant.

The latent process {xt}t≥1 = {rt}t≥1 is partially observed through the
observation process {yt}t≥1. On-board sensors provide, at time t, partial
observations yt related to the state vector xt by the nonlinear measurement
model:

yt = ht(xt) + wt = ht(rt, θ) + wt (1.12)

where wt ∼ N (0,Qt) represents a white Gaussian perturbation on the obser-
vations yt. In general, measurements from on-board sensors provide observa-
tions of relations between the robot and some landmarks xR

F where F ∈ F .
Again, we can assume that the observations conditioned on the latent process
{xt}t≥1 are independent, with the corresponding marginal density p(yt|xt).

2Provided by any propioceptive sensor like odometers.

1.3. Recursive estimation in SLAM 13

Figure 1.4: Simplified Bayesian network of SLAM process. Shaded circles represents

observed variables. Data association and control policy is assumed known.

Finally, the initial belief p(x0) is also known and assumed to be Gaussian.
In SLAM, the initial location is not important, since we are interested only
in relations. Thus, the initial belief of the robot location collapses to a de-
terministic arbitrary location of the robot pose. The landmark initial belief
is set during the first observation, convolving the sensor location uncertainty
and the actual observation uncertainty. Furthermore, it has been proved that
setting an artificial initial belief can create inconsistent maps due to the in-
congruent information loss that appears in the system [Castellanos 04]. The
formulation of the SLAM problem can be represented as the Bayesian network
shown in figure 1.4.

1.3 Recursive estimation in SLAM

From a Bayesian view-point, let us suppose that an estimate of the stochastic
map p(xt−1|y1:t−1) is available at time t − 1, then, the predicted stochastic
map at time t results from the Chapman-Kolmogorov equation:

p(xt|y1:t−1) =

∫
p(xt|xt−1,ut)p(xt−1|y1:t−1)p(ut) dutdxt−1 (1.13)

When new information about the state vector is available, it can be incor-
porated into the state using Bayes’ rule:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

(1.14)

An important term in equation (1.14) is its denominator, which can be

14 Chapter 1. Introduction

expresed as p(yt|y1:t−1) and it is called innovation3

p(yt|y1:t−1) =

∫
p(yt|xt)p(xt|y1:t−1)dxt

The innovation can be viewed as the amount of information of the last obser-
vation which is new, that is, the information that was not included in previous
observations. It plays an important role in sequential algorithms of filtering
and learning.

In general, integrals from (1.13) and (1.14) are intractable. Therefore,
suboptimal approaches have been applied to solve it. In this thesis we have
studied different suboptimal methods in order to find their limitations and
features. Chapter 3 presents some analitical techniques rooted on the cel-
ebrated Kalman filter. Later, chapter 4 introduces standard and advanced
Monte Carlo methods for numerical integration.

It is important to remark that SLAM deals with the estimation of the
filtering distribution p(xt|y1:t) and not the whole stochastic process, i.e. the
posterior distribution p(x1:t|y1:t). But some SLAM algorithms estimate the
filtering distribution as a by-product of the posterior distribution using incre-
mental smoothing. However, those methods requires stronger assumptions to
remain tractable. Thus, long term trajectories suffer from larger bias or in-
consistencies after several loops. Therefore, it is out of the scope of this thesis,
although some implementations in current literature provide excelent results.

1.4 Data Association

Up to now, we have assumed that the identity of every observation is given.
In some applications, the correspondences between mapped landmarks and
current observations form another set of hidden variables. Furthermore, the
main problem in SLAM is the lack of a generative model. The assumption
that the robot is in a totally unknown environment implies that there is no
prior information about any landmark. In general, it is virtually impossible
to distinguish the observation of a new landmark from the noisy observation
of a near landmark already mapped. Therefore, data association is an ill-
conditioned classification problem.

This lack of prior information is compensated using strong assumptions in
the model. The most extended approach in Gaussian SLAM or similar ap-
proaches that represent landmark location as a Gaussian distributions is to

3also known as the predictive likelihood or evidence

1.5. Active SLAM 15

compute the maximum likelihood data association. Novel landmarks are iden-
tified using a null hypothesis testing to a certain level of confidence. Implicitly,
there is an assumption on the reliability of the feature detection system and
the sparseness of the environment in the testing.

Recent applications of SLAM for computer vision use active search of fea-
tures in image data [Davison 05]. There is also an active search for novel
features. Then, the correspondence problem is trivial, but the assumption of
sparseness remains.

In this work, except when otherwise expressed, we use the maximum like-
lihood data association. When the maximum likelihood estimate includes
the joint posterior over a large dimensional space, like the EKF-SLAM, then
Branch and Bound techniques are used for computational speedup [Neira 01].

1.5 Active SLAM

The last chapter of this thesis, extends the current work to the problem of
active SLAM. In general, SLAM algorithms are independent on the navigation
algorithm or the motion policy. However, a fully autonomous robot requires
to consider SLAM results in its navigation policy. The intuition of this idea
can be seen in figure 5.1.

The theoretical framework for active SLAM that we use is similar to a Par-
tially Observable Markov Decision Process. A POMDP is a tuple {S,A,R, p}
where S and A are the state and action spaces, respectively; R : S×A×S → R

is the immediate reward which may be a random process; p : S×A×S → [0, 1]
is the conditional transitional distribution. A stationary policy π : S × A →
[0, 1] is a mapping from states to action selection probabilities.

In our set up, the state and actions spaces are both known and continuous
S = Rnx and A = Rnu . The transition distribution has been previously de-
fined in equation (1.8). However, there is no instant reward function because
it depends on the belief. Intuitively, we can imagine two robots moving on a
building. They follow exactly the same path, but one of the robots has the
sensors turned off -it is blind-. At the end, the state is the exactly the same,
but the belief is completely different. For the blind robot, the environment is
completely new. But the other robot can use previously mapped areas to re-
main localized. Thus, they may be interested in following different trajectories
to explore the rest of building. As a consequence, we can see that the policy
is nonstationary. Also, since the environment is totally unknown, the policy
can not be transfered for different applications. Therefore, policy learning has
to be done online.

16 Chapter 1. Introduction

Figure 1.5: Bayesian network of SLAM process. Circles represents continuous vari-

ables and squares are discrete variables. Shaded circles represents observed variables.

The robot state is represented as x, the observations y, the actions u, the data asso-

ciations labels n, the map features θ and the local policy π

The problem of a Bayesian reward has been analyzed in the experimental
design literature using information theoretic metrics. Using one of those met-
rics, we can redefine a new reward function R : B×A×B → R, where B in now
the belief4 space. In this case, the policy can be defined as π : B ×A → [0, 1],
which is a mapping from believes to action selection probabilities. It is inter-
esting to note that, for a time step t and all the observations up to this time
step y1:t, the new formulation is equivalent to the original POMDP. Thus, we
can use reinforcement learning techniques to find the local policy πt, provided
that we can compute the belief function at time t.

The general Bayesian network for active feature-based SLAM with un-
known data association can be seen in figure 1.5.

4In Bayesian inference, the belief is equivalent to the filtering distribution at time t, that
is, p(xt|y1:t)

1.6. Publications 17

1.6 Publications

Parts of this thesis have been published in the following journal, conference
and workshop papers:

Journal Papers

J.A. Castellanos, R. Martinez-Cantin, J.D. Tards and J. Neira, Robocentric
Map Joining: Improving the Consistency of EKF-SLAM, Robotics and Au-
tonomous Systems 55 (2007), 21-29.

Conference Papers

R. Martinez-Cantin, N. de Freitas, A. Doucet and J.A. Castellanos. Active
Policy Learning for Robot Planning and Exploration under Uncertainty In
Robotics: Science and Systems (RSS), 2007.

R. Martinez-Cantin, N. de Freitas, J.A. Castellanos Analysis of Particle Meth-
ods for Simultaneous Robot Localization and Mapping and a New Algorithm:
Marginal-SLAM In IEEE International Conference on Robotics and Automa-
tion (ICRA), 2007.

R. Martinez-Cantin, N. de Freitas, J.A. Castellanos Multi-Robot Marginal-
SLAM. In International Joint Conference on Artificial Intelligence (IJCAI),
2007 Workshop on Multirobotic Systems for Societal Applications.

R. Martinez-Cantin, J.A. Castellanos, J.D. Tards and J.M.M. Montiel. Adap-
tive Scale Robust Segmentation for 2D Laser Scanner. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2006.

R. Martinez-Cantin and J.A. Castellanos. Bounding Uncertainty in EKF-
SLAM: The Robocentric Local Approach. In IEEE International Conference
on Robotics and Automation (ICRA), pp. 430-435, 2006.

R. Martinez-Cantin and J.A. Castellanos. Unscented SLAM for Large-Scale
Outdoor Environments. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 328-333, 2005.

18 Chapter 1. Introduction

Chapter 2

Feature detection and
extraction

2.1 Introduction

Robot navigation, localization and mapping requires to deal with a high
amount of data, sometimes redundant and commonly noisy. Feature detection
in robotics tries to mimic the human capability of abstraction which reports
three main advantages: (i) data compression: Features use a simple parametric
model to represent the high amount of data, (ii) denoising : Since the feature
model is estimated from several measurements, the uncertainty and bias of the
final estimation is lower than any of the measurements, (iii) distinguishability:
High level features and complex structures are easier to identify and match
(despite partial observation).

In manmade environments the assumption of strong geometric constraints
is reliable. For example, flat surfaces are very common (e.g. walls, doors, ta-
bles, bookshelves, etc.). Also, the assumption of a flat floor is feasible. In that
situation, the vertical surfaces can be identified using a built-in 2D rangefinder
sensor. That kind of sensors provides very reliable dense information. Then,
flat surfaces from real world are transformed into straight lines on the sensor
plane.

Sensor noise introduces some uncertainty in the measurements, which can
be predicted using standard calibration techniques. However, this is not the
main source of uncertainty. Depending on the construction technique or wear,
real surfaces are not planar but have certain relief and hence it is an issue to
define when a cluster of points, not exactly over a line, can be approximated as
a straight segment. A key concept in the approximation step is the uncertainty

19

20 Chapter 2. Feature detection and extraction

scale, i.e. the perpendicular dispersion of points belonging to the line, which
is defined by the noise standard deviation. It is worth noting that this scale is
a property of each scene segment, and hence it has to be determined from the
data corresponding to the segment. For example, in Figure 2.1, the cluster
of data points corresponding to the ivy covered wall on the left has a bigger
scale that the clusters corresponding to the concrete walls on the right, despite
being sensed approximately at the same relative location with respect to the
sensor, this shows how scale is not only determined by the sensor but also by
the scene. Right bottom part of the figure shows a successful clustering and
the corresponding uncertainty scale σ estimate (magnified 30 times). Classical
benchmark methods [Nguyen 05] do not care about scale computation, thus
uncertainty models are constructed based on sensor noise, considering a perfect
scene model, or considering the noise scale as an input to the algorithm.

Thereinafter, without losing generality, observations follow the next hy-
potheses based on the structural assumptions:

• The data points Y = {y(1), . . . , y(n)} satisfy y(i) ∈ R2 ∀i = 1, . . . , n,
because we suppose a robot moving on flat surface (floor), with a 2D
rangefinder parallel to the floor that provides range and bearing mea-
surements.

• Environment structures are planes perpendicular to the floor, that ap-
pear as straight lines in the sensor plane.

• The perturbation for every data point is iid and perpendicular to the
estimated lines, following a Gaussian distribution X(i) ∼ N (0, σ).

• The standard deviation σ of the error distribution corresponds to the
scale, which can vary from one scene segment to another.

Once the scan has been segmented in clusters corresponding to the straight
segments, the line fitting with these hypotheses can be optimally solved us-
ing Total Least Squares (TLS) [Pearson 01], which in this case is equivalent
to Principal Component Analysis (PCA). The problem is that clustering and
scale estimation are coupled and have influence on the line fitting, being a
unique spuriously clustered point able to ruin down a straight segment esti-
mate for the whole cluster.

Focusing on a cluster, the points belonging to the cluster are inliers. The
points not belonging to the cluster are outliers. A first set of outliers are due
to noise, or to non straight scene structures. A second group of outliers, the
pseudo-outliers, correspond to other clusters. A robust method has to deal
successfully with both type of outliers.

2.1. Introduction 21

−2 0 2 4 6 8 10 12 14 16 18

−4

−2

0

2

4

6

8

10

12

[m]

[m
]

−2 0 2 4 6 8 10 12 14 16 18

−4

−2

0

2

4

6

8

10

12

[m]

[m
]

−2 0 2 4 6 8 10 12 14 16 18

−4

−2

0

2

4

6

8

10

12

[m]

[m
]

Figure 2.1: Top plot shows a panoramic photo of the sensed area; notice the person,

the ivy covered wall behind him on the left, and the concrete walls on the right.

In the middle, we can see the raw laser data. Bottom left plot shows the manually

detected segments and bottom right shows the experimental results. The results seem

indistinguishable up to the picture resolution. The uncertainty scale is plotted as a

red orthogonal dash in the middle of the segments, 30σ is used to magnify the scale

in order to make it visible. Note the different scales computed for the ivy covered

wall and for the concrete walls.

22 Chapter 2. Feature detection and extraction

We present an adaptation for 2D range scans of the robust algorithm,
Adaptive Scale Sample Consensus, or ASSC. ASSC was introduced by Wang
and Suter [Wang 04] for 3D images and fundamental matrix estimation. It
combines the advantages of two classical segmentation algorithms: RAN-
dom SAmpling Consensus (RANSAC) and Least Median Squares (LMedS)
[Rousseeuw 87]. RANSAC is able to tolerate a high rate of outliers, but needs
an estimate of the error scale for the clustering with a predefined scale, applied
for all the clusters. On the other hand, LMedS can compute the scale of inliers
from the data but can only deal with up to 50% of outliers. ASSC combines
the advantages of both methods and therefore produces a data driven scale
estimate per each cluster when segmenting, tolerating a high spurious rate as
RANSAC.

ASSC is based on the Mean Shift [Cheng 95] search for maxima and min-
ima in the probability density function (pdf) of the point error with respect to
the straight segment defined by a cluster. The pdf is reconstructed considering
the scanned points as samples of the error distribution and using the kernel
method presented in section 2.3.1.

2.2 State of the art

The problem of line extraction in 2D range scans has been widely studied in the
robotics literature. Several algorithms have appeared with different properties
and performance [Nguyen 05]. In this section we introduce the most popular
methods.

2.2.1 Line-building Algorithms

Line-building algorithms directly compute a suboptimal parametric solution of
a multiple structure, exploiting the property that a single scan is an open chain
of sorted points with no loops. Segmentation is done concatenating consecu-
tive points that accomplish some heuristic line criteria. Usually, the criteria
are very simple, like checking an error bound, being the fastest line detector
algorithms. However, it requires a prior knowledge of inliers scale. Moreover,
none probabilistic uncertainty model is assumed. Consequently, basic heuristic
conditions work very well with simple pseudo-outliers, but dense environments
and gross outliers require complicated rules being highly dependable on the
application.

Examples of these algorithms are Split and Merge [Horowitz 76] and Incre-
mental Line-Building [Taylor 96], also called Line-Tracking. Essentially, Split

2.2. State of the art 23

and Merge recursively splits the original parameter model (e.g.: a straight
line between the first and last point), when the maximum residue is higher
than a fixed threshold. Resulting lines are thereupon merged following the
same rule, i.e: the maximum residue of two collinear segments is lower than
the threshold. On the other hand, the Incremental Algorithm starts with two
close points (i.e: the first and second point), adding the next scan point to
the end of the segment when the line criteria is validated. If the criteria is not
achieved, then the current line is finished and a new line is started at the next
point.

2.2.2 Hough Transform

The Hough transform [Hough 62] is based on a voting strategy to determine
the best fit for a data subset. The main drawback of the method is that the
parametric space must be discretized, consequently, the accuracy is highly
affected in a real time application, since computational cost is O(nd) where n
is the number of data points and d is the size of the voting grid. This method
can be seen as a grid based maximum likelihood model selection algorithm.

The Hough Transform resembles to our approach regarding there is no
prior assumption about the error bounds or the level of spurious. In addition,
as a single majority voting strategy, it can intrinsically deal with both outliers
and pseudo-outliers.

2.2.3 Random Sampling Segmentation Algorithms

In this case, the aim of the algorithms is to find a suboptimal probabilistic
model to classifying the data points and to separate inliers from outliers.

If we consider that, given the model, every inlier error function is iid, with
X(i)(θ) ∼ N (0, σ), then, the inliers are taken to be those data points which
normalized squared residual follows a χ2 distribution

(
X(i)(θ)

σ

)2

≤ χ2
1−α,n i = 1 . . . n (2.1)

where χ2
1−α,n is a constant value for a fixed probability of false positives (i.e:

α = 0.01) and n degrees of freedom. Again, we assume that the scale estimate,
or dispersion coefficient, corresponds to the estimated standard deviation σ.
Therefore, a scale factor σ is mandatory to classify the data.

The clustering, or model selection step, is made by random sampling. We
take some random subsets of points and compute several random parametric

24 Chapter 2. Feature detection and extraction

models. The subsets are chosen to be minimal to compute each model. The
winning model θ̂ is that which maximizes an utility function Uθ. The optimal
model is used to label the data using the scale parameter σ (see equation
(2.1)). These algorithms can intrinsically handle multiple structures using
a recursive search through the remaining data. Finally, a TLS algorithm is
applied to every cluster separately in order to correct the bias.

Considering that p is the size of a subset to compute a minimal parametric
model (e.g. 2 for a segment), then the number of samples to draw in order to
find a subset with no outliers with probability P is [Rousseeuw 87]:

m =
log(1 − P)

log[1 − (1 − ε)p]
(2.2)

where ε is the ratio of outliers.
In contrast to previously introduced algorithms the computational cost of

random sampling approaches does not depend on the size of the data set but
on the spurious rate, which is given by the application and not the data size.
It is important to note, that these algorithms take samples in the data space,
not the parametric space, like the Hough transform.

Least Median Squares (LMedS)

The median estimator is probably the most extended robust estimator due to
its simplicity and efficiency when the ratio of inliers is higher than 0.5. In this
case, the optimization criteria involve minimizing the median of the squared
errors. Using a voting analogy, it is similar to ask for an absolute majority.

Thus, the scale estimate is given by [Rousseeuw 87]:

σ̂ = 1.4826

(
1 +

5

n− p

)√
medbθ

r2 (2.3)

where medbθ
r2 is the minimum median, n is the number of samples and p is

the dimension of the parameter space.
The main problem of LMedS appears in scenes with multiple models or

segments, because the level of pseudo-outliers is noticeably larger than 0.5.

RANdom SAmpling Consensus: RANSAC

RANSAC assumes the inliers are the largest cluster for a predefined scale,
which can be a heuristic threshold or obtained from sensor calibration. Con-
sequently, the optimization criterium consists of maximizing the number of

2.3. ASSC: A Kernel-Based Scale Estimator 25

inliers:

θ̂ = arg max
θ
nθ (2.4)

where θ̂ is the parameter estimate and nθ is the number of inliers. Provided
a good scale estimate for every cluster, RANSAC is able to cope with large
amounts of outliers. Nevertheless, the prior scale knowledge is sometimes
unavailable or inaccurate. This a priori scale resembles to the Split and Merge
and Incremental error bound.

Following the voting analogy, this algorithm performs several referendums
and it selects the option with largest majority.

2.3 ASSC: A Kernel-Based Scale Estimator

Adaptive Scale Sample Consensus (ASSC) [Wang 04] is a modification of
RANSAC involving an adaptive scale estimation. The data driven scale es-
timate is computed using mean shift method [Comaniciu 02]. In this case,
the utility function takes into account both the number of inliers and the scale
factor. Concluding the voting analogy, this algorithm merely requires a simple
majority to achieve quorum.

Mean Shift is an algorithm based on kernel density estimation and kernel
gradient estimation. It can be used for clustering, in this case, collinear data.
Given a random sample of the parametric model, we use the residual space
to identify the clusters of data. The actual inlier data is the first cluster
found with an average error closer to 0. Subsequently, a LMedS algorithm is
applied to the cluster in order to compute the final scale. In this case, LMedS
converges to a solution because the cluster includes a single structure and few
outliers.

2.3.1 Kernels for Density Approximation and Gradient Clus-
tering

Nonparametric estimation of probability density functions [Duda 01] is a spe-
cial case of kernel smoothing for regression (appendix B).

The seminal word of Parzen [Parzen 62], later extended by Cacoullos [Cacoullos 66]
for the multivariate case, presented a set of multivariate kernel density esti-

26 Chapter 2. Feature detection and extraction

mators1 of the form:

p̂n(X) = (nhd)−1
n∑

i=1

k(h−1(X −X(i))) (2.5)

where X(1), . . . ,X(n) is a set of n independent and identically distributed
d-dimensional random vectors. Figure 2.2 shows a nice example of Parzen
windows applied to the problem of segmentation.

Later, Fukunaga and Hostetler [Fukunaga 75], proposed an estimate of
the density gradient as the gradient of the density estimate, which can be
represented in terms of the differentiable kernel function:

∇̂Xpn(X) = (nhd)−1
n∑

i=1

∇Xk(h
−1(X −X(i))) (2.6)

= (nhd+1)−1
n∑

i=1

∇k(h−1(X −X(i))) (2.7)

where ∇X is the standard gradient with respect to the components of the
density function space X1, . . . ,Xd and:

∇k(z) =

(
∂k(z)

∂z1
, . . . ,

∂k(z)

∂zd

)

is the gradient operator with respect to the kernel input space.
Under certain conditions, the estimate of the density gradient is unbiased

and consistent [Fukunaga 75].
As can be seen in figure 2.3, the kernel gradient estimate can be used for

clustering the modes of a density function.
This algorithm was generalized by Cheng [Cheng 95] to deal with different

kernels and partial observation of the data.

2.3.2 Mean Shift Clustering

Armed with the kernel smoothing tools for density and gradient estimation, the
Mean Shift paradigm provides a simple method to find maxima and minima
of an unknown density function. It is based on the computation of the Mean
Shift vector, which is basically a normalized version of the gradient:

Mh(X) ≡ Hh
∇̂f(X)

f̂(X)
(2.8)

1Kernels for density estimation are sometimes called Parzen windows as a reference to
the seminal work in the field

2.3. ASSC: A Kernel-Based Scale Estimator 27

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

Error from model

D
at

a
po

in
ts

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

Error from model

D
en

si
ty

 fu
nc

tio
n

Figure 2.2: The top plot is an histogram of the data points sorted by the error to

the sampled line model. It is very difficult to classify the data points based on that

representation. However, using kernels or Parzen windows we can estimate the den-

sity function associated to the histogram. The bottom plot represents the smoothed

function after applying the Epanechnikov kernel.

28 Chapter 2. Feature detection and extraction

Figure 2.3: Example of mode clustering using kernel gradient information. Based

on [Fukunaga 75]

where f̂(X) and ∇̂f(X) are the density and gradient estimated and Hh is a
bandwidth coefficient related to the amount of information [Comaniciu 02].
It has been proved that mean shift vector points towards the direction of the
maximum increase in the density. Consequently, the mode can be obtained
using an iterative process:

Xt+1 = Xt +Mh(Xt) (2.9)

Given a set of samples X = {X(1), . . . ,X(n)|X(i) ∈ Rd}, we can compute the
the kernel density estimator f̂(x) and the kernel gradient estimator ∇̂f(x)
using equation (2.5) and (2.6) respectively.

In our case, the random variable is the orthogonal error of a point with
respect to a scene line segment, every scanned point defines a sample of the
random variable. Thus, the density function f(X) is a single dimensional
function, defined on the positive real line, which is expected to have a large
mode next to the origin representing the error of the inliers and other nodes
representing other features or spurious data. In fact, if we assume that inliers
are perturbed with some Gaussian noise, then, the normalized squared error
or residual to the line follows a chi-square distribution.

We have selected the Epanechnikov kernel:

kEpa(ξ) =

{
1
2c

−1
d (d+ 2)(1 − ξT ξ) if ξT ξ ≤ 1

0 otherwise
(2.10)

where cd is the volume of a d-dimensional hypersphere of unit radius (i.e:
c1 = 2, c2 = π). In our setup, being ξ = (X −X ′)/h, the kernel function is an
hypersphere Sh(X) defined in the sampling space centered at X with radius h

2.3. ASSC: A Kernel-Based Scale Estimator 29

(see appendix B for a comparison of different kernels). For the Epanechnikov
kernel, the amount of information Hh is:

He
h =

h2

d+ 2
(2.11)

where d is the dimension of the sample space.
Consequently, using the Epanechnikov kernel, the mean shift vector can

be rewritten as follows:

Me
h(X) =

1

ne

∑

Xe

X(i) −X (2.12)

where Xe = {X(1)...(ne)|X(i) ∈ Sh(X)} is the subset of ne samples that fall
within the hypersphere Sh(X). As a result, the mean shift vector depends
only on the samples and the kernel width, and it is easier to compute than
the function or the gradient. It can be proved that the mean shift based
optimization converges to the closest mode of the unknown density function
[Wand 95], which is the desired cluster for the current parametric solution. In
addition, the same method can be used to find the closest valley to the mode,
following the opposite mean shift vector:

V e
h (x) = −Me

h(x) = x− 1

ne

∑

Xe

Xi (2.13)

In the ASSC algorithm, this valley is used to define the bounds for the data
cluster. In our case, the selected interval is [0, xvalley], which captures the first
mode from the origin which is the cluster of all data points that represent the
feature model analized.

2.3.3 Adaptive Scale Sample Consensus (ASSC)

The main advantage of ASSC [Wang 04] is that the scale factor is computed
for every cluster separately, instead of being a heuristic threshold.

As seen in previous section, Mean Shift methods are based on the smooth-
ing of the sample distribution. Wide kernels produce oversmoothed functions,
while narrow kernels yield peaked functions. Consequently, the performance
of the mean shift vector is related to the kernel width h. For example, while
searching the mode, it is interesting to slightly oversmooth the actual density
function to avoid small local maxima during the gradient search. As a result,
an oversmoothed bandwidth selector [Wand 95] has been chosen:

h =

[
4

3n

] 1
5

S(q) (2.14)

30 Chapter 2. Feature detection and extraction

where n is the total number of data points and S(q) is a coarse preestimation of
the standard deviation, that is, the scale of inliers. In ASSC algorithm, Wang
and Suter suggested using a generalization of the median estimator based in
percentiles smaller than 50% [Lee 98]:

S(q) =
δq

Φ−1
[

1+q
2

] (2.15)

where q ∈ [0, 1] is the expected maximum ratio of inliers, δq is the half-width
of the shortest window including the fraction q of total residuals and Φ−1[·]
is the argument of the normal cumulative density function. Note that S(0.5)
is the median estimator. We have tested during the experiments that the
performance of line extraction is not very sensitive to the q value, provided
that the kernel bandwith is smaller than the size of the cluster. For example,
a good policy is to use a pessimistic assumption in the ratio of inliers. Wang
and Suter [Wang 04] suggest q = 0.2, which is analogous to rely on the 20% of
data points with minimum error, for the initial scale estimation used to define
h in equation (2.14).

Thereupon, mean shift is applied to find the bounds of the cluster. Finally,
the actual scale of every cluster is recomputed using LMedS algorithm, taking
into account only the data inside the cluster. Hence, we avoid the problem of
LMedS with multiple structures.

Finally, ASSC is a random sampling algorithm (figure 2.4). Thus, we have
to compute m parametric models and compare them using an utility function.
For the ASSC, the utility function for the k-th parametric model U(θk) should
be directly proportional to the number of points nk that matches that model
and inversely proportional to the dispersion of that points σk. Therefore, the
simplest utility function is defined as:

U(θk) = nk/σk (2.16)

In consequence, RANSAC is a particular case of ASSC for a fixed scale
model. Thus, ASSC has the capability to handle multiple scale models even
in a single scan.

Since ASSC has no restrictions about scale or cluster size, it needs a stop
criteria to avoid selecting pure outlier data after having clustered all segments.
For line extraction we can use some tests to find the linearity of data. For
example, we know that the length of the line should be larger than the esti-
mated noise. We have implemented a simple test based on the ratio between
the segment length lk and the estimated scale σk, i.e. (li/σi) ≥ β. In the
subsequent experiments, β = 10.

2.4. Experiments 31

1. If there are still points to classify

(a) For k = 1 : m

i. Sample a line model θk from the data points.

ii. Compute the resudials for the rest of the data points.

iii. Compute the kernel size h.

iv. Iterativelly follow the Mean Shift vector Mh(X) from X = 0 until
the peak is found. That is, Mh(Xpeak) = 0.

v. Iterativelly follow the oposite Mean Shift vector Vh(X) from Xpeak

until the first valley is found. That is, Vh(Xvalley) = 0.

vi. Select the subset of nk data points that have a residual X(i) less
than the valley found.

vii. Compute the LMedS of the subset Xk using:

σk = 1.4826

„

1 +
5

n − p

«

q

medθk
X 2

k

viii. Define the score of the sample model as U(θk) = nk/σk

(b) Select the data points included in the model that maximizes the utility

function bθ = arg maxθk
U(θk)

(c) If data points satisfy the linearity test (li/σi) ≥ β.

i. Then, compute the TLS estimate of the data points included in bθ
and remove them from the data points to classify.

ii. Else, terminate the classification.

Figure 2.4: ASSC algorithm.

2.4 Experiments

For the experimental results, a data set has been collected using a mobile
platform equipped with a SICK laser range finder navigating along the Ada
Byron building, at the University of Zaragoza. The robot has been driven
along 600 meters indoor and outdoor manmade environment. The environ-
ment is interesting due to the presence of different walls (e.g. concrete, tiles,
glass, steel). For example, an important piece of the trajectory is done next
to a ivy-covered wall (figures 2.1, 2.6 and 2.7) which increases the noise level,
and hence the scale, of those features. There are also some blinds and grassy
slopes which provide poor and noisy reflections. The architecture of the build-
ing presents challenging staircase-shaped walls with acute and obtuse angles
(figure 2.6 and 2.7). Furthermore, there are some curved elements like people,

32 Chapter 2. Feature detection and extraction

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
4.5

5

5.5

6

6.5

[m]

[m
]

(a) Manual segmentation

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
4.5

5

5.5

6

6.5

[m]

[m
]

(b) ASSC

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
4.5

5

5.5

6

6.5

[m]

[m
]

(c) RANSAC with low noise model

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
4.5

5

5.5

6

6.5

[m]

[m
]

(d) RANSAC with high noise model

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
4.5

5

5.5

6

6.5

[m]

[m
]

(e) LMedS

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
4.5

5

5.5

6

6.5

[m]

[m
]

(f) Split and Merge + LMeds

Figure 2.5: Door segmentation experiment.

2.4. Experiments 33

−1 0 1 2 3 4 5 6 7 8 9
−5

−4

−3

−2

−1

0

1

2

3

[m]

[m
]

(a) Manual segmentation

−1 0 1 2 3 4 5 6 7 8 9
−5

−4

−3

−2

−1

0

1

2

3

[m]

[m
]

(b) ASSC

Figure 2.6: Corridor segmentation. Up wall: ivy Down walls: concrete and blinds.

For ASSC, ivy wall has bigger uncertainty that the concrete wall.

baskets and decorative elements, which should be detected as outliers during
segmentation.

Some random scans and some specially difficult scans have been selected to
perform a manual segmentation of data points. The whole experiment consist
of 38 labeled scans and 190 features. A total least squares (TLS) estimate has
been computed with the labeled data as a benchmark for the algorithms.

We contrast the reliability of ASSC algorithm versus RANSAC with two
different predefined scales (high and low), LMedS and a combination of Split
and Merge and LMedS, as proposed in [Newman 02]. The only constrains
imposed to segmentation algorithm are the minimum number of inliers nmin =
10 and the maximum distance between points to break the segment dmax =
1m. The manual benchmark takes into account these constrains. See table 2.1
for a comparison in estimate performance. If the actual segment length differs
more than 10% compared to the extracted segment, we classify the segment
as split or merged respectively.

ASSC offers a good compromise between all false positive, false negative,
wrong split and wrong merged segments. Next in performance is RANSAC,
having the problem of finding a unique predefined scale for all the segments.
RANSAC with high level noise fails in the wall corners and doors, where it is

34 Chapter 2. Feature detection and extraction

−1 0 1 2 3 4 5 6 7 8 9
−5

−4

−3

−2

−1

0

1

2

3

[m]

[m
]

(a) RANSAC with low noise model

−1 0 1 2 3 4 5 6 7 8 9
−5

−4

−3

−2

−1

0

1

2

3

[m]

[m
]

(b) RANSAC with high noise model

−1 0 1 2 3 4 5 6 7 8 9
−5

−4

−3

−2

−1

0

1

2

3

[m]

[m
]

(c) LMedS

−1 0 1 2 3 4 5 6 7 8 9
−5

−4

−3

−2

−1

0

1

2

3

[m]

[m
]

(d) Split and Merge + LMeds

Figure 2.7: Corridor segmentation. Up wall: ivy Down walls: concrete and blinds.

For ASSC, ivy wall has bigger uncertainty that the concrete wall.

2.4. Experiments 35

Table 2.1: Comparison of detection performance in scale algorithms.

Algorithm False neg. False pos. Split segs Merged segs

LMedS 32% 33% 38% 30%

S&M + LMedS 31% 3% 85% 0%

RANSAC high 16% 24% 19% 27%

RANSAC low 12% 11% 48% 5%

ASSC 10% 17% 19% 11%

difficult to distinguish the end of the current line and the beginning of another
line; usually, one or two pseudo-outliers are included in the RANSAC clusters.
On the other hand, RANSAC with low level noise oversplits noisy segments
like ivy, providing an underestimate of the final segment. Finally, due to
its low breaking point, LMedS algorithm is unstable in structures formed by
several concatenated elements (i.e: more than 2) and Split and Merge discards
or splits segments with outliers in the chain.

We have selected a specially difficult part of the experiment, which is
very frequent in man made environments, to show the improvement of our
approach: doors in a wall (figure 2.5). This situation is very deceptive since
features are almost collinear. In addition, some intermediate points appear in
the doorframe, hindering segmentation.

Usually, line extraction algorithms tend to include the doors as a part of the
wall segment because the elements are collinear according to the error model
or the algorithm can not deal with multiple structures. A simple approach
would consist in adjusting the error model. Nevertheless, this could lead to
overconfidence and inaccuracies in other parts of the environment with more
texture. In contrast, ASSC is able to distinguish between texture and multiple
structures, as shown in figure 2.5. Basically, our approach determines the best
scale for each structure, which sometimes, is impossible to be determined
previously.

Other interesting situation appears when the robot is moving along an
outdoor corridor where on one side is a simple flat surface but covered with
ivy and on the other side is a concrete wall, although with a complex structure
(figure 2.6 and 2.7).

Figure 2.8 shows the histograms of lateral, orientation and length error dis-
tribution of the features detected in the whole experiment. It is worth noticing

36 Chapter 2. Feature detection and extraction

0

50

0

50

0

50

0

50

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

50

ASSC

RANSAC high noise model

RANSAC low noise model

LMedS

S&M and LMedS

0

50

0

50

0

50

0

50

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

50

ASSC

RANSAC high noise model

RANSAC low noise model

LMedS

S&M and LMedS

0

50

0

50

0

50

0

50

0 0.5 1 1.5 2 2.5 3
0

50

ASSC

RANSAC high noise model

RANSAC low noise model

LMedS

S&M and LMedS

Figure 2.8: Error distributions: Top, lateral error; middle, orientation error; bottom,

length error

2.5. Conclusion 37

that the histograms has been truncated to clearly represent the information.
The last bin includes all error thereinafter. Our approach also improve the
accuracy of classical approaches since it is able to select a tight uncertainty
for every segment.

2.5 Conclusion

This chapter presents an algorithm for robust data segmentation involving
multiple structures and high percentage of outliers. The main advantage is
the capability to compute a data driven scale. This behavior improves, not
only the segmentation but also the final accuracy. Furthermore, our approach
does not require any previous calibration of the sensor or tuning of the pa-
rameters of the algorithm. This feature allows to reuse the code in different
platforms, sensors and application. In addition, the algorithm has proved its
robustness dealing with different objects in the same scene, for instance bumpy
ivy-covered walls and flat concrete walls. Originally designed for 3D images,
we have adapted and tested the ASSC algorithm for 2D range data. The
method has been experimentally validated in both indoor and outdoor man-
made environments for robotics applications, surpassing current algorithms
performance both in estimation and detection.

38 Chapter 2. Feature detection and extraction

Chapter 3

Gaussian-SLAM

3.1 Introduction

The Gaussian-SLAM approach is characterized by the existence of a discrete-
time augmented state vector, composed of the location of the vehicle and the
location of the map elements, recursively estimated from the available sensor
observations gathered at time t, and a model of the vehicle motion, between
time steps t− 1 and t.

The optimal solution for the filtering distribution can be found using the
celebrated Kalman filter, even for nonstationary processes. However, certain
assumptions must be considered, i.e. (1) the latent and observable processes
{xt}t≥1, {yt}t≥1 must be zero mean and Gaussian distributed or (2) the opti-
mal estimate is a linear function of the observed variables and the loss function
is quadratic.

We have seen in section 1.1.1 that the assumption of independent Gaus-
sian process of primary sources (vt,wt) is realistic in practice. An important
property of Gaussian random signals is that linear combinations (and there-
fore, conditional expectations) on a Gaussian random process are Gaussian
random variables. Therefore, a linear system guarantees assumption (1). But,
SLAM system is nonlinear and it has been proved that the latent stochastic
process does not remain Gaussianly distributed.

Assumption (2) relates the Kalman filter with the Recursive Least Squares
(RLS) algorithm for linear estimation. Actually, the Kalman filter is equiv-
alent to RLS for static parameter estimation. As commented in chapter 1,
the Kalman filter provides an elegant solution to the joint state and parame-
ter estimation problem. However, assumption (2) is again unrealistic for the
SLAM problem. In fact, [Ljung 79] proved that the general adaptive filtering

39

40 Chapter 3. Gaussian-SLAM

problem is a nonlinear problem, even with a linear model. The nonlinearity
comes from the implicit relationship between the parameters and the model.

A linearized framework can be developed to find a suboptimal filter similar
to the Kalman filter. Due to its simplicity, the most relevant is the extended
Kalman filter (EKF) [Bar-Shalom 01], which linearizes the dynamic and ob-
servation models using first-order Taylor expansion. Therefore, the Kalman
filter can be straightforwardly applied to the linearized system. It can be also
used to jointly estimate states and parameters.

However, higher order terms are neglected, introducing linearization errors
and bias in the estimate. As discussed in [Jazwinski 70], the expected value
of the neglected terms is proportional to the error variance and the second
partial derivative of the nonlinear model functions that appeared in section
1.2. In that work, the author identifies two types of nonlinearity depend-
ing wether the nonlinearity is large due to the fact that the second partial
derivatives are large (which is called real nonlinearity), or if it is large be-
cause the uncertainty is large (induced nonlinearity). This duality has also
been studied for the camera models in [Civera 08]. As shown in the literature
[Julier 01, Castellanos 04] the neglected terms frequently leads to filter diver-
gence after only a few update steps. Deeper analysis over consistency issues
in EKF-SLAM was conducted in [Bailey 06a]. In practice, the nonlinear error
is only important if it is large enough compared to the actual system error.
Then, the most extended approach is to inject stabilizing noise to reduce the
importance of the linearization effect. Clearly, this method is only effective
when the nonlinearity is mainly real, because the injected noise is actually
inducing nonlinearity.

Within this framework, uncertainty is represented by Gaussian distribu-
tions associated to the state vector, the motion model and the sensor observa-
tions. This approach to SLAM dates back to the seminal work of Smith et al.
[Smith 88] where they introduced the concept of stochastic map and they devel-
oped a rigorous solution to the SLAM problem using an extended Kalman filter
(EKF) perspective. It is assumed that recursive propagation of the parameters
of the distribtuion -the mean and the covariance- conveniently approximates
the optimal solution of this estimation problem. Many successful implementa-
tions of this approach have been reported in indoor [Castellanos 99, Civera 08],
outdoor [Guivant 01, Paz 07], underwater [Eustice 05, Ribas 08], air-borne
[Kim 07] and planetary [Mourikis 07] applications.

The time and memory requirements of the basic EKF-SLAM approach
result from the cost of maintaining the full covariance matrix, which is O(n2)
where n is the number of features in the map. Many recent efforts have

3.1. Introduction 41

Figure 3.1: Influence of the uncertainty on linearization accuracy.

concentrated on reducing the computational complexity of EKF-SLAM1 in
large environments [Guivant 01, Tardós 02, Estrada 05, Bosse 03, Knight 01,
Leonard 03, Walter 05, Paz 07, Thrun 04, Paskin 03, Frese 06]. However, only
recently, the consistency issues of the EKF-SLAM algorithm have attracted
the attention of the research community. They overlook the fact that, given
that SLAM is a nonlinear problem, there is no guarantee that the computed
covariances will match the actual estimation errors, which in practice, becomes
the main consistency issue.

The classical EKF-SLAM linearizes both the motion and sensor models by
using a first-order Taylor series expansion around the best available estimated
state-vector, therefore, both the bias and the level of uncertainty in the esti-
mated state-vector influence the accuracy of linearization. In a real application
based on EKF, uncertainty must be bounded to control the approximation er-
ror as shown in figure 3.1. Additionally, figure 3.2 describe the influence of
observation uncertainty on the Gaussianity assumption of the EKF approach.
Clearly, the higher the uncertainty the worst the Gaussian approximation.

SLAM structure can be exploited to reduce the induced nonlinearity. Basi-
cally, global uncertainty always increase when the robot is exploring new areas,

1There has been also many works using the information filter, which, in general, is more
computationally expensive, but it can exploit the inherent sparsity of the SLAM problem.

42 Chapter 3. Gaussian-SLAM

(a) Low observation noise

(b) High observation noise

Figure 3.2: Influence of observation uncertainty in the Gaussianity assumption for

a mobile robot with uncertain location xB
Rk

observing a new landmark at xB
E . Dots

represents Monte Carlo samples which are used as a ground truth. The ellipses are

the 2σ boundaries for the posterior uncertainty computed by EKF (dashed) or Monte

Carlo (solid). Clearly, for low noise levels, the EKF provides quasi-optimal estimates,

but, for high noisy levels, the estimate is biased.

3.1. Introduction 43

becoming huge when the robot has traveled long distances without revisiting.
Consequently, several techniques has been proposed using small local maps,
where the information is shared or combined less frequently. Also, partial ob-
servability can be exploited. Since all the sensors are mounted in the robot,
all the information comes from elements near the robot, while the rest are not
observed and, therefore, not included in the nonlinear equation. Thus, a robot
centered representation would reduce the involved uncertainty except when a
loop is closed. These approaches outperform standard approximations, also
reducing the overall computational cost. In section 3.6.2 we present the Robo-
centric Map Joining approach [Castellanos 07, Martinez-Cantin 06a], whose
advantages are threefold:

• It addresses the SLAM problem by building independent local maps
of limited size, using the technique first proposed in [Tardós 02]. This
technique was shown to greatly reduce the computational cost of SLAM.
Here we show that, as the uncertainty inside a local map is bounded,
the linearization errors are also reduced.

• In standard SLAM, the map is built using an absolute representation,
i.e. with respect to an external reference frame B. After a certain time,
the vehicle and the features currently observed have a growing absolute
uncertainty that propagates to the measurement equations introducing
errors. Here we build each local map using a robot centered representa-
tion [Castellanos 04], i.e. relative to a reference frame R attached to the
vehicle. Except during loop closing, the features currently observed have
an uncertainty in the order of the sensor error, which is much smaller.
This also results in a reduction of the linearization errors.

• When the robot moves, its new pose is usually predicted by composing
the old pose with the motion measured by odometry, which is frequently
the least precise sensor. The new uncertainty is then computed by lin-
earizing the composition around the predicted value. In Robocentric
Map Joining we delay the composition until the map and the motion
have been refined using new observations of the environment. This re-
sults in a better linearization point for the composition.

More elegant improvements over the EKF has been studied to overcome the
two sources of nonlinearity. Higher order approximations has been developed
to reduce the effect of real nonlinearity, e.g.: second order extended Kalman
filter, sigma points Kalman filters (including the well known unscented Kalman

44 Chapter 3. Gaussian-SLAM

filter), iterated extended Kalman filter, etc. Those algorithms can also be used
in the joint state and parameter estimation [van der Merwe 04]. In the last few
years, some works have been reported which propose alternative linearization
techniques in certain parts of the SLAM algorithms [Chong 99, Paskin 03,
Andrade-Cetto 05].

In this chapter, we will also present a novel SLAM algorihm fully based on
the unscented transformation as the linearization technique [Martinez-Cantin 05],
but still following under the Gaussian SLAM paradigm. The unscented Kalman
filter or UKF was developed by Julier and Uhlmann, see [Julier 04] and refer-
ences therein. The UKF increases the accuracy of the state estimation with a
comparable computational cost2. At time step t, the unscented filter estimates
the first two moments of the underlying pdf (i.e. mean and covariance) by a
linear weighted regression of evaluations of the true non-linear models at the
so-called sigma-points. As proved in the literature, the mean and covariance of
a n-dimensional Gaussian distribution propagated through a nonlinear func-
tion can be precisely and accurately approximated by a set of O(n) carefully se-
lected sigma-points. UKF and other sigma-point filters use Gaussian Quadra-
ture integration to solve the bayesian recursion integrals [Ito 00]. In this case,
the Gaussian distribution is approximated with a discrete distribution with the
same first and second moments. Then the discrete distribution can be easily
propagated through the nonlinear function, preserving the distribution param-
eters. The first use of the unscented transformation in SLAM was reported
in [Chong 99] where preliminary work on a small-scale indoor environment
was considered. More recently, Andrade-Cetto et al., [Andrade-Cetto 05] de-
scribe the application of the unscented transformation to the vehicle movement
model by assuming linearity both in the prediction of the map features and
the update of the full state vector. In addition, Paskin [Paskin 03] uses the
unscented transform to preprocess the feature observations, but the rest of the
algorithm use EKF-type linearizations.

It is important to note that the UKF and other sigma points methods are
not actual sampling methods, like Monte Carlo methods [Doucet 01]. Sigma
point filters are still parametric methods to approximate the posterior or filter-
ing distribution, while particle filters use Monte Carlo integration and the ac-
tual samples as the approximated distribution. Monte Carlo based approaches
for SLAM [Doucet 00, Montemerlo 03b] will be discussed in chapter 4.

In practice, model nonlinearity, either real or induced, comes from three
factors:

2For a n-dimensional state estimation problem, naive UKF is O(n3), but square root
UKF [van der Merwe 01] can achieve O(n2) updates

3.2. Gaussian state-space SLAM 45

1. Robot heading: The dynamic system of a robot equipped with a per-
fect compass and simple motion constrains like differential drive or con-
stant velocity can be represented as a linear function. For 3D motion,
the compass should provide measures for the 3 angles (roll, pitch and
yaw).

2. Sensor bearing: Assuming an on-board range and/or bearing sensor,
the model for feature initialization is linear if the sensor has perfect
bearing information.

3. Parallax: As shown in [Civera 08] the linearity of the observation equa-
tion with an on-board sensor is proportional to the parallax, that is, the
change of angular position of two observations of the same feature.

Those factors are related with the three models in feature based SLAM, which
are, robot motion, feature initialization and feature update.

Cameras are good bearing sensors. Consequently, it is not surprising that
even low resolution cameras mapping distant objects can be used as an ac-
curate compass [Montiel 06]. Using cameras, inverse depth representation of
the features provide an almost linear initialization. Also, the update step
is linear provided that either low parallax or good bearing information is ob-
tained [Civera 08]. Thus, for environments where distant objects are observed,
quasi-linear performance can be obtained for Gaussian SLAM using cameras.
But the algorithms presented in this thesis are intended to be more general.
Therefore, they have to be applicable in different sensors and platforms.

From a practical point of view, in SLAM, one of the most significant fac-
tors that jeopardize the results of any SLAM algorithm are the mismatches
between observations and map features due to inconsistent estimation of lo-
cation uncertainty. The increased accuracy in the computation of the mean
and covariance of the state distribution suggests a reduction in the ambiguity
of data association, hence, low-complexity validation gate approaches could
reliably and robustly be utilized.

3.2 Gaussian state-space SLAM

In the Gaussian state-space formulation of SLAM, the vehicle R and a set
of environment features F = {F1, . . . , Fn} are represented by a normally dis-
tributed state vector xB with estimated mean x̂B and estimated error covari-
ance PB :

46 Chapter 3. Gaussian-SLAM

x̂B =

[
x̂B

R

x̂B
F

]
; PB =

[
PB

R PB
RF

PB
FR PB

F

]
(3.1)

where x̂B
R is the estimated location of the vehicle with respect to (w.r.t.) a base

reference frame B, x̂B
F is the estimated location of the features also w.r.t. B,

PB
R is the estimated error covariance of the location of R, PB

F is the estimated
error covariance of the location of the features, and finally, PB

RF represents the
cross-covariance between the different elements of the state vector. Addition-
ally, it is generally assumed that the underlaying probability density function
is Gaussian, hence, at time step k, xB

k ∼ N (x̂B
k ,P

B
k).

When the vehicle moves from position at step t−1 to position at step t, the
stochastic state vector changes according to the nonlinear motion equation:

xB
t = ft(x

B
t−1,x

Rt−1

Rt
) (3.2)

where the uncertain relative motion x
Rt−1

Rt
is estimated by odometry and as-

sumed to be white Gaussian.
From a Bayesian point of view, suppose that the stochastic map xB

t−1 ∼
N (x̂B

t−1,P
B
t−1) is available at time t− 1, then, the predicted stochastic map at

time t results from:

x̂B
t|t−1 = E[ft(x

B
t−1,x

Rt−1

Rt
)] (3.3)

Pt|t−1 = E[(xB
t − x̂B

t|t−1)(x
B
t − x̂B

t|t−1)
T]

On-board sensors provide, at time t, the observation yt related to the state
vector xB

t by the nonlinear measurement equation:

yt = ht(x
B
t ,x

Rt

Et
) (3.4)

where xRt

Et
represents the set of white Gaussian gathered observations w.r.t.

the reference frame Rt. This new information about the state vector, can be
incorporated into the state by using the update equations of a linear (in the
measurements) estimator:

x̂B
t = x̂B

t|t−1 + PxyP
−1
yy

(yt − ŷt) (3.5)

PB
t = PB

t|t−1 − PxyP
−1
yy

Pyx

with:

Pyy = E[(yt − ŷt)(yt − ŷt)
T] (3.6)

Pxy = E[(xB
t − x̂B

t|t−1)(yt − ŷt)
T] (3.7)

3.3. The Curse of Dimensionality in Gaussian SLAM 47

If a reference external to the vehicle is used as base reference, the vehicle
location must be initialized with the corresponding nonzero uncertainty. A
common misconception is that this nonzero initial level of uncertainty in the
vehicle location may improve map consistency. In contrast, our experiments
will show that this quickly results in optimistic covariance values due to lin-
earization errors. For this reason, we use the vehicle location before the first
observation (at step t = 0) as the base reference (B = R0). Thus, the map can
be initialized with zero covariance for the vehicle location: x̂B

0 = (0, 0, 0)T ,
PB

0 = 0. Our results show that this improves the consistency of the EKF-
SLAM algorithm.

3.3 The Curse of Dimensionality in Gaussian SLAM

Intuitively, uncertainty can be seen as the volume of the state space that
we are interested in. The curse of dimensionality is a term to describe the
problem caused by the exponential increase in volume associated with adding
extra dimensions to a mathematical space. Therefore, adding new dimensions
implies and exponential growth of the uncertainty. In SLAM, there are two
sources of dimensionality addition: temporal and spatial.

Every time step, the Markov chain is increased with the corresponding new
states and observations. However, the mean and the covariance of a Gaussian
are sufficient statistics to represent the current state. Therefore, we can ap-
ply the Markov property and predict the future state based on the marginal
distribution. In contrast, some SLAM algorithms use incremental smoothing,
with nonlinear optimization to improve the overall consistency or to exploit
the sparsity of the problem. In that case, the solution depends on the whole
posterior distribution, suffering from the temporal curse of dimensionality.

On the other hand, it is impossible to known a priori the number of land-
marks that a robot is going to see while exploring an unknown environment.
Then, every feature-based SLAM algorithm needs to consider the addition of
previously unobserved landmarks. Every feature added to the state vector in-
crease the dimensionality of the problem, consequently, the uncertainty grows
exponentially and so does the induced nonlinearity.

It is important to remark that the spatial dimension only grows when the
robot is exploring new areas. In contrast, the temporal dimension is always
increasing, no matter if the robot is exploring or revisiting known areas.

48 Chapter 3. Gaussian-SLAM

3.4 Linearizations in the Classical EKF-SLAM Al-
gorithm

The classical EKF-based SLAM approach computes the estimated covariance
matrices of equations (3.3) and (3.6) by first-order analytical linearization of
the motion and measurement models respectively.

3.4.1 The prediction step

When the vehicle moves from position at time step t − 1 to position at time
step t, its location is predicted as follows:

xB
Rt|t−1

= ft(x
B
Rt−1

,x
Rt−1

Rt
)

= xB
Rt−1

⊕ x
Rt−1

Rt

(3.8)

where the uncertain displacement x
Rt−1

Rt
is estimated by odometry and assumed

to be corrupted by zero mean white Gaussian noise, vt ∼ N (0,Qt). Note that
due to the transformation composition ⊕, a nonlinear prediction model is
formulated. Thus, a first linearization, around the estimated values x̂B

Rt−1
and

x̂
Rt−1

Rt
using the appropriate Jacobians (see appendix A), is required:

x̂B
t|t−1 =

x̂B
Rt−1

⊕ x̂
Rt−1

Rt

x̂B
F1,t−1

...

x̂B
Fn,t−1

PB
t|t−1 ≃ J1P

B
t−1J

T
1 + J2QkJ

T
2

(3.9)

where

J1 =

J1⊕

{
x̂B

Rt−1
, x̂

Rt−1

Rt

}
0 · · · 0

0 I
...

...
. . .

0 · · · I

, J2 =

J2⊕

{
x̂B

Rt−1
, x̂

Rt−1

Rt

}

0
...

0

and J1⊕ and J2⊕ being the Jacobians of transformation composition (appendix
A).

3.5. The Inconsistency of EKF-SLAM 49

3.4.2 The update step

At step t an onboard sensor obtains a partial measurement yt of the environ-
ment features and related to the state by a nonlinear function ht:

yt = ht(x
B
t ,x

Rt

Et
) (3.10)

where xRt

Et
represents the set of uncertain observations with respect to Rt, and

corrupted by zero mean white Gaussian noise, wt ∼ N (0,Rt).

A second linearization, this time around the current map prediction x̂B
t|t−1,

yields:

yt ≃ ht(x̂
B
t|t−1, x̂

Rt

Et
) + Ht(x

B
t − x̂B

t|t−1) + Gt(x
Rt

Et
− x̂Rt

Et
)

Ht =
∂ht

∂xB
t

∣∣∣∣
(x̂B

t|t−1
,x̂

Rt
Et

)

=
[

HRt 0 · · · HFt · · · 0
]

HRt =
∂ht

∂xB
Rt

∣∣∣∣∣
(x̂B

t|t−1
,x̂

Rt
Et

)

; HFt =
∂ht

∂xB
Ft

∣∣∣∣∣
(x̂B

t|t−1
,x̂

Rt
Et

)

Gt =
∂ht

∂xRt

Et

∣∣∣∣∣
(x̂B

t|t−1
,x̂

Rt
Et

)

(3.11)

Measurement yt is used to obtain a new estimation of the state using the
standard EKF update equations:

x̂B
t = x̂B

t|t−1 + Ktνt

PB
t = (I − KtHt)P

B
t|t−1

Kt = PB
t|t−1H

T
t (HtP

B
t|t−1H

T
t + GtRtG

T
t)−1

(3.12)

where νt = yt − ht(x̂
B
t|t−1, x̂

Rt

Et
) is the innovation of the filter, with covariance

matrix St = HtP
B
t|t−1H

T
t + GtRtG

T
t , that is, p(yt|y1:t−1) = N (νt,St).

3.5 The Inconsistency of EKF-SLAM

Let x̂B
t and PB

t be the first two moments of the SLAM state estimated at
time t. The state estimator is called consistent [Bar-Shalom 01] if its state

50 Chapter 3. Gaussian-SLAM

estimation error xB
t − x̂B

t is unbiased, i.e. E
[
xB

t − x̂B
t

]
= 0 and the actual

Mean Square Error matches the filter calculated covariances:

E

[(
xB

t − x̂B
t

) (
xB

t − x̂B
t

)T]
= PB

t (3.13)

Whenever ground-truth for the state variables is available, a statistical test
for filter consistency can be carried out on the normalized estimation error
squared (NEES):

NEES =
(
xB

t − x̂B
t

)T (
PB

t

)−1 (
xB

t − x̂B
t

)
≤ χ2

r,1−α (3.14)

where χ2
r,1−α is a threshold obtained from the χ2 distribution with r = dim(xB

t)
degrees of freedom, and α the desired significance level (usually 0.05).

Unfortunately, ground truth for the state variables is not directly available
except in some controlled simulation experiments. However, a statistical test
for real-time consistency can still be carried out, in this case, on the normalized
innovation squared (NIS):

NIS = νT
t S−1

t νt ≤ χ2
r,1−α (3.15)

where r = dim(νt).

In practice, this test is used to solve the lack of generative model. It can
decide wether an observation corresponds to a novel feature or an existing one.
In case of ambiguous data associations, the method selects the one with lower
NIS. Thus, one of the most critical factors that jeopardize the consistency of
any SLAM algorithm are the incorrect data associations between observations
and map features.

3.5.1 Empirical proof of EKF-SLAM inconsistency

To isolate the effects of linearization errors on the consistency of the EKF-
based approach to SLAM, we have designed a simulated experiment with
known data association. The vehicle travels along a rectangular-shaped tra-
jectory of 100 × 20 meters, i.e. a 240-meter loop trajectory, moving 1m per
step. The map of the navigation environment is composed of 2-D point fea-
tures, located at both sides of the vehicle trajectory with a feature density
of 0.5 feature/m. The vehicle is equipped with a range-bearing sensor with a
maximum range of 15 meters and a 180 degrees frontal field-of-view. Gaussian-
distributed synthetic errors were generated for both the sensor measurements
(standard deviation of 5 cm per m in range and 0.5 deg in orientation) and for

3.5. The Inconsistency of EKF-SLAM 51

the odometry model of the vehicle (standard deviations of 0.2 m per m in dis-
placement and 0.5 deg in orientation). We have run a Monte Carlo simulation
with 20 replications.

Figure 3.3, top, shows the evolution of angular error and uncertainty (2σ
bounds) in the vehicle location along the trajectory for a representative replica-
tion of the experiment. For this SLAM simulation, the initial vehicle location
is used as base reference, allowing to set the initial vehicle uncertainty to zero.
The theoretical uncertainty level was obtained by simulating the same tra-
jectory linearizing around ground truth (simulated with noise = 0), so that
there are no linearization errors. We can see that, while the theoretical angu-
lar uncertainty increases until loop closing, the uncertainty computed by the
EKF saturates reaching a maximum level (around 0.5 deg in this case). This
results in the vehicle location estimation failing the consistency check of equa-
tion (3.14) after only 100m. Additionally, the average of the 20 replications
resulted in biased estimation for frontal, lateral and angular errors.

From the experimental experience gained from EKF-SLAM mapping an
important conclusion can be derived: The consistency of the EKF-SLAM al-
gorithm greatly depends on the level of uncertainty of the state vector, the
higher the uncertainty, especially heading uncertainty, the worst the consis-
tency of the estimates.

It is common practice to build a map relative to a fixed base reference,
different from the initial vehicle location. This normally requires to assign an
initial level of uncertainty to the vehicle estimated location. As it is argued in
[Dissanayake 01], the vehicle uncertainty should always be above this initial
level. Surprisingly, our simulations shows that when a non-zero initial uncer-
tainty is used (figure 3.3, bottom), the estimated vehicle uncertainty rapidly
drops below its initial value (1 deg) making the estimation inconsistent after
only 50 EKF update steps. This corroborates the results of [Julier 01], but
also shows that the problem arises in practice earlier than they suggested. It
is important to note that this result is only due to nonlinearities. It has been
proved that the relative entropy of a wrongly initialized filter in a Markov pro-
cess with respect to the optimal filter is a supermartingale [Clark 99], which
means that the expectation of the relative entropy can only decrease with
time. In other words, the filtering distribution of both filters should became
similar, which is not the case here.

52 Chapter 3. Gaussian-SLAM

0 50 100 150 200 250
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

θ
er

ro
r

[d
eg

]

Error
Sigma Experimental
Sigma Theoretical

(a)

0 50 100 150 200 250
−3

−2

−1

0

1

2

3

θ
er

ro
r

[d
eg

]

Error
Sigma Experimental
Sigma Theoretical

(b)

Figure 3.3: Angular error and 2σ uncertainty bounds of the vehicle estimated loca-

tion for the cases of zero (a) and nonzero (b) initial uncertainty.

3.6. Improving the consistency of EKF-SLAM 53

3.6 Improving the consistency of EKF-SLAM

Previous sections have shown that consistency is a matter of the problem
structure, not only the algorithm. In this section we will show how the struc-
ture of the SLAM can be exploited to improve the consistency of the naive
EKF-SLAM algorithm.

3.6.1 Robocentric Mapping

In the robocentric filter, we formulate the EKF-SLAM problem using the
reference frame attached to the vehicle R as base reference of the stochastic
map. Thus, the environmental information {R,B,F1, . . . , Fn} is represented
by a stochastic state vector xR with estimated mean x̂R and estimated error
covariance PR:

x̂R =

x̂R
B

x̂R
F1

...

x̂R
Fn

; PR =

PR
B · · · PR

BFn

...
. . .

...

PR
FnB · · · PR

Fn

 (3.16)

where the world reference frame B has been included as a non-observable
feature in the stochastic state vector. This has the purpose of allowing to
recover the equivalent absolute map if desired, but it is not necesary for the
filtering algorithm, neither for navigation. With the purpose of avoiding the
inconsistency problem related to non-zero initial uncertainty described above,
we take the initial vehicle location as base reference B = R0, and thus at
step t = 0 the map is initialized with perfect knowledge of the world location:
x̂R

0 = (0, 0, 0)T and PR
0 = 0.

In robocentric mapping, each filter iteration includes three steps: predic-
tion, update and composition, which are detailed next.

The prediction step

After the vehicle changes its location from step t − 1 to step t, the complete
structure of the stochastic map should be affected by the process noise as-
sociated with the displacement x

Rt−1

Rt
as estimated by odometry, and with

covariance matrix Qt. Thus, the estimated location of a given map feature F
should be updated as:

xRt

Ft|t−1
= ⊖x

Rt−1

Rt
⊕ x

Rt−1

Ft−1
(3.17)

54 Chapter 3. Gaussian-SLAM

and therefore, its estimated covariance would be computed from the cor-
responding linearization around the estimated values x̂

Rt−1

Rt
and x̂

Rt−1

Ft−1
. As

odometry is the least precise component in the system, this linearization can
introduce significant errors. Instead, we propose to delay the composition in
equation (3.17) until the estimated vehicle motion has been improved by the
update step of the EKF algorithm. Conceptually, this idea resembles the op-
timal proposal approximation in particle filters, where the last observation is
somehow included in the proposal to reduce the approximation error.

Therefore, in the prediction step the vehicle motion x̂
Rt−1

Rt
obtained by

odometry is simply added, as an independent feature, to the previously avail-
able stochastic map x

Rt−1

t−1 :

x̂
Rt−1

t|t−1 =

[
x̂

Rt−1

t−1

x̂
Rt−1

Rt

]
; P

Rt−1

t|t−1 =

[
P

Rt−1

t−1 0

0 Qt

]
(3.18)

The update step

Now, linearization of the measurement equation around the estimated values
of both the stochastic state vector and the partial measurement yt yields:

yt ≃ ht(x̂
Rt−1

t|t−1) + Ht(x
Rt−1
t − x̂

Rt−1

t|t−1)

Ht =
∂ht

∂x
Rt−1
t

∣∣∣∣∣
x̂

Rt−1
t|t−1

= [0 · · · 0 HFt 0 · · · 0 HRt] (3.19)

where:

HFt =
∂ht

∂x
Rt−1

Ft

∣∣∣∣∣
x̂

Rt−1
t|t−1

; HRt =
∂ht

∂x
Rt−1

Rt

∣∣∣∣∣
x̂

Rt−1
t|t−1

Equations which are subsequently used to obtain a new estimation of the
stochastic state vector x̂

Rt−1

t|t and its covariance matrix P
Rt−1

t|t , using the pre-
viously described EKF update equations. Note that, because the relative
displacement of the vehicle from time t− 1 to time t was included as a feature
of the stochastic state vector, it is also refined during the application of the
update equations.

The use of a robot centered representation greatly influences the internal
structure of the measurement equation (3.19) is comparison with the mea-
surement equation (3.11) obtained by using an absolute representation of the
stochastic map. Precisely, and except for loop closing, the uncertainty of the

3.6. Improving the consistency of EKF-SLAM 55

filter innovation is greatly reduced down to the level of the observation uncer-
tainty, thus, improving the accuracy of the linearization.

The composition step

As a final step in the robocentric mapping algorithm, the stochastic state
vector of the robocentric map is obtained by affecting each estimated location
by the improved vehicle motion:

x̂Rt
t =

⊖x̂
Rt−1

Rt
⊕ x̂

Rt−1

B

⊖x̂
Rt−1

Rt
⊕ x̂

Rt−1

F1

...

⊖x̂
Rt−1

Rt
⊕ x̂

Rt−1

Fn

(3.20)

with corresponding covariance matrix:

PRt
t ≃

[
J2 J1

]
P

Rt−1

t|t

[
JT

2

JT
1

]

J1 =

J1⊕{⊖x̂
Rt−1

Rt
, x̂

Rt−1

B }J⊖{x̂Rt−1

Rt
}

...

J1⊕{⊖x̂
Rt−1

Rt
, x̂

Rt−1

Fn
}J⊖{x̂Rt−1

Rt
}

J2 =

J2⊕{⊖x̂
Rt−1

Rt
, x̂

Rt−1

B } · · · 0
...

. . .
...

0 · · · J2⊕{⊖x̂
Rt−1

Rt
, x̂

Rt−1

Fn
}

 (3.21)

The computational cost of the update steps in both absolute and robocen-
tric mapping requires updating the covariance matrix of the estimation and
is thus O(n2), where n is the number of features in the map. The prediction
step in absolute mapping requires updating the correlations between the ve-
hicle and the features and is thus O(n), while in robocentric mapping it only
requires stacking, O(1). In contrast, robocentric mapping includes an addi-
tional composition step in which the full covariance matrix is updated, again
with a computational cost of O(n2).

3.6.2 Robocentric Map Joining

In [Tardós 02] Tardós et al. proposed a map building technique in which, in-
stead of building one global map from the beginning of the exploration task,

56 Chapter 3. Gaussian-SLAM

a sequence of local maps of limited size is built, and later joined together, to
obtain the global map. Here we show that, not only is map joining computa-
tionally more efficient than building one global map from the beginning, as it
is shown in [Tardós 02], but it also allows to attain better consistency in the
stochastic map.

Robocentric map joining is carried out as follows: given two consecutive
robocentric local maps:

MRl

F = (x̂Rl

F ,P
Rl

F) ; F = {Rl, Bl, F1, . . . , Fm}
MRl−1

E = (x̂
Rl−1

E ,P
Rl−1

E) ; E = {Rl−1, Bl−1, E1, . . . , En}

Because, there exists a link between the two maps Bl ≡ Rl−1 a full stochastic
map can be obtained by map joining:

MRl

F+E = (x̂Rl

F+E ,P
Rl

F+E)

which contains the estimations of the features from both maps, relative to
the reference frame Rl of the current robocentric local map. We proceed as
follows:

Stacking together the local maps

Because the robocentric local maps MRl

F and MRl−1

E are built using indepen-
dent information, they are uncorrelated [Tardós 02]. Thus, we form a stacked
state vector:

x̂F+E =

[
x̂Rl

F

x̂
Rl−1

E

]
; PF+E =

[
PRl

F 0

0 P
Rl−1

E

]
(3.22)

which stores all the available information about the previous uncorrelated local
maps.

The update step

Data association is carried out to match the features of the local map MRl

F with

those of the local map MRl−1

E . We use the Joint Compatibility test [Neira 01],
which obtains the largest set of pairings which are jointly compatible, a con-
sensus criteria that reduces the possibility of accepting a spurious pairing. Let
Fi and Eji

be two matched features, thus, a nonlinear measurement equation
of the form:

ziji
= hiji

(xF+E) = ⊖xRl

Fi
⊕ xRl

Bl
⊕ x

Rl−1

Eji
= 0 (3.23)

3.6. Improving the consistency of EKF-SLAM 57

constraints their relative location vector, where Bl ≡ Rl−1 as discussed above.
Linearization of equation (3.23) around the best available estimation x̂F+E

gives:

ziji
≃ hiji

(x̂F+E) + Hiji
(xF+E − x̂F+E) (3.24)

where, the linearization coefficient results from:

Hiji
=

∂hiji

∂xF+E

∣∣∣∣
x̂F+E

=
[

HBl
0 . . . 0 HFi

0 . . . 0 HEji
0 . . . 0

]
(3.25)

and,

HBl
=
∂hiji

∂xRl

Bl

∣∣∣∣∣
x̂F+E

; HFi
=
∂hiji

∂xRl

Fi

∣∣∣∣∣
x̂F+E

; HEji
=

∂hiji

∂x
Rl−1

Eji

∣∣∣∣∣∣
x̂F+E

(3.26)

The update of the stacked state vector by using the EKF equations, would
therefore improve not only the structure of both local maps but also the
link between them. This strategy increases the accuracy of the map join-
ing technique over the direct change of reference between local map proposed
in [Tardós 02]. After updating the map, matched features of the local map

MRl−1

E are removed from the stacked state vector and only a subset E∗ ⊂ E of
features remains.

The composition step

Given that the features from the current local map are expressed relative to
reference Rl and features from the previous local map are expressed relative
to reference Rl−1, to form the full stochastic map MRl

F+E∗ we only need to
transform the features of the previous map to the reference Rl using their
common link. Thus,

xRl

F+E∗ =

[
xRl

F

xRl

E∗

]
=

[
xRl

F

xRl

Rl−1
⊕ x

Rl−1

E∗

]
(3.27)

which directly provides the estimation x̂Rl

F+E∗ of the full stochastic map. Its

covariance matrix PRl

F+E∗ derives from the linearization of equation (3.27) as:

PRl

F+E∗ =

[
PRl

F PRl

FE∗

PRl

E∗F PRl

E∗

]
≃
[

I 0

J1 J2

][
PRl

F PFE∗

PE∗F P
Rl−1

E∗

] [
I JT

1

0 JT
2

]

58 Chapter 3. Gaussian-SLAM

where the matrices of Jacobians (appendix A) are:

J1 =

J1⊕{x̂Rl

Rl−1
, x̂

Rl−1

Bl−1
} . . . 0

...
...

J1⊕{x̂Rl

Rl−1
, x̂

Rl−1

En
} . . . 0

and

J2 =

J2⊕{x̂Rl

Rl−1
, x̂

Rl−1

Bl−1
} . . . 0

...
. . .

...

0 . . . J2⊕{x̂Rl

Rl−1
, x̂

Rl−1

En
}

As in absolute map joining [Tardós 02], the computational cost of robocen-
tric map joining requires updating the full stochastic map covariance at each
join and thus is O(n2). Note however that most of the updates take place
in a local map of bounded size (with a O(1) cost), and thus you can expect
robocentric map joining to cut processing time by a large constant factor.

3.6.3 Experiments

In this section, we carry out a series of simulated and indoor/outdoor experi-
ments to validate the robocentric map joining algorithm.

Simulation

In our controlled simulation environment we have compared the performance
of the different algorithms presented in the previous discussion. Two main
categories of experiments have been conducted, namely, those with an absolute
representation, and those with a robot centered representation.

Figure 3.4(a) compares the vehicle heading uncertainty computed using
an absolute map representation by an ideal error-free EKF (simulated with
noise = 0), the standard EKF and the map joining algorithm proposed in
[Tardós 02]. Note that all mapping algorithms in error-free simulations should
produce identical correct results. In this case, the heading uncertainty com-
puted by the standard EKF presents a saturation effect which makes the
algorithm more and more optimistic as the number of updates increases, and
thus it undermines consistency. The map joining algorithm performs much
better but it is still slightly optimistic in the second-half of the trajectory.

3.6. Improving the consistency of EKF-SLAM 59

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7
H

ea
di

ng
 U

nc
er

ta
in

ty
 [d

eg
]

Update

(a) Absolute mapping

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

H
ea

di
ng

 U
nc

er
ta

in
ty

 [d
eg

]

Updates

(b) Robocentric mapping

Figure 3.4: Vehicle heading uncertainty (1σ) computed using absolute and robocen-

tric mapping by: the ideal error-free EKF (dashed line), the standard EKF (dotted

line) and the map joining algorithm (solid line).

60 Chapter 3. Gaussian-SLAM

Similarly, figure 3.4(b) compares the vehicle heading uncertainty, using a
robot centered representation3, of the ideal error-free EKF against the robo-
centric mapping approach reported in [Castellanos 04] and the new robocentric
map joining algorithm. As observed from the figure, both algorithms obtain a
non-optimistic estimation for the vehicle heading uncertainty along the vehicle
trajectory, which makes loop closing detection possible. In this experiment,
robocentric map joining behaves slightly pessimistically as compared to the
basic robocentric approach. It provides a more efficient solution in terms of
computing time. Finally, we can see that in these robot centered approaches,
saturation effects have disappeared.

Indoor/outdoor mapping experiment

To validate the new robocentric mapping algorithm, we have conducted an
experiment in one of the buildings at our campus using a robotized wheelchair
equipped with a SICK laser scanner. The vehicle was hand-driven along a
mixed indoor/outdoor path of about 250 m, at a mean speed of 0.45 m/s.
The scans were processed to obtain line features using the ASSC algorithm
introduced in chapter 2.

Figure 3.5 shows the map obtained along the commanded trajectory by the
classical EKF-SLAM algorithm using an absolute representation. The satu-
ration effect in the map uncertainty makes the result inconsistent as observed
in the top-left part of the figure, where clearly the loop could not be closed
by simple data association strategies. We processed the same data dividing
the full map into 50 robocentric maps (each for a trajectory of 5 m with ap-
proximate 10 line features) and using robocentic map joining to compute the
full stochastic map. As shown in figure 3.6, this change of representation,
from absolute to robot centered using map joining performs adequately in this
case. Due to the increased accuracy in linearization and the reduced level of
uncertainty of this local representation, the mapping of the 250m trajectory
was accurately performed, closing the loop when the vehicle homed.

Finally, figure 3.7 depicts the evolution of the vehicle angular uncertainty
along the 250m trajectory. Again, the EKF-SLAM estimated uncertainty
presents the previously discussed saturation effects driving the solution of the
mapping algorithm out of consistency. The Map Joining algorithm which
also computes the estimated location of features in an absolute representa-
tion presents a similar, although clearly improved, optimistic behavior. As

3For ease of comparison, the robot centered solutions have been transformed back to the
absolute representation.

3.6. Improving the consistency of EKF-SLAM 61

−30 −20 −10 0 10 20 30 40
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

[m
]

[m]

Duplicates

Figure 3.5: Classical EKF-SLAM algorithm with an absolute representation. Ob-

serve that the vehicle location uncertainty (extremely small ellipses) is incompatible

with the real error, especially in the top left part of the figure, where clearly, multiple

hypotheses for the same feature appear.

62 Chapter 3. Gaussian-SLAM

−30 −20 −10 0 10 20 30 40
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

[m
]

[m]

Duplicates

Figure 3.6: Robocentric Map Joining before loop closing. In this case, the vehicle

location uncertainty is consistent with the real error, as observed in the top left

part of the figure (Note that results have been transformed back to the absolute

representation).

3.6. Improving the consistency of EKF-SLAM 63

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

Updates

H
e

a
d

in
g

 U
n

ce
rt

a
in

ty
 [

d
e

g
]

Figure 3.7: Experimental vehicle heading uncertainty: EKF-SLAM algorithm (dot-

ted line), Map Joining algorithm (dash-dot), Robocentric (dashed) and Robocentric

Map Joining (solid).

observed in simulation, and now in a real experiment, the robot centered rep-
resentation surpasses these inconsistency problems, at least at the scale of
the reported experiments. Although the Robocentric mapping algorithm per-
formed consistently, the Robocentric Map Joining algorithm provided the more
efficient solution from the computational time point-of-view with an accurate
estimation of the uncertainty.

Long term outdoor mapping experiment

For large-scale outdoor testing experiments, a benchmark dataset has been
used [Guivant 01]. It had been captured using a truck (Ackerman vehicle)
driving through Victoria Park, in Sydney, Australia. On-board sensors pro-
vide 2D range scans and odometry (speed and steering). The quality of the
odometry measurements is very poor, however, the dataset includes a feature
extractor to detect cylindrical landmarks (trees) with high accuracy, but with
a significant level of spurious landmarks. The whole trajectory is about 3.5
km with several short loops and two big loops which are specially critic owing

64 Chapter 3. Gaussian-SLAM

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Features

[m
]

(a) Absolute Global Map

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Features

[m
]

(b) Robocentric Global Map

Figure 3.8: Landmarks uncertainty level at final step of the Victoria Park experiment

(σx solid, σy dotted). Robocentric representation gives lower final uncertainty levels

although is able to close the same loops (same consistency, more accuracy).

3.6. Improving the consistency of EKF-SLAM 65

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
[m

]

Features

(a) Absolute Local Maps

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

[m
]

Features

(b) Robocentric Local Maps

Figure 3.9: Landmarks uncertainty level at final step of the Victoria Park experiment

(σx solid, σy dotted). Local map sequencing approach computes higher uncertainty

levels because not all posible data association has been done, but this effect is reduced

using both robocentric and local representations

66 Chapter 3. Gaussian-SLAM

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

16

18

20
Heading Uncertainty

[d
eg

]

Updates

Figure 3.10: Heading uncertainty (1σ) using different combinations of robocentric

representation and local maps. Solid line is absolute representation and dotted line

corresponds to robocentric representation. Upper lines shows uncertainty level for

local maps based algorithms. Downwards peaks represents map-joining phases

to the low level of reliable features in these zones.

As previously commented, Joint Compatibility [Neira 01] data association
algorithm has been used. In practice, this algorithm guarantees a low number
of false positives correspondences, which can lead to filter divergence. How-
ever, the number of false negatives increases.

Figures 3.8 and 3.9 show the final uncertainty (σx, σy) of mapped land-
marks. Since the number of landmarks detected is always the same, the differ-
ence in the final number of mapped landmarks comes from failures or restric-
tions during data association step. As we can see, the number of landmarks of
the final map built using local maps is bigger, because data association during
map-joining is more delicate and, as previously addressed, Joint Compatibility
tends to be restrictive (high number of false negatives). In consequence, non-
matched observations appears as new landmarks. Furthermore, non-matched
landmarks means information loss during update. Hence, final uncertainty is
larger.

Using either a global or local framework, both absolute and robocentric

3.6. Improving the consistency of EKF-SLAM 67

Figure 3.11: Trajectory and final feature map superimposed with a satellite image

representation have similar number of landmarks. Nevertheless, robocentric
approach provides lower levels of uncertainty, but still allowing loop closure.
Ergo, higher accuracy level is obtained preserving consistence and convergence.

As commented before, a classical approach to fight EKF inconsistence is
the so called injecting stabilizing noise process [Maybeck 79], which consist in
tuning the matrix covariance increasing observation noise in order to assure a
pessimistic covariance. Usually, this process can lead to false positive data as-
sociation and inaccurate maps. However, robocentric approach could provide
high accuracy despite injected noise.

Finally, heading uncertainty evolution is shown on figure 3.10. On the one
hand, global map algorithms have lower uncertainty levels that are reached
only during map joining phase in local maps building. This validates the
results obtained during simulation experiments. On the other hand, robocen-
tric representation have similar behavior compared to absolute representation
because measurements are very accurate in this dataset.

Figure 3.11 shows the final map plus the estimated trajectory compared
with a satellite photography4.

4Courtesy of Google Earth http://earth.google.com

68 Chapter 3. Gaussian-SLAM

Figure 3.12: Propagation of a normal distribution through a nonlinear function.

The first order Taylor expansion (dotted) only uses information of the function at the

mean point to compute the linear approximation, while the UT (dashed) approaches

the function with a linear regression of several sigma points. The actual distribution

is the solid one. (Adapted from [van der Merwe 04])

3.7 Unscented Filtering

The core of unscented filtering is the so-called unscented transformation (UT)
[Julier 00]. Approximating the prior distribution by a proper discrete func-
tion provides a minimal set of samples, named sigma points, which capture the
moments of the underlying density function. The moments of the posterior
distribution are then obtained by means of weighted linear regression of eval-
uations of the nonlinear function at the selected samples points. Figure 3.12
compares the propagation of a normal distribution through a nonlinear func-
tion obtained by analytical linearization and by the unscented transformation
(i.e. statistical linearization).

The Scaled Unscented Transform (SUT) has been proposed [Julier 02,
van der Merwe 04] which generalizes the standard UT, allowing an extra de-
gree of freedom of the sigma-points. This can be used to give more importance
to modes or tails of the distribution, depending on the application. Van der
Merwe [van der Merwe 04] proved that the SUT is part of the more general
sigma point filters, which achieve similar performance results. Other sigma
point methods are the central difference filter (CDF) [Ito 00] and the divided
difference filter (DDF) [Nørgaard 00]. Improved performance can be achieved
explointing the Gaussian quadrature integration in the Gauss-Hermite filter

3.7. Unscented Filtering 69

[Ito 00]. However, the computational cost of this filter is exponential, which
becomes intractable for SLAM. For an N -dimensional state vector, the sym-
metric set of 2N + 1 sigma-points that characterize the SUT is given by

X (0) = x̂

X (j) = x̂ +
(√

(N + λ)P
)

j
, j = 1, . . . , N

X (j) = x̂ −
(√

(N + λ)P
)

j
, j = N + 1, . . . , 2N

(3.28)

where x̂ and P are, respectively, the mean and covariance of the sampled
distribution. For efficient computation of the matrix square root, a Cholesky
decomposition P = SST is used. The parameter λ controls the scaling of the
sigma-points. If we use the SUT, λ = α2(N + κ) −N . Then, for a Gaussian
prior N + κ = 3 [Julier 02] and therefore, the numerical behavior of the SUT
is the same as the Central Difference Filter with a step h =

√
3 and the

Gauss-Hermite Filter with 3 points [Ito 00]. For a complete explanation of
the parameters of the SUT refer to [van der Merwe 04].

Let xt−1 be the state vector at time t − 1, and let {X (0)
t−1, . . . ,X

(2N)
t−1 } be

the set of sigma-points computed from its distribution. Also, let the state
evolution be characterized by the nonlinear function

xt = ft(xt−1) (3.29)

Hence, the set of sigma-points are transformed by 2N + 1 evaluations of the
nonlinear function at the sigma-points:

X (j)
t = ft(X (j)

t−1), j = 0, . . . , 2N (3.30)

Then, the first two moments of the density function of xt are computed by a
weighted linear regression of the transformed sigma-points

x̂t =
2N∑

j=0

ω(j)
m X (j)

k (3.31)

Pt =

2N∑

j=0

ω(j)
c (X (j)

t − x̂t)(X (j)
t − x̂k)

T (3.32)

70 Chapter 3. Gaussian-SLAM

where the weights are given by

ω(0)
c =

λ

N + λ
+ (1 − α2 + β)

ω(0)
m =

λ

N + λ

ω(j)
m = ω(j)

c =
1

2(N + λ)
, j = 1, . . . , 2N

(3.33)

Note that the weights for the computation of the mean (m) and the covariance
(c) are different in the 0-th component to compensate for scaling.

3.7.1 Unscented SLAM

Let xB
t−1 ∼ N (x̂B

t−1,P
B
t−1) be the stochastic map available at time t − 1. Let

x
Rt−1

Rt
∼ N (x̂

Rt−1

Rt
,P

Rt−1

Rt
) be the vehicle motion from time step t − 1 to time

step t as estimated by odometry, and finally let E = {E1, . . . , Em} be the set
of observations gathered by on-board sensors at time t, with a joint-Gaussian
distribution with covariance matrix PRt

Et
. Assuming independence between the

prior state estimation, the displacement and the set of available measurements,
we define an augmented stochastic state vector with mean

x̂B
a,t−1 =

x̂B
Rt−1

x̂B
Ft−1

x̂Rt

Et

x̂
Rt−1

Rt

(3.34)

and a block-diagonal covariance matrix

PB
a,t−1 =

PB
Rt−1

PB
RFt−1

0 0

PB
FRt−1

PB
Ft−1

0 0

0 0 PRt

Et
0

0 0 0 P
Rt−1

Rt

(3.35)

By using the deterministic sampling algorithm described in section 3.7, we
obtain a small-size set of sigma-points which accurately represents the first

two moments of the previous distribution: {X (0)
a,t−1, . . . ,X

(2N)
a,t−1}.

The set of sigma-points at time t−1 is propagated forward in time through
the nonlinear state equation

xB
a,t|t−1 = ft(x

B
a,t−1) (3.36)

3.7. Unscented Filtering 71

with

xB
Rt

= xB
Rt−1

⊕ x
Rt−1

Rt

xB
Ft

= xB
Ft−1

xB
E1,t

= xB
Rt−1

⊕ x
Rt−1

Rt
⊕ xRt

E1,t

...

xB
Em,t

= xB
Rt−1

⊕ x
Rt−1

Rt
⊕ xRt

Em,t

(3.37)

where ⊕ represents the composition of location vectors (appendix A). The
predicted mean at time t of the augmented state vector and its estimated
error covariance matrix are then computed from a linear weighted regression

of the transformed sigma-points {X (0)
a,t|t−1, . . . ,X

(2N)
a,t|t−1}:

x̂B
a,t|t−1 =

2N∑

j=0

ω(j)
m X (j)

a,t|t−1 (3.38)

and,

PB
a,t|t−1 =

2N∑

j=0

ω(j)
c (X (j)

a,t|t−1 − x̂B
a,t|t−1)(X

(j)
a,t|t−1 − x̂B

a,t|t−1)
T (3.39)

Data association provides the observation yt statistically compatible and
related to the augmented state vector by a nonlinear function ht:

yt = ht(x
B
a,t|t−1) (3.40)

Hence, the update of the estimated mean and estimated error covariance at
time t follows from:

x̂B
a,t = x̂B

a,t|t−1 + PxνS
−1
t (yt − ŷt) (3.41)

PB
a,t = PB

a,t|t−1 −PxνS
−1
t Pνx (3.42)

where

ŷt =

2N∑

j=0

ω(j)
m Y(j)

t (3.43)

with
Y(j)

t = ht(X (j)
a,t|t−1) (3.44)

72 Chapter 3. Gaussian-SLAM

0 50 100
−2

−1

0

1

2

X
 [m

]

0 50 100

−2

0

2

Y
 [m

]

0 50 100

−5

0

5

Updates

T
he

ta
 [d

eg
]

0 50 100
−2

−1

0

1

2

0 50 100

−2

0

2

0 50 100

−5

0

5

Updates

(a) (b)

Figure 3.13: Estimated errors and 2σ bounds for the (x, y, θ) components of the

vehicle estimated location: (a) EKF-based SLAM and (b) Unscented SLAM.

and

St =

2N∑

j=0

ω(j)
c (Y(j)

t − ŷt)(Y(j)
t − ŷt)

T (3.45)

Pxν =
2N∑

j=0

ω(j)
c (X (j)

a,t|t−1
− x̂B

a,t|t−1)(Y
(j)
t − ŷt)

T (3.46)

As clearly stated in the previous equations, the expectations of the stochas-
tic vectors involved in the Bayesian solution to the non-linear SLAM problem,
given by equations (3.3)-(3.7) are approximated by weighted evaluations of
the model and measurement functions at the deterministically selected sigma-
points.

3.7.2 Experiments

This section presents both simulation and real experimental results to demon-
strate the applicability of the unscented filter to the SLAM problem.

3.7. Unscented Filtering 73

0 20 40 60 80 100 120 140
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Updates

C
on

si
st

en
cy

 r
at

io

Figure 3.14: Consistency ratio for EKF-based SLAM (dashed) and Unscented SLAM

(solid) for the 120 m simulated loop trajectory.

Simulation Results

A first experiment has been designed to isolate the effects of linearization
errors on the consistency of the SLAM solution, based on our simulated en-
vironment. Gaussian-distributed synthetic errors were generated for both the
sensor measurements and for the odometry model of the vehicle. Additionally,
known data association is considered.

The evolution of the errors in the components of the vehicle estimated
location are plotted in figure 3.13. In general, the unscented filter provides
lower estimated errors than the EKF-based approach with slightly more tight
uncertainty bounds, which would result in lower ambiguity of data association
in a real application. Figure 3.14 plots the consistency ratio, 1−NEES/χ2

r,1−α,
for both the EKF-based SLAM and the Unscented SLAM. Clearly, as previ-
ously reported, the EKF-based approach becomes inconsistent after only a few
update steps. Nevertheless, the Unscented filter remains consistent (up to 5%
statistical error) during the complete vehicle trajectory. Furthermore, figure
3.15 illustrates that even after a 400-m loop trajectory, the Unscented SLAM
remains consistent.

74 Chapter 3. Gaussian-SLAM

0 50 100 150 200 250 300 350 400 450
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Updates

Figure 3.15: Consistency ratio for Unscented SLAM in a 400-m long loop. At the

end, the estimator remains consistent, so the loop could be closed with simple data

association strategies.

Long term outdoor mapping experiment

We have also tested the Unscented SLAM with the large outdoor dataset
[Guivant 01].

Figure 3.16 describes the Unscented SLAM solution, with the complete
vehicle trajectory and the detected environmental features with the estimated
location uncertainty. Our approach keeps a high level of accuracy during
all the path enough to do the data association using only a simple nearest
neighbor algorithm. For example, the heading of the robot is bounded by a
standard deviation of 0.5 deg during all the trajectory, except in a reduced
number of steps. Furthermore, the heading deviation is lower than 0.25 deg
most of time (figure 3.17).

The evolution of the consistency ratio 1−NIS/χ2
r,1−α along the complete

trajectory is presented in figure 3.18. The number of inconsistent updates,
from the NIS view-point, is roughly 7%, sufficiently close to the theoretical
5%. Furthermore, some of these inconsistent steps are produced by spurious
observations. So, we can conclude that the Unscented SLAM is statistically

3.8. Conclusion 75

−100 −50 0 50 100 150

−50

0

50

100

150

200

250

[m
]

[m]

Figure 3.16: Outdoor SLAM: Final 2D-point feature based map and vehicle esti-

mated trajectory. Observe that the given trajectory has not been corrected backwards

in time.

consistent in a 3.5 km outdoor trajectory.

3.8 Conclusion

In this chapter we have shown that in the standard extended Kalman Filter
approach to SLAM, linearization errors produce inconsistency problems that
show up long before computational problems arise. We follow a precise defi-
nition of filter consistency that considers both the accuracy of the estimation
and of its covariances.

We have proposed the Robocentric Map Joining algorithm which improves
consistency of the mapping scheme by: (1) bounding the uncertainty along
the exploration trajectory using a sequence of local maps, and (2) improving
linearization of the model equations due to the reduced level of uncertainty
provided by the robot centered representation. As described both in simulation

76 Chapter 3. Gaussian-SLAM

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6

Updates

[d
eg

]

Figure 3.17: 1σ bound for the estimated heading error of the vehicle along the

trajectory as computed by the Unscented filter. The maximum standard deviation in

the complete trajectory (around 3.5km) is lower than 0.5deg

0 1000 2000 3000 4000 5000 6000 7000 8000
−40

−35

−30

−25

−20

−15

−10

−5

0

5

Updates

Figure 3.18: Consistency ratio of complete evolution of the state vector of the

Unscented SLAM. Only the 7% of the poses are inconsistent which is similar to the

significant level (5%)

3.8. Conclusion 77

and in real mixed indoor/outdoor experiments, the combination of local map
joining and robocentric mapping allows to apply the EKF-based solution to
SLAM at a larger scale.

We have also presented the Unscented SLAM, which represents a feasible
framework to the solution of the simultaneous localization and mapping prob-
lem. Accuracy of state estimation has been increased (lower errors, tighter un-
certainty bounds) over the classical EKF-based approach. We emphasized the
improvement in the consistency of the sequential algorithm achieved by avoid-
ing analytical linearization of the model equations. A normalized innovation-
based consistency checking has been presented to support the applicability of
the approach to large-scale missions.

It is however likely that nonlinearity problems will arise again as larger
environments are tackled. We feel that to overcome these limitations it is im-
portant to investigate the use of alternative formulations to SLAM, nonlinear
and non-Gaussian methods. Making these methods computationally efficient
to be used in real time is the next important challenge in SLAM.

78 Chapter 3. Gaussian-SLAM

Chapter 4

Filtering and learning in
Sequential Monte Carlo
SLAM

4.1 Introduction

We have seen in the previous chapter that the EKF linearization can lead
to filter divergence. In addition, we have proposed techniques to reduce the
linearization effect, using higher order approximations with unscented trans-
formations and geometric manipulations. Though these techniques result in
some improvement, the inherent step by step approximations remains, causing
accumulation of errors and irreversible filter divergence.

The introduction of sequential Monte Carlo (SMC) methods, also called,
particle filters (PFs) gave researchers the power and flexibility to handle
nonlinearity and non-Gaussian distributions routinely [Fox 01]. Moreover,
it enabled researchers to exploit conditional independence, using the Rao-
Blackwellized particle filtering (RBPF) variance reduction technique, to ob-
tain more efficient Monte Carlo schemes. RBPFs were applied to dynamic
maps [Doucet 00] and subsequently to static maps with the celebrated Fast-
SLAM algorithm [Montemerlo 03b]. Also, RBPF presents extra advantages
in terms of computational complexity, joint feature-based and grid mapping
[Sim 06, Wurm 07] and ambiguous data association [Montemerlo 03a].

The application of RBPF to dynamic maps is only sensible inasmuch as one
has a good model to describe the evolution of the dynamic map. Recently, the
application of RBPF to static maps has come into question. It has become

79

80 Chapter 4. Filtering and learning in Sequential Monte Carlo SLAM

popular knowledge that the approach of FastSLAM in robotics can diverge
[Bailey 06b]. In loose terms, learning static variables (the map) by condition-
ing on increasing histories of the state variables results in an accumulation
of Monte Carlo errors and an explosion of variance. Heuristic approaches to
ameliorate the situation [Stachniss 05b, Elinas 06] have been proposed, but
these do no solve the fundamental problem at hand. We note that the prob-
lem of PF divergence resulting from learning fixed variables by conditioning
on increasing paths was already described in as early as 1999 [Andrieu 99].

This lack of statistical consistency of the most popular SLAM methods has
naturally created some justified concern. In this chapter, we analize the Fast-
SLAM algorithm and similar approaches. Then we present Marginal-SLAM,
a novel approach with two key ingredients to avoid limitations of previous
algorithms.

The first ingredient is to consider SLAM as a robot localization problem
with unknown observation model parameters. Thus, the core is to treat static
maps as parameters, which by necessity are learned using maximum likelihood
(ML) or maximum a posteriori (MAP) inference1. The idea of treating maps
as parameters is not new. It has been central to the incremental ML method
[Thrun 93]. However, this method resorts to an ML estimate of the state and
hence fails to manage the uncertainty in the robot state properly, as elaborated
in [Thrun 02]. A variation based on learning the distribution of the robot
states and using an ML estimator of the map as a function of the existing
and growing state trajectories was proposed in [Thrun 01]. This approach
unfortunately suffers from the same consistency problems as FastSLAM.

For full SLAM, various EM2 approaches using forward-backward state
smoothing and map estimation in the M step have also been proposed; see
[Thrun 02] for a survey. However, this approach only applies when learning
the map off-line. Moreover, it is only very recently that particle smoothing has
become feasible [Klaas 06]. Although improved smoothing techniques such as
the two-filter smoother, which do better than forward-backward smoothers in
the PF context, are very inefficient for SLAM. Some incremental ML methods
have appeared in the literature but the incremental stage introduces some ex-
tra approximations that again leads to increasing errors [Kaess 07, Olson 07,
Frese 05].

Artificial dynamic models, MCMC3 moves, sufficient statistics computa-

1The reason is because there is no full-Bayesian algorithm for joint parameter and state
estimation to compute the joint posterior distribution for general models.

2Expectation-Maximization
3Markov Chain Monte Carlo

4.2. Introduction to Sequential Monte Carlo 81

tion, fixed lag smoothing or block sampling have also been suggested to im-
prove the consistency of joint parameter and state estimation using particles
[Olsson 08, Beevers 07, Fearnhead 02, Liu 01, Storvik 02, Doucet 06]. How-
ever, similarly to improved linearization techniques in Gaussian SLAM, the
accumulated error remains, although the performance in some applications is
better. For SLAM, where the observability of the system is reduced to a small
set of features, artificial dynamics are specially bad, because most of the map
is forgotten before revisiting.

The second key ingredient in Marginal-SLAM is being able to compute
the filter derivative for the recursive ML. Furthermore, the estimation of the
filter derivative has to overcome the curse of dimensionality that appears
by conditioning on increasing trajectories. It has been proved that filter
derivatives also presents exponential forgetting when the system is ergodic,
for example, if it is dynamic [Tadic 05]. However, this has only become pos-
sible in practice very recently following new advances in particle simulation
[Klaas 05, Poyadjis 05a, Coquelin 07], which will be presented in section 4.3.2.
In contrast to other approaches that try to learn the parameters as a function
of the full trayectory, we use the marginal particle filter (MPF), which actually
provides samples from the filtering distribution p (xt|y1:t), instead of the full
posterior distribution p (x1:t|y1:t).

Static parameter estimation in nonlinear, non-Gaussian dynamic models
is a formidable challenge, so it comes as no surprise that probabilistic SLAM
has proved to be so demanding. We remark that we adopt recursive ML esti-
mates of the map because the problem of doing efficient full-Bayesian recursive
parameter estimation has not yet been solved.

Our aim in this chapter is to compute sequentially in time the filtering
distribution p (xt|y1:t) and point estimates of the map θ. We use θ to describe
the map only. However, θ could be used to include other parameters in the
transition and measurement models, as well as, to include data association
variables [Thrun 02]. For simplicity of presentation, we will assume that the
associations are given.

4.2 Introduction to Sequential Monte Carlo

Let {x(i)
t }N

i=1 be a set of samples (or particles) from p(xt|y1:t). Given those
samples, we can approximate the filtering distribution with the Monte Carlo

82 Chapter 4. Filtering and learning in Sequential Monte Carlo SLAM

estimate:

p̂(dxt|y1:t) =
1

N

N∑

i=1

δ
x

(i)
t

(dxt)

where δ
x

(i)
t

(dxt) denotes the delta Dirac function. Following the perfect Monte

Carlo theorem, this estimate converges almost surely to the true expectation
as N goes to infinity [Doucet 01]. Unfortunately, one cannot easily sample
from the marginal distribution p(xt|y1:t) directly. Instead, we draw particles
from p(x1:t|y1:t) and samples x1:t−1 are ignored. This is a valid way to draw
samples from a marginal distribution and is at the core of most Monte Carlo
statistical methods. But the problem is even worse. The unknown normalizing
constant, that is, the innovation defined in section 1.3, precludes us from sam-
pling directly from the posterior. Instead, we draw samples from a proposal
distribution q and weight the particles according to the following importance
ratio:

wt(x1:t) =
p(x1:t|y1:t)

q(x1:t|y1:t)

This is called the importance sampling algorithm. But, when doing filtering,
there is one extra limitation, data comes sequentially, thus we need to compute
the distribution in the same way. For instance, the proposal distribution is
constructed sequentially:

q(x1:t|y1:t) = q(x1:t−1|y1:t−1)q(xt|yt,xt−1)

and, hence, given a set of N particles {x(i)
1:t−1}N

i=1, we obtain a set of particles

{x(i)
1:t}N

i=1 by sampling from q(xt|yt,x
(i)
t−1) and keeping the old samples:

{
x

(i)
t

}N

i=1
∼ q

(
xt|yt,x

(i)
t−1

)

{
x

(i)
1:t

}N

i=1
=
{
x

(i)
t ,x

(i)
1:t−1

}N

i=1

In the same way, the importance weights can be updated recursively in time:

wt(x1:t) =
p(x1:t|y1:t)

p(x1:t−1|y1:t−1)q(xt|yt,xt−1)
wt−1(x1:t−1) (4.1)

In conclusion, sequential Monte Carlo methods takes a set of N particles

{x(i)
1:t−1}N

i=1, to obtain a set of particles {x(i)
1:t}N

i=1 by sampling from q(xt|yt,x
(i)
t−1)

and applying the weights of equation (4.1).

4.2. Introduction to Sequential Monte Carlo 83

The familiar particle filtering equations for Markov models are obtained
by remarking that:

p(x1:t|y1:t) ∝ p (x1:t,y1:t) =

t∏

k=1

p(yk|xk)p(xk|xk−1),

given which, equation (4.1) becomes:

w̃
(i)
t ∝ p(yt|x(i)

t)p(x
(i)
t |x(i)

t−1)

q(x
(i)
t |yt,x

(i)
t−1)

w̃
(i)
t−1

This iterative scheme produces a weighted measure {x(i)
1:t, w

(i)
t }N

i=1, where w
(i)
t =

w̃
(i)
t /

∑
j w̃

(j)
t , and is known as Sequential Importance Sampling (SIS). This is

the procedure in common use by practitioners. It can be deceptive: although
only the state xt is being updated every round, the algorithm is nonetheless
importance sampling in the growing joint path space X t.

It has been proved [Doucet 98] that the variance of the importance weights
in SIS increases over time. This causes most particles to have very small
probability. A common strategy to solve this degeneracy, consist in using
a resampling step after updating the weights to replicate samples with high
probability and prune those with negligible weight [Doucet 01]. This is called
as the bootstrap filter of Sequential Importance Resampling (SIR).

The Curse of Dimensionality in Particle Filters for SLAM

The following theorems hold for any bounded Borel measurable function in a
n-dimensional Borel space, i.e. f ∈ B(Rn)‖f‖ = supz∈Rn f(z), provided that
the Monte Carlo estimator is computed based on the bootstrap filter algorithm
[Crisan 02]. For robotics, every continuous probability distribution, defined on
a Euclidean space, is a especial case of the Borel measurable function.

Theorem 1. [Crisan 02] For all t ≥ 0, there exists ct independent of N such
that for any ft ∈ B ((Rnx))t+1

E

(

1

N

N∑

i=1

ft

(
x

(i)
1:t

)
−
∫
ft (x1:t) p (x1:t|y1:t)

)2

 ≤ ct

‖ft‖2

N

We can see that the error bound is independent of the dimension of the
state space nx. Thus, Monte Carlo methods allows to overcome the curse of

84 Chapter 4. Filtering and learning in Sequential Monte Carlo SLAM

dimensionality. However, without any additional assumption, the sequence ct
increases over time. Formally, the resampling step should be done along the

full path {x(i)
1:t, w

(i)
1:t}N

i=1, increasing the number of particles as time t increases
to maintain the desired level of accuracy. In practice, as the number of particles
increases exponentially, the system becomes intractable.

For dynamic systems, the previous constraint can be relaxed provided that
the dynamic model is ergodic4 and that we are interesting only on the filtering
distribution.

Theorem 2. [Crisan 02] For all t ≥ 0, there exists a constant c independent
of N such that for any ft ∈ B ((Rnx))t+1

E

(

1

N

N∑

i=1

ft

(
x

(i)
t

)
−
∫
ft (xt) p (xt|y1:t)

)2

 ≤ c

‖ft‖2

N

This is sometimes referred to as the exponential forgeting property of dy-
namic systems. Therefore, since dynamic systems forget the past exponen-
tially fast, we can reduce the number of particles exponentially, compensating
the previous exponential increase. Thus, several authors carry out resampling

over the marginal space {x(i)
t , w

(i)
t }N

i=1 with a fixed number of particles. In
that way, dynamic systems compensates the exponential complexity due to
the temporal dimensions added. This would be fine if, for example, we were
interested in tracking only dynamic elements [Doucet 00].

Static parameter estimation and model selection problems do not necessar-
ily exhibit an exponential forgetting behavior. In the case where a (random)
fixed parameter is part of the state, the “dynamic” model is not ergodic, and
it is thus expected that whatever the particle filtering one uses, one cannot
obtain uniform convergence results. In practice, it has been observed that as
time increases, such algorithms indeed diverge [Andrieu 99, Crisan 02]. Intu-
itively, estimates of static maps features depend on all the observations made
from different robot locations. Thus, it depends on the whole robot trajectory.
Resampling these trajectories in the joint path space using a fixed number of
particles is guaranteed to deplete the past in finite time; since there is only a
limited number of trajectories. Alternatively, resampling from the marginal
space still leaves us with an accumulation of Monte Carlo errors over time.
The estimate of the map will depend on this increasing sequence of errors,

4Intuitively, we can see an ergodic system as any dynamic system that keeps on moving
or changing. That is, for every time step, the system state is completely different from the
previous state, xt ∩ xt−1 = ∅.

4.2. Introduction to Sequential Monte Carlo 85

that are never forgotten. Some implementations have introduced artificial dy-
namics or Markov chain Monte Carlo (MCMC) rejuvenation steps to reduce
the severity of the problem [Liu 01]. In the context of SLAM, some heuris-
tics has been proposed to exploit the structural properties of the problem
[Stachniss 05b, Eliazar 05]. But these approaches do not overcome the prob-
lem.

Furthermore, to ensure a given precision on the mean square error, the
number of particles N also depends on ct or c, which may depend on nx. How-
ever, as seen in previous sections, SLAM problem requires sampling in an ex-
ponentially increasing state-space nx which becomes infeasible for a tractable
number of particles. Intuitively, the bootstrap filter overcomes the curse of
dimensionality in the sense that convergency is guaranteed for no matter how
many dimensions include the state-space. As the number of dimensions in-
creases, the required number of particles does not grows exponentially fast.
However, to maintain a certain level of accuracy as the state-space increses,
the required number of particles still grows. Therefore, many high dimensional
problems may become intractable for real-time applications.

But there are methods to reduce the dimensionality of the problem. Mur-
phy [Murphy 99] proposed a technique for the problem of mapping dynamic en-
vironments where samples are drawn only from the robot configuration space,
which is a lower, and also fixed, dimensional state-space. This method, named
Rao-Blackwellized particle filtering [Doucet 00] is based on the following de-
composition of the joint posterior:

p(θ,x1:t|y1:t) = p(θ|x1:t,y1:t)p(x1:t|y1:t)

Consequently, given the state path x1:t, and assuming that the distribution
p(θ|x1:t,y1:t) is Gaussian and the observation model is linear, then we can
solve the map parameters θ analytically, for instance, using RLS5. This leaves
us with only having to carry out particle filtering to compute the posterior
distribution of the robot state p(x1:t|y1:t), which has a spatially bounded di-
mension.

This factorization is even better for SLAM, because it can be shown that
every map feature is independent given the trajectory of the robot. That is, if
we condition the features on the robot trajectory, every feature can be updated

5In the literature, this is usually referred to as EKF due to the analogy with Gaussian
SLAM, but it should be noted that we are not doing filtering in the map, because it is purely
static. Other authors may be confused with the original derivation of the RLS algorithm as
a frequentist approach. But RLS updates both the posterior mean and covariance, used for
the step size. Then, the belief is completely defined.

86 Chapter 4. Filtering and learning in Sequential Monte Carlo SLAM

separately:

p(θ,x1:t|y1:t) = p(θ|x1:t,y1:t)p(x1:t|y1:t) =
M∏

j=1

p(θj|x1:t,y1:t)p(x1:t|y1:t)

Even if the parameters distribution is non-Gaussian or nonlinear, we can use
other suboptimal methods to find an analytical approximation. In constrast,
the conditional independency property holds for any SLAM problem with
onboard sensors.

Nevertheless, the static parameters are still not an ergodic systems but they
are conditionally based on a sampled distribution. Therefore, the algorithm
may diverge. In conclusion, whether we resample or not, in full state or Rao-
Blackwellized particle filters, learning the static map as a function of a growing
path in Monte Carlo simulation is a bad idea.

4.3 Parameter learning for SLAM

Then, if we want to include fixed parameters in the estimation algorithm,
we have to learn it as proper parameters. Up to now, no full Bayesian solu-
tion has been found to the joint problem of filtering and on-line parameter
learning. However, there are approximations in the statistical literature that
combine Bayesian estimates with frequentist point-based optimization. The
most extended one being the maximum likelihood (or maximum a posteriory)
stochastic approximation.

4.3.1 Stochastic Approximation for SLAM

One of the most general techniques for parameter learning is stochastic ap-
proximation [Spall 03], which can be formulated as

θt = θt−1 + γtVt(θt,x1:t) (4.2)

where {xt}t≥1 is an stochastic process with information about the parameters,
γt is a discount factor6, and Vt(θt, ·) being a mapping from the joint space to the
parameter space. In the adaptive control and signal processing literature, the
{xt}t≥1 process is sometimes addressed as the observation process. However,
in this context, the name can be deceptive since it is, in fact, the latent process

6To guarantee convergency, the discount factor should be defined such us (γt → 0,
P

γt =
+∞), although for practical reasons, that requirements can be relaxed. See [Spall 03] for a
complete description about this parameter.

4.3. Parameter learning for SLAM 87

{xt}t≥1 and not the actual measurement process {yt}t≥1. In SLAM, the latent
process is the robot trajectory and the parameters are the elements of the map.
The idea is that the estimate of the state contains all the information required
to update the parameters.

It is important to note that the temporal subindex in the parameters es-
timate θt does not mean an actual evolution of the true parameters θ

⋆ but
the iterative optimization process. However, the t subindex in the iteration
matches the temporal evolution of the state, because recursive stochastic ap-
proximation only updates the parameters when new information is available.
That is, the estimate of the parameter changes every time, but the actual
parameter remains fixed.

In our case, provided that we can estimate the latent process {xt}t≥1 using
some algorithm (e.g.: the Monte Carlo method that we will explain in subse-
quent sections), then we can access the set of pairs {x1,y1}, {x2,y2}, . . . , {xt,yt}
and compute the parameters using maximum likelihood of those pairs.

We follow the approach in [LeGland 97] for recursive maximum likelihood
(ML) in state space models. First, we consider the set of log-likelihood7 func-
tions

Lt(θ, ·) =
1

t+ 1
{log p θ(y1:t)}t≥0

then, the true parameters θ
⋆ are the global maximum of L(θ, ·), which is the

limit of the average log-likelihood:

L(θ, ·) = lim
t→∞

Lt(θ, ·) (4.3)

= lim
t→∞

1

t+ 1
{log p θ(y1:t)}t≥0 (4.4)

In general, the function L(θ, ·) does not have an analytical expression and
we do not have access to it. However, we can still find the parameters θ

⋆,
provided that

log p θ(y1:t) =
t∑

k=1

log p θ(yk|y1:k)

which represent the objetive function as a set of accessible functions p θ(yt|y1:t−1)
that converge to L(θ, ·). As introduced in previous sections, the expresion
p θ(yt|y1:t−1) is called the innovation and can be written as

p θ(yt|y1:t−1) =

∫ ∫
p θ(yt|xt)p(xt|xt−1)p θ(xt−1|y1:t−1)dxt−1:t (4.5)

7Since we are interesting in maximize the likelihood function, it is equivalent to maximize
the log-likelihood. However, the later is frequently used because is analytically easier.

88 Chapter 4. Filtering and learning in Sequential Monte Carlo SLAM

which can be obtained from the filtering process. The subindex θ of certain
probabilities represents that those probabilies are computed as a function of
the parameters, but we are doing filtering on the state space which includes
only the robot locations. Although p θ(xt|y1:t−1) = p(xt, θ|y1:t−1), we stress
the idea that the map is not part of the filtering process, but it is computed
separately.

Once we have defined the optimization process in terms of accesible func-
tions, the parameters θ can be recursively approximated using only the current
marginal innovation p θ(yt|y1:t−1). The simplest way to implement this opti-
mization in a stochastic approximation framework is to implement a simple
gradient ascent method

θt = θt−1 + γt∇θ log p θ(yt|y1:t−1) (4.6)

It can be proved that, under certain conditions, θt converges to true parameters
θ

⋆. The convergency of the algorithm will be explained in section 4.5.1. A
detailed analysis is presented in [Tadic 05].

But we can also implement an adaptive stochastic approximation method,
which provides a Newton-type method based on a recursive calculation of the
sample mean of the per-iteration Hessian Ht = ∇2

θ log p θ(yt|y1:t−1). That
is, we have two parallel recursions: one for θ and one for the Hessian of the
log-likelihood H̄ which are

θt = θt−1 + γtψ(H̄t)
−1∇θ log p θ(yt|y1:t−1) (4.7)

H̄t =
k

1 + k
H̄t−1 +

1

1 + k
(Ht) (4.8)

where γt is a new sequence of learning coeficients and ψ(·) is a mapping to
the set of negative definite matrices, which guarantees that the matrix is in-
vertible. This function, which is sometimes called regularizer is just necessary
in practice, where the approximations of the innovation and the per-iteration
Hessian may incurr in numerical errors.

The advantage of using stochastic approximation (SA) methods against
other Maximum Likelihood methods is that, SA operates under weaker con-
ditions. In particular, SA does not require assumptions about the filtering or
the innovation distribution.

Example 1 (Relationship with RLS and KF). For a linear observation model

yt = H

[
xt

θt

]
+ wt

4.3. Parameter learning for SLAM 89

the innovation function can be computed analytically

∇θ log p θ(yt|y1:t−1) = HT

{
H

[
xt

θt

]
− yt

}

Then we can apply the stochastic approximation algorithm directly as a gradi-
ent ascent optimization:

θt = θt−1 + γtH
T

{
H

[
xt

θt

]
− yt

}

However, if the underlying distributions are Gaussian, i.e. the state and pa-
rameters follow a distribution

[
xt

θt

]
∼ N

([
x̂t

θ̂t

]
,Pt

)

where x̂t and θ̂t are the mean of the distribution w.r.t. the state and the
parameters respectively and Pt is the joint state and parameters covariance at
time t. Then, the cost function becomes quadratic and the optimal step size
comes from the Newton-Rapson method which relies on the Hessian of the cost
function. This is the idea behind RLS estimate:

θt = θt−1 + H−1
t HT

{
H

[
xt

θt

]
− yt

}
(4.9)

≃ θt−1 + PtH
T

{
H

[
xt

θt

]
− yt

}
(4.10)

The discrepancy between Newton-Rapson, equation (4.9), and RLS, equation
(4.10), is due to the assumption that the prior distribution is noninformative
compared to the posterior P0 ≫ Pt and the assumption that the current esti-
mate θt is the optimal solution to the current cost function Lt(θ, ·) [Spall 03].

We have described earlier that the Kalman filter for parameter estimation is
equivalent to RLS for parameter learning. Also, as stated before, the frequentist
and Bayesian approach for optimal parameter learning assuming Gaussian
distributions is equivalent. Therefore, RLS and KF for parameter estimation
are equivalent to the stochastic approximation for linear-Gaussian systems with
quasi-optimal Newton-type steps:

θt = θt−1 + Kt

{
H

[
xt

θt

]
− yt

}

90 Chapter 4. Filtering and learning in Sequential Monte Carlo SLAM

where Kt is the Kalman filter gain.

Nevertheless, the innovation for general nonlinear systems, and also in
SLAM, is intractable. Therefore, we need to find a suitable numerical approx-
imation of the gradient and hessian of the log-likelihood, ∇θ log p̂ θ(yt|y1:t−1)
and ∇2

θ log p̂ θ(yt|y1:t−1) respectively. Thus, the only remaining question is
how to compute the gradient of the innovation distribution using Monte Carlo
methods. But for the time being, we only know how to use Monte Carlo in
a filtering scheme. The question is: Can we obtain the gradient innovation
function as a function of the filtering distribution p θ(xt|y1:t)?

First of all, to simplify the exposition later on, we introduce the following
notation [Poyadjis 05a]:

p θ(xt|y1:t) ,
ξ θ(xt,y1:t)∫
ξ θ(xt,y1:t)dxt

(4.11)

where ξ represents the unnormalized filtering distribution. Thus,

ξ θ(xt,y1:t) = p θ(yt|xt)p θ(xt|y1:t−1) (4.12)

= p θ(yt|xt)

∫
p(xt|xt−1)p θ(xt−1|y1:t−1)dxt−1 (4.13)

which is related to the innovation function p θ(yt|y1:t−1) =
∫
ξ θ(xt,y1:t)dxt.

Using expansions of the derivatives of logs8, the gradient of ξ θ(., .) with respect
to the map parameters θ is

∇θξ θ(xt,y1:t) = p θ(yt|xt)∇θ log p θ(yt|xt)

∫
p(xt|xt−1)p θ(xt−1|y1:t−1)dxt−1

+ p θ(yt|xt)

∫
p(xt|xt−1)∇θp θ(xt−1|y1:t−1)dxt−1

which is equivalent to

∇θξ θ(xt,y1:t) = ξ θ(xt,y1:t)∇θ log p θ(yt|xt) (4.14)

+ p θ(yt|xt)

∫
p(xt|xt−1)∇θp θ(xt−1|y1:t−1)dxt−1 (4.15)

These equations can be updated recursively knowing that the derivative of
the previous filtering distribution ∇θp θ(xt−1|y1:t−1) can be rewriten as a func-
tion of the previous unnormalized functions. Applying derivatives to equation

8For maximum likelihood, it is very common to use the score function, which is the partial
derivative, with respect to some parameters θ, of the logarithm of the likelihood function.
Following the chain rule ∇θ log p θ(yt|xt) = ∇θp θ(yt|xt)/p θ(yt|xt).

4.3. Parameter learning for SLAM 91

(4.11), we have

∇θp θ(xt|y1:t) =
∇θξ θ(xt,y1:t)∫
ξ θ(xt,y1:t)dxt

− p θ(xt|y1:t)

∫
∇θξ θ(xt,y1:t)dxt∫
ξ θ(xt,y1:t)dxt

. (4.16)

Finally, we can manipulate the score of the innovation function

∇θ log p θ(yt|y1:t−1) =
∇θp θ(yt|y1:t−1)

p θ(yt|y1:t−1)
=

∫
∇θξ θ(xt,y1:t)dxt∫
ξ θ(xt,y1:t)dxt

(4.17)

which can be recursively computed using equations (4.13) and (4.15).
In the next section, we are going to see how to approximate these functions

and their gradients using Monte Carlo methods.

4.3.2 Monte Carlo Implementation

The score of the innovation function from equation (4.17) can be expresed as a
function of the unnormalized filtering distribution ξ θ(xt,y1:t). Thus, we need
to draw samples from the marginal space xt. However, classical Monte Carlo
methods generates samples on the joint path space x1:t. This technique will
fail, and more advanced Monte Carlo methods are needed.

The Joint Path Space Approach

As commented before, the basic Sequential Monte Carlo algorithm assumes
that the system is ergodic and consequently, it can be approximated with a fi-
nite set of particles using a resampling step (SIR) after updating the weights to
replicate samples with high probability and prune those with negligible weight
[Doucet 01]. Formally, the resampling step should be done along the full path

{x(i)
1:t, w

(i)
1:t}N

i=1. Since dynamic systems forget the past exponentially fast, sev-

eral authors carry out resampling over the marginal space {x(i)
t , w

(i)
t }N

i=1. This
would be fine if, for example, we were interested in tracking dynamic maps.

The same degeneracy problem arises if we try to obtain estimates of the

filter derivative ∇θp θ(xt|y1:t), or the unnormalized distribution ∇̂θξ θ(xt,y1:t),
for recursive (online) stochastic approximation. To see this, let ∇θp θ(x1:t|y1:t)
denote the gradient vector of the path posterior with respect to the map, which
can be rewritten as:

∇θp θ(x1:t|y1:t) =
∇θp θ(x1:t|y1:t)

p θ(x1:t|y1:t)
p θ(x1:t|y1:t)

92 Chapter 4. Filtering and learning in Sequential Monte Carlo SLAM

and, consequently the filter derivative, necessary for online map learning, is
given by:

∇θp θ(xt|y1:t) =

∫

X t−1

∇θp θ(x1:t|y1:t)

p θ(x1:t|y1:t)
p θ(x1:t|y1:t)dx1:t−1 (4.18)

Using standard particle filters to approximate the filter derivative we are im-
plicitly carrying out importance sampling on a vast growing space with proposal
p θ(x1:t|y1:t) and weight ∇θp θ(x1:t|y1:t)

p θ(x1:t|y1:t)
. This should be enough reason to call

for a new approach. Yet, the problem is even worse.

The filter derivative is a signed-measure, and not a standard probability
measure. It consists of positive and negative functions over disjoint parts of
the state space and it sums to zero over the entire state space. A serious
problem, when carrying out classical particle filtering to estimate this signed-
measure, is that particles with positive and negative weights will cancel each
other, say, in parts of the space where the derivative is close to zero (figure
4.1, top). This is computationally wasteful and statistically harmful.

The technique presented in the following section overcomes these deficien-
cies.

The Marginal Space Approach

To eliminate the problems discussed in the previous section, we will perform
particle filtering directly on the marginal distribution p(xt|y1:t) instead of on
the joint space. In the literature, this technique is called the Marginal Particle
Filter (MPF) [Fearnhead 98, Pitt 99, Klaas 05, Poyadjis 05b, Poyadjis 05a].
To do so, we begin by remembering that the predictive density can be obtained
by marginalization:

p θ(xt|y1:t−1) =

∫
p(xt|xt−1)p θ(xt−1|y1:t−1)dxt−1 (4.19)

using the Chapman-Kolmogorov equation (section 1.3).

Assume that at time t− 1, we have a Monte Carlo approximations of the
filter and its gradient. We denote the normalized and unnormalized filter and

4.3. Parameter learning for SLAM 93

Figure 4.1: Top plot: Histogram representation of a path-based particle approxima-

tion of ∇θp θ(xt|y1:t) w.r.t. a one-dimensional parameter θ. Bottom plot: Point-wise

particle approximation of the same signed measure that maintains the positive and

negative weights on separate regions of the state support (reproduced with permission

from [Poyadjis 05a]).

gradient approximations by:

p̂ θ(xt−1|y1:t−1) =
∑

w
(i)
t−1δx(i)

t−1

ξ̂ θ(xt,y1:t) =
1

N

∑
w̃

(i)
t δ

x
(i)
t

,

∇̂θp θ(xt−1|y1:t−1) =

N∑

i=1

w
(i)
t−1β

(i)
t−1δx(i)

t−1

(xt−1)

∇̂θξ θ(xt,y1:t) =
1

N

N∑

i=1

ρ̃
(i)
t δ

x
(i)
t

(xt).

The integral in equation (4.19) is generally not solveable analytically, but since

94 Chapter 4. Filtering and learning in Sequential Monte Carlo SLAM

we have the particle approximation, we can approximate it as the weighted
kernel density estimate

p̂ θ(xt|y1:t−1) =
N∑

j=1

w
(j)
t−1p(xt|x(j)

t−1).

This is another example of kernel smoothing for density estimation as intro-
duced in section 2.3.1. In this case, the kernel is the transition distribution or
motion model.

The main idea behind Marginal Particle Filter is to sample directly from
the marginal space, that is, we need a marginal proposal. While we are free to
choose any proposal distribution that has appropriate support, it is convenient
to assume that the marginal proposal takes a similar form of weighted kernel
density estimate, namely

q θ(xt|y1:t) =

N∑

j=1

w
(j)
t−1q θ(xt|yt,x

(j)
t−1).

We can easily draw particles from this proposal, provided that we know

how to sample from q θ(xt|yt,x
(j)
t−1), using multinomial or stratified sampling

[Kitagawa 96]. Figure 4.2 shows the difference between marginal sampling and
joint path sampling.

Once we have samples in the marginal space, we can compute the new
unnormalized importance weights as:

w̃
(i)
t =

p θ(yt|x(i)
t)
∑N

j=1w
(j)
t−1p(x

(i)
t |x(j)

t−1)

q θ(x
(i)
t |y1:t)

ρ̃
(i)
t = w̃

(i)
t ∇θ log p θ(yt|x(i)

t) +

∑
jw

(j)
t−1p(x

(i)
t |x(j)

t−1)β
(j)
t−1

q θ(x
(i)
t |y1:t)

using equations (4.11) and (4.15). Finally, substituting the above Monte Carlo
estimates into the expression for the derivative of p θ in terms of ξ θ, we obtain
the normalized weights at time t.

w
(i)
t =

w̃
(i)
t∑

j w̃
(j)
t

; w
(i)
t β

(i)
t =

ρ̃
(i)
t∑

j w̃
(j)
t

− w
(i)
t

∑
j ρ̃

(j)
t

∑
j w̃

(j)
t

4.3. Parameter learning for SLAM 95

Figure 4.2: Joint path sampling takes every particle, that is, every path, and extend

the Markov chain using the corresponding proposal. Then, every sample indepen-

dently extends its path. It can be seen that any particle generates a single particle

from the corresponding proposal (red solid lines). Marginal sampling computes the

joint proposal using kernel smoothing (blue dashed line). Then, all the samples are

drawn jointly from that function.

Then, we can approximate score function from equation (4.17) by the corre-
spoind Monte Carlo approximation:

∇θ log p̂ θ(yt|y1:t−1) =

∫
∇̂θξ θ(xt,y1:t)dxt∫
ξ̂ θ(xt,y1:t)dxt

=

∑
j w̃

(j)
t

∑
j ρ̃

(j)
t

(4.20)

Note the advantages of marginal filtering. First, the importance sampling
process now happens in the marginal space. In addition, the last integral in
equation (4.15) can be expanded using the score identity:

∫
p(xt|xt−1)∇θ log[p θ(xt−1|y1:t−1)]p θ(xt−1|y1:t−1)dxt−1

That is we sample from the marginal filtering distribution and weight with
β , ∇θ log[p θ(xt−1|y1:t−1)]. Contrast this with equation (4.18). The other
thing to note, as pointed out in [Poyadjis 05a] is that the marginal filter deriva-
tive allows us to obtain a particle approximation of the Hahn-Jordan decom-
position. This implies that samples are drawn in disjoint regions of the state

96 Chapter 4. Filtering and learning in Sequential Monte Carlo SLAM

Marginal-SLAM

• For i = 1, ..., N , sample the robot state from the proposal

x
(i)
t ∼

N∑

j=1

w
(j)
t−1q(xt|yt,x

(j)
t−1)

• For i = 1, ..., N , evaluate the importance weights

w̃
(i)
t =

p θ(yt|x(i)
t)
∑N

j=1w
(j)
t−1p(x

(i)
t |x(j)

t−1)

q θ(x
(i)
t |y1:t)

ρ̃
(i)
t = w̃

(i)
t ∇θ log p θ(yt|x(i)

t)+

∑
jw

(j)
t−1p(x

(i)
t |x(j)

t−1)β
(j)
t−1

q θ(x
(i)
t |y1:t)

• Normalise the importance weights

w
(i)
t =

w̃
(i)
t∑

j w̃
(j)
t

; w
(i)
t β

(i)
t =

ρ̃
(i)
t∑

j w̃
(j)
t

−w
(i)
t

∑
j ρ̃

(j)
t∑

j w̃
(j)
t

• Update the map vector

θt = θt−1 + γt

∑
j ρ̃

(j)
t

∑
j w̃

(j)
t

• Update the learning rate γt.

Figure 4.3: The Marginal-SLAM algorithm at time t.

space. Then, we can surmount the problem of particles of opposite signs can-
celling each other out in infinitesimal neighborhoods of the state space (figure
4.1, bottom).

4.4. Experiments 97

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

Steps

E
ffe

ct
iv

e
pa

rt
ic

le
s

MarginalSLAM

0 50 100 150 200 250 300
−20

0

20

40

60

80

100

120

Steps

E
ffe

ct
iv

e
pa

rt
ic

le
s

FastSLAM
First steps inset

Figure 4.4: The plots represent the average number of effective particles Neff , with

corresponding confidence intervals, in 25 long term simulations. The total number of

particles is 200 in both cases. The left plot corresponds to Marginal-SLAM, where

the filter achieves a steady state with a 25% effective number of particles, allowing to

update the same are for indefinite tima. The right plot shows the same experiment

for FastSLAM. It quickly drops in every simulation and fails after 200 steps. Note

that the time scale in the Marginal-SLAM plot is even longer, but the results remains

steady.

4.3.3 Pseudo-Code for Marginal-SLAM

The Marginal-SLAM algorithm is depicted in Figure 4.3. Note that it is linear
in the number of features. It has an O(N2) complexity in terms of the number
of samples, but this can be reduced to O(N logN) using the fast multipole
expansions and metric tree recursions proposed in [Klaas 05].

The marginal particle filter is an old idea [Fearnhead 98, Pitt 99]. Yet,
because of its large computational cost, it was not fully explored until the
introduction of fast methods [Klaas 05]. When using the transition prior as
proposal, the marginal filter and classical particle filter are equivalent, but
this is no longer true when computing the derivative of the filter as outlined
in [Poyadjis 05b] and this paper.

4.4 Experiments

We compare Marginal-SLAM and FastSLAM in a large scale, highly noisy
simulated environment with known data association. The environment is a
square-like corridor with point landmarks in the walls. For simplicity, we use
the transition prior as the proposal distribution for both techniques. In future

98 Chapter 4. Filtering and learning in Sequential Monte Carlo SLAM

work, optimal proposals could be considered like in FastSLAM 2.0.
One of the main SLAM difficulties is partial observability of the parame-

ters. The choice of learning rates γt is affected by this partial observability.
In our case, we chose to implement separate learning rates for each landmark.
Each individual rate depends on the number of times its corresponding feature
is observed.

The robot motion, that is, the transition model, is based on a simple
differential drive vehicle like the one used in other simulated experiments in
this thesis. The observations are gathered using range and bearing sensors
yt = [ρ, φ] with a point feature detector

[
ρ̂

φ̂

]
=

√
∆2

x + ∆2
y

arctan
(
−∆x sin(ϕt)+∆y cos(ϕt)
∆x cos(ϕt)+∆y sin(ϕt)

)

where ∆x = θx−Xt and ∆y = θy−Yt; with [θx, θy] and [Xt, Yt, ϕt] denoting the
feature and robot location and respectively9. The sensor has white Gaussian
noise vt ∼ N (0, diag(σρ, σφ)).

Hence, the likelihood function for a single feature is

p(ρ, φ|xt) =
1√

2πσρσφ

exp

[
−1

2

(
(ρ− ρ̂)2

σ2
ρ

+
(φ− φ̂)2

σ2
φ

)]

Thus, the gradient of the log-likelihood corresponds to

∇ log(p(ρ, φ|xt)) =
1

ρ

∆x(ρ−ρ̂)
σ2

ρ
− ∆y(φ−φ̂)

ρσ2
φ

∆y(ρ−ρ̂)
σ2

ρ
+ ∆x(φ−φ̂)

ρσ2
φ

We carried out several simulations by varying the amount of sensor and
motion noise, landmark density and loop size. The system is able to close
large loops with large range and bearing noise. However, very large sensor
noise (e.g. sonar) in large loops is still a difficult task. Data driven proposals
could be adopted in the future to aleviate this problem.

Figure 4.4 shows a comparison between the number of effective parti-
cles Neff = 1/

∑N
i=1w

2
i in Marginal-SLAM and FastSLAM10. Clearly, the

marginal particle filter reaches a steady state, but FastSLAM quickly loses
particle diversity.

9Due to rotation simetry and the robot moving on a plane, point feature locations can
be represented only with two parameters in a plane

10Results are based on the following parameter settings: N = 200, σd = 0.1m, σα =
0.5deg, σρ = 0.025m, σφ = 3deg.

4.4. Experiments 99

−25 −20 −15 −10 −5 0 5

0

5

10

15

20

FastSLAM

[m]

[m
]

−20 −15 −10 −5 0 5

0

5

10

15

20

Marginal SLAM

[m]

[m
]

Figure 4.5: a) Particle degeneracy in FastSLAM prevents it from closing the loop.

b) Marginal-SLAM is able to close the loop and converges to the true map after 10

laps. Although the map seems rotated, the relative location of the features and the

robot location is almost perfect.

−90 −80 −70 −60 −50 −40 −30 −20 −10 0

0

10

20

30

40

50

60

70

80

Marginal−SLAM

[m]

[m
]

Figure 4.6: Marginal-SLAM after 10 laps in a bigger loop with high motion and

observation noise σα = 10deg, σφ = 10deg. The loop is closed but the convergence is

slow. Also the map becomes stuck in a bad optimum, due to the nonstationarity of

the problem.

100 Chapter 4. Filtering and learning in Sequential Monte Carlo SLAM

0 10 20 30 40 50 60 70 80 90 100
9.95

10

10.05

10.1

10.15

10.2

10.25

10.3

Iterations

[m
]

Estimate

True value

Figure 4.7: Tracking a moving map feature with Marginal-SLAM with σd =

0.01m,σα = 0.05deg, σρ = 0.1m,σφ = 0.5deg. Black thick line: true location. Blue

thin line: estimated location.

The final map using both approaches is shown in figure 4.5. In the Marginal-
SLAM plot, the relative locations of the landmarks and the robot converge
to the true solution. However, the global location is biased with respect to
the ground truth. This is due to the observability assumptions in our SLAM
model. The robot location can only be measured through the landmark lo-
cation. The final map is valid up to an isometric transformation (translation
plus rotation). This effect can be reduced if we fix a landmark location or use
a robocentric representation. Figure 4.6 represents an even larger experiment
and higger noise in the models. In this case, the map is biased. This may be
an effect of the nonstationarity of SLAM due to the high odometric error.

Although our goal has been to develop a method for static maps using
decreasing learning rates, it is possible to adopt small constant learning rates
to track slowly changing map features. Mapping in real scenarios requires
the ability to deal with pseudo-dynamic objects, like chairs and doors. Those
elements are difficult to identify as dynamic, but their movements can lead
to inconsistent maps. Figure 4.7 shows the evolution of a parameter estimate
when the true landmark location changes. This ability to track moving fea-
tures also implies that it would enable Marginal-SLAM to recover from wrong
data association, biased map merging and loop closing, provided that the cor-
rect correspondences are obtained in subsequent steps. The selection of the
learning ratio depends on the required accuracy, the convergency speed and
the ability to track objects.

4.5. Discusion 101

4.5 Discusion

Although our system is able to deal with general nonlinear non-Gaussian joint
parameter and state estimation, the experimental results still introduce some
open questions in terms of convergency. In this section, we introduce some
intuitions about convergence of the stochastic approximation method. From
the SLAM point of view, if we model the system using standard geometric
definitions, then the optimal solution can not be achieved using filtering tech-
niques, becase the robot motion is a nonstationary process. In nonstationary
processes, we need to smooth the trajectory, that is, gather all the information
until the end before starting to learn the parameters. Intuitively, we can see
that map learning in a nonstationary process is like learning to solve murders:
hindsight is always required to infer what happened at the murder scene, that
is, the crime must happen before trying to find the murderer [Russell 02].

We also relate the SLAM problem to the adaptive control problem, which
also needs to deal with nonstationarity issues.

4.5.1 Convergence of the Stochastic Approximation algorithm

Several proofs has been presented in the control literature that guarantee
the convergent of the stochastic approximation parameter estimation to a
stationary point under weak conditions. The more general is the Kushner and
Clark lemma which assumes that the learning function Vt(θt,xt) can be split
in two additive components: a deterministic error function and a stochastic
perturbation. In this framework, the Kushner and Clark lemma guarantees
convergence based on the ergodicity of the parameters sequence and the limit
properties of the sequence of stochastic perturbations [Delyon 96].

This general result has been applied to the special case where the random
variable xt represents the state of a Markov system [Ljung 77, Metivier 84,
Delyon 96]. Then, the Kushner and Clark conditions can be expressed in terms
of the underlying Markov chain. In fact, the latent process {xk, 0 ≤ k < ∞}
needs to be somehow stationary. Detailled explanation on the assumptions for
the linear case can be found in [Ljung 77] which are generalized for arbitrary
Markov chains in [Metivier 84, Delyon 96].

Apart from the standard contractive properties of Markov chains which
has to be preserved for any possible parameter value, the convergence proof
relies on the assumption that a unique invariant probability of the Markov
chain exists. Using the standard formulation of SLAM, the Markov chain is
nonstationary. For instance, the transition probability depends on the motion

102 Chapter 4. Filtering and learning in Sequential Monte Carlo SLAM

command which is definitely nonstationary, except in the trivial case of the
robot being stopped or in constant motion.

Assuming that the latent space is on a compact, metrizable topological
space and being the transition function a continuous map f : Rn −→ Rn,
then the Krylov-Bogolyubov theorem guarantees the existence of an invariant
measurement11 for f . In SLAM, the assumption is trivial since the robot is
moving on an finite Euclidean space. However, measure theoretical definitions
are in general difficult to obtain from the standard geometrical definitions.
In fact, only few systems like Hamiltonian systems have natural invariant
measures. For robotics, this is still an open question.

In our approach to maximum likelihood parameter estimation [LeGland 97],
the Markov chain has to be extended to consider the joint state, observation
and belief process zt = (xt,yt, p θ(xt|y1:t−1),∇θp θ(xt|y1:t−1)). Therefore, in-
variant distributions should take into account the different dimensional spaces
along time and space.

The main difference between nonlinear stochastic approximation and re-
cursive linear estimation is because the latter computes the optimal estimate
every step. Therefore, the algorithm is recursive but not iterative. For in-
stance, the Kalman Filter has a probability in convergence in one single step.
The computed set of parameters is an stationary point. Then, the Markov
process does not need to be stationary, because the dynamic system is ergodic
given a stationary set of parameters.

On the other hand, nonlinear stochastic approximation, even adaptive SA,
is an iterative process. They have asymptotic convergence. In the recursive
form, we compute a single iteration of the algorithm on every recursion. Thus,
the computed parameter estimate is not an stationary point. Then, the under-
lying process needs to be stationary to guarantee ergodicity of the stochastic
approximation process. The problem appears when both the process and the
parameters are not stationary, because then, the system is not ergodic and
iterations can not be delayed in time.

4.5.2 Subspace methods for SLAM

A interesting approach for joint state and parameter estimation is the branch
of subspace methods for system identification [Larimore 83, Benveniste 07,
Mercère 07]. These methods share the formulation of the state-space approach
although, analogously to the standard stochastic approximation method, the

11The concept of probability is a special case of the concept of measure. Therefore, the
existence of an invariant measurement implies the existence of an invariant distribution

4.6. Conclusions 103

state only represents the dynamic variables. In the case of linear dynamic
systems, the problem is equivalent to the eigenstructure identification, that
is, identifying the eigenvalues (the poles of the system) and the correspond-
ing eigenvectors of the linear system. The main advantage is that, in that
case, the system is fully defined and does not require an explicit parametric
respresentation. It can be seen as a generalized model selection technique.

Subspace methods for multiple inputs and multiple outputs are, in fact, a
dimensionality reduction technique, where the action and observation spaces
are mapped in the latent space through the manifold of the dynamic model. In
general, subspace approaches are batch algorithms in the sense that they learn
the best eigenstructure provided all available data. However, some recursive
approaches update the current estimates based on the new observations and
inputs. The reader can find the analogy between the filtering and smoothing
problem.

Statistical consistency of general subspaces methods resemble some as-
sumptions from the stochastic approximation literature, although some proves
can be seen purely geometrical, without any probabilistic assumption. This
is the case of general batch subspace methods, which are consistent for non-
stationary and even unstable processes [Benveniste 07]. The reason of the
behavior is that batch estimations do not delay iterations in time, so they do
not require the system to be ergodic. Again, recursive subspace methods does
require an underlying stationary process [Mercère 07].

Another issue of nonlinear subspace methods is the general assumption
that the inputs u are independent of the outputs y [Kawahara 06]. This is
true for passive navigation methods, but in active SLAM, this proposition can
not be fulfilled as explained in section 1.5.

4.6 Conclusions

The experiments and arguments indicate that Marginal-SLAM is an important
new direction in the design of particle methods for SLAM. Algorithms designed
to work on the marginal space appear to behave better than the ones designed
to work on the path space.

In this preliminary work, Marginal-SLAM exhibits nice properties, such
as being able to track slowly moving objects and potentially being able to
recover from erroneous data-association. Marginal-SLAM does not suffer from
some shortcomings of existing particle methods for SLAM. When mapping
known areas, the algorithm reaches an accurate steady state without diverging.
However, efficient convergence in large-scale SLAM domains is still an open

104 Chapter 4. Filtering and learning in Sequential Monte Carlo SLAM

question. The presented method requires a considerable amount of information
to converge to the solution, which is a strong assumption in SLAM. What is
missing is a fully Bayesian way of estimating the static map parameters, while
integrating over the states recursively in time.

In future work, we plan to test the algorithm more thoroughly in real
domains and introduce known improvements like the N-body methods or the
more efficient Hessian based maximum likelihood. We also plan to focus on
solving the problem of designing efficient full-Bayesian recursive parameter
estimators for nonlinear state spaces.

Chapter 5

Active Policy Learning

5.1 Introduction

In previous sections, we have seen that the source of inconsistency in KF and
SMC based algorithms is related to the amount of uncertainty. In chapter 3 we
proposed some techniques to reduce it pasively. That is, given a fixed amount
of data, we reduce the total uncertainty involved in the approximation steps.
However, we can do better with autonomous robots. They can decide where to
go, therefore, they can decide what to see. An autonomous robot can reason
about the uncertainty level and plan an execution policy to reduce it actively.
The problem is how to choose that policy. It has to be information driven,
thus, the amount of information becomes a reward function to the robot.
Learning a policy in terms of a reward or cost function is called reinforcement
learning.

The direct policy search method for reinforcement learning has led to sig-
nificant achievements in control and robotics [Kohl 04, Lawrence 03, Ng 04,
Peters 06]. The success of the method does often, however, hinge on our abil-
ity to formulate expressions for the gradient of the expected cost [Baxter 01,
Peters 06, Singh 05], which is extremely useful to reduce the complexity of
the problem in high dimensional problems. In some important applications in
robotics, such as robot exploration with discontinuities in the measurement
model (caused either by occlusions or the robot’s limited field of view), the
expected cost is discontinuous and hence one cannot compute gradients easily.
In this chapter, we present a direct policy search method for continuous policy
spaces that relies on active learning to side-step the need for gradients. Also,
the new method enables us to attack problems with non-differentiable cost
functions.

105

106 Chapter 5. Active Policy Learning

θ2

θ3θ1

θ4

θ6

θ5

Parameters

Figure 5.1: In this example, the map is represented by a set of point landmarks that

can be observed with a sensor that provides range and bearing information from the

robot point of view, like a sonar. The robot is able to navigate in a planar surface,

having 3 degrees of freedom (pose and heading). The robot plans a path that allows it

to accomplish the task of going from “Begin” to “End” while simultaneously reducing

the uncertainty in the map and the robot pose estimates, represented by the ellipses.

At the beginning, the robot has poor information over its pose and the landmark

locations, and it can only see the landmarks within its field of view (left). In the

planning stage, the robot must compute the optimal set of control parameters that

define the next waypoints. At the end, the new observations are integrated in the re-

cursive estimation process and the variance of the filtering distribution has decreased.

Hence, posterior navigation inside the room will be easier and more accurate.

The proposed active policy learning approach also seems to be more ap-
propriate in situations where the cost function has many local minima that
cause the gradient methods to get stuck. Moreover, in situations where the
cost function is very expensive to evaluate by simulation, an active learning
approach that is designed to minimize the number of evaluations might be
more suitable than gradient methods, which often require small step sizes for
stable convergence (and hence many cost evaluations).

We demonstrate the new approach on a hard robotics problem: planning
and exploration under uncertainty. This problem plays a key role in simultane-
ous localization and mapping (SLAM), see for example [Sim 05, Stachniss 05a].
Mobile robots must maximize the size of the explored terrain, but, at the same
time, they must ensure that localization errors are minimized. While explo-
ration is needed to find new features, the robot must return to places were

5.1. Introduction 107

known landmarks are visible to maintain reasonable map and pose (robot
location and heading) estimates.

In our setting, the robot is assumed to have a rough a priori estimate of the
map features and its own pose. The robot must accomplish a series of tasks
while simultaneously maximizing its information about the map and pose.
For example, let us assume the situation presented in figure 5.1, where a robot
has to move from “Begin” to “End” by planning a path that satisfies logistic
and physical constraints. The planned path must also result in improved map
and pose estimates. As soon as the robot accomplishes a task, it has a new a
posteriori map that enables it to carry out future tasks in the same environment
more efficiently. This sequential decision making problem is exceptionally
difficult because the actions and states are continuous and high-dimensional.
Moreover, the cost function is not differentiable and depends on the posterior
belief (filtering distribution). Even a toy problem, like this one with only
five landmarks, requires enormous computational effort. As a result, it is not
surprising that most existing approaches relax the constraints. For instance,
full observability is assumed in [Paris 02, Sim 05], known robot location is
assumed in [Leung 05], a small set of actions and myopic planning is adopted
in [Stachniss 05a, Vidal-Calleja 06, Bryson 08], and discretization of the state
and/or actions spaces appears in [Hernandez 04a, Kollar 06, Sim 05]. The
method proposed in this work does not rely on any of these assumptions.

Our direct policy solution uses an any-time probabilistic active learning
algorithm to predict what policies are likely to result in higher expected
returns. The method effectively balances the goals of exploration and ex-
ploitation in policy search. It is motivated by work on experimental design
[Sacks 89, Jones 98, Santner 03, Siah 04]. Simpler variations of our ideas ap-
peared early in the reinforcement learning literature. In [Kaelbling 90], the
problem is treated in the framework of exploration/exploitation with bandits.
An extension to continuous spaces (infinite number of bandits) using locally
weighted regression was proposed in [Moore 96]. Our work presents richer
criteria for active learning as well suitable optimization objectives.

We also present Posterior Cramér-Rao Bounds (PCRB) to approximate
the cost function in robot exploration. These bounds are easy to compute and
are not susceptible to errors introduced by suboptimal filtering techniques for
SLAM. The experiments show that, in this domain, the bounds seem to be
tight and hence they allow for the development of efficient algorithms.

Although the discussion is focused on robot exploration and planning,
our policy search framework extends naturally to other domains. Related
problems appear the fields of terrain-aided navigation [Bergman 99, Paris 02]

108 Chapter 5. Active Policy Learning

and dynamic sensor networks [Hernandez 04b, Singh 05].

5.2 Robot Exploration and Planning

Although the algorithm proposed in this work applies to many sequential
decision making settings, we will restrict our attention to the robot exploration
and planning domain. In this domain, the robot has to plan a path that will
improve its knowledge of its pose (location and heading) and the location
of navigation landmarks. In doing so, the robot might be subject to other
constraints such as low energy consumption, limited time, safety measures
and obstacle avoidance. However, for the time being, let us first focus on the
problem of minimizing posterior errors in localization and mapping as this
problem already captures a high degree of complexity.

There are many variations of this problem, but let us get back to the
situation shown in figure 5.1 for illustration purposes. Here, the robot has
to navigate from “Begin” to “End” while improving its estimates of the map
and pose. For the time being, let us assume that the robot has no problem in
reaching the target. Instead, let us focus on how the robot should plan its path
so as to improve its map and pose posterior estimates. Initially, as illustrated
by the ellipses on the left plot, the robot has vague priors about its pose and
the location of landmarks. We want the robot to plan a path (parameterized
policy π(θ)) so that by the time it reaches the target, it has learned the most
about its pose and the map. This way, if the robot has to repeat the task, it
will have a better estimate of the map and hence it will be able to accomplish
the task more efficiently.

The policy is simply a path parameterized as a set of ordered way-points

θ(i) = [θ
(i)
d , θ

(i)
α], which represents the heading and distance to the next way-

point, although different representations can be used depending on the robot
capabilities1. A trajectory with 3 way-points, whose location was obtained us-
ing our algorithm, is shown on the right plot of figure 5.1. We use a standard
model based motion controller to generate the motion commands u = {u1:T }
to follow the path for T steps. The controller moves the robot towards each
way-point in turn while taking into account the kinematic and dynamic con-
strains of the problem. It is imperative to notice that the robot has a limited

1In this formulation the unknown parameters θ are the policy parameters. The map
elements, no matter if they are static or dynamic should be included in augmented state
vector x. We are not using Marginal-SLAM because we need the belief of every landmark
and the robot location.

5.2. Robot Exploration and Planning 109

field of view. It can only see the landmarks that “appear” within an observa-
tion gate.

Having restricted the problem to one of improving the posterior pose and
the map estimates, a natural cost function is the average mean square error
(AMSE) of the state:

Cπ
AMSE = Ep(x0:T ,y1:T |π)

[
T∑

t=1

λT −t(x̂t − xt)(x̂t − xt)
T

]
, (5.1)

where x̂t = Ep(xt|y1:t,π)[xt]. The expectation is with respect to p(x0:T ,y1:T |π) =

p(x0)
∏T

t=1 p(xt|ut,xt−1)p(yt|xt,ut), λ ∈ [0, 1] is a discount factor, π(θ) de-
notes the policy parameterized by the way-points θi ∈ Rnθ , xt ∈ Rnx is the
hidden state (robot pose and location of map features) at time t, y1:T =
{y1,y2, . . . ,yT } ∈ RnyT is the history of observations along the planned tra-
jectory for T steps, a1:T ∈ RnaT is the history of actions determined by the
policy π(θ) and x̂t is the posterior estimate of the state at time t.

In our application to robotics, we focus on the uncertainty of the posterior
estimates at the end of the planning horizon. That is, we set λ so that the
cost function reduces to:

Cπ
AMSE = Ep(xT ,y1:T |π)

[
(x̂T − xT)(x̂T − xT)T

]
(5.2)

Note that the true state xT and observations are unknown in advance and so
one has to marginalize over them.

The cost function hides an enormous degree of complexity. It is a matrix
function of an intractable filtering distribution p(xT |y1:T ,π) (also known as the
belief or information state). As we have seen along this thesis, the computation
of this belief is the filtering process in SLAM, which is a challenging problem
and even suboptimal methods require a high computation cost. Moreover, in
our domain, the robot only sees the landmarks within and observation gate,
and the motion commands are limited by nonholomic constraints which make
it not derivable in certain points. Consequently, the observation and motion
models are discontinuous and hence one cannot compute derivatives of the cost
function.

The matrix function has to be mapped to a scalar value function. Sev-
eral criteria have been proposed in the experimental design and information
theory literature. For example, see Chaloner et al. [Chaloner 95] for a in-
troductory review. For the problem of robot navigation, the different criteria
were studied in detail in [Sim 05], where a very instructive comparison be-
tween A-optimality and D-optimality is presented. Although they assumed

110 Chapter 5. Active Policy Learning

total observability of the map, the discussion and conclusions are still valid
for partial observability.

Since the models are not linear-Gaussian, one cannot use standard linear-
quadratic-Gaussian (LQG) controllers [Bertsekas 95] to solve our problem.
Moreover, since the action and state spaces are large-dimensional and continu-
ous, one cannot discretize the problem and use closed-loop control as suggested
in [Tremois 99]. That is, the discretized partially observed Markov decision
process is too large for stochastic dynamic programming [Smallwood 73]. It
is important to note that the cost function depends on the belief distribution,
therefore, it does not admit close form recursion, and it cannot be evaluated in-
stantly for any state and/or action. As a consequence, dynamic programming
cannot be applied at all.

As a result of these considerations, we adopt the direct policy search
method [Williams 92, Ng 00]. In particular, the initial policy is set either
randomly2 or using prior knowledge. Given this policy, we conduct simula-
tions to estimate the AMSE. These simulations involve sampling states and
observations using the prior, dynamic and observation models. They also in-
volve estimating the posterior mean of the state with a suboptimal filter. After
evaluating the AMSE using the simulated trajectories, we updtate the policy
parameters and iterate with the goal of minimizing the AMSE. Note that in
order to reduce Monte Carlo variance, the random seed should be frozen before
each simulation as described in [Ng 00]. The pseudocode for this open-loop
simulation-based controller (OLC) is shown in figure 5.2.

Note that as the robot moves along the planned path, it is possible to
use the newly gathered observations to update the posterior distribution of
the state. This distribution can then be used as the prior for subsequent
simulations. This process of replanning is known as open-loop feedback con-
trol (OLFC) [Bertsekas 95]. We can also allow for the planning horizon to
recede. That is, as the robot moves, it keeps planning T steps ahead of its
current position. This control framework is also known as receding-horizon
model-predictive control [Maciejowski 02]. In the experiments, we always use
receding-horizon whenever is possible. Therefore, we use the terms open-loop
feedback control and model-predictive control interchangeably.

In the following two subsections, we will describe a way of conducting
the simulations to estimate the AMSE and, subsequently, proceed to describe
the observation and odometry models in detail. The active policy update
algorithm will be described in Section 5.3.

2In practice, we use latin hypercube sampling, which provides optimal sampling of the
parameter space with uninformative prior.

5.2. Robot Exploration and Planning 111

1. Choose an initial policy π0.

2. For j = 1 : MaxNumberOfPolicySearchIterations

(a) For i = 1 : N

i. Sample the prior states x
(i)
0 ∼ p(x0).

ii. For t = 1 : T

A. Use a motion controller regulated about the path πj to deter-

mine the current action u
(i)
t .

B. Sample the state x
(i)
t ∼ p(xt|u

(i)
t ,x

(i)
t−1).

C. Generate observations y
(i)
t ∼ p(yt|u

(i)
t ,x

(i)
t) as described in sec-

tion 5.2.1. There can be missing observations.

D. Compute the filtering distribution p(xt|y
(i)
1:t,u

(i)
1:t) using a SLAM

filter.

(b) Evaluate the approximate AMSE cost function of equation ((5.3)) using
the simulated trajectories.

(c) Use the active learning algorithm with Gaussian processes, described in
section 5.3, to generate the new policy πj+1. The choice of the new policy
is governed by our desire to exploit and our need to explore the space of
policies (navigation paths). In particular, we give preference to policies
for which we expect the cost to be minimized and to policies where we
have high uncertainty about what the cost might be.

Figure 5.2: The overall solution approach in the open-loop control (OLC) setting.

Here, N denotes the number of Monte Carlo samples and T is the planning horizon.

In replanning with open-loop feedback control (OLFC), one simply uses the present

position and the estimated posterior distribution (instead of the prior) as the starting

point for the simulations. One can apply this strategy with either approaching or

receding horizon control. It is implicit in the pseudo-code that we use common random

numbers so as to reduce variance.

5.2.1 Simulation of the cost function

We can approximate the AMSE cost by simulating N state and observation

trajectories {x(i)
1:T ,y

(i)
1:T }N

i=1 and adopting the Monte Carlo estimator:

Cπ
AMSE ≈ 1

N

N∑

i=1

(x̂
(i)
T − x

(i)
T)(x̂

(i)
T − x

(i)
T)T (5.3)

Assuming that π is given (we discuss the active learning algorithm to learn
π in Section 5.3), one uses a motion controller to obtain the next action ut.

112 Chapter 5. Active Policy Learning

Estimated landmark

Simulated �eld of view

Simulated landmark

True landmark location

Simulated robot

Estimated robot

True robot location

Figure 5.3: An observation is generated using the current map and robot pose

estimates. Gating information is used to validate the observation. In this picture, the

simulation validates the observation despite the fact that the true robot and feature

locations (black boxes) are too distant for the given field of view. New information is

essential to reduce the uncertainty and improve the simulations.

Once the action is set, the new state xt is easily simulated using the odometry
model. The process of generating observations is more involved. As shown in
figure 5.3, for each landmark, one draws a sample from its posterior. If the
sample falls within the observation gate, it is treated as an observation. As in
most realistic settings, most landmarks will remain unobserved.

After the trajectories {x(i)
1:T ,y

(i)
1:T }N

i=1 are obtained, one uses any SLAM

filter (EKF, UKF or particle filter) to compute the posterior mean state x̂
(i)
1:T .

The evaluation of this cost function is therefore extremely expensive. Moreover,
since the model is nonlinear, it is hard to quantify the uncertainty introduced
by the suboptimal filter. Later, in section 5.4, we will discuss an alternative
cost function, which consists of a lower bound on the AMSE, thus being inde-
pendent on the filter used. Yet, in both cases, it is imperative to minimize the
number of evaluations of the cost functions. This calls for an active learning

5.3. Active Policy Learning 113

approach.

5.3 Active Policy Learning

This section presents an active learning algorithm to update the policy pa-
rameters after each simulation. In particular, we adopt the expected cost
simulation strategy presented in [Ng 00]. In this approach, a scenario consists
of an initial choice of the state and a sequence of random numbers. Given a
policy parameter vector and a set of fixed scenarios, the simulation is deter-
ministic and yields an empirical estimate of the expected cost [Ng 00].

The simulations are typically very expensive and consequently cannot be
undertaken for many values of the policy parameters. Discretization of the
potentially high-dimensional and continuous policy space is out of the ques-
tion3. The standard solution to this problem is to optimize the policy using
gradients. However, the local nature of gradient-based optimization often
leads to the common criticism that direct policy search methods “get stuck”
in local minima. Even more pertinent to our setting, is the fact that the
cost function is discontinuous and hence policy gradient methods do not ap-
ply. We present an alternative approach to gradient-based optimization for
continuous policy spaces. This approach, which we refer to as active policy
learning, is based on experimental design ideas based on response surfaces
[Kushner 64, Jones 98, Jones 01, Sasena 02, Santner 03]. Active policy learn-
ing is an any-time, “black-box” statistical optimization approach. The special
nature of policy learning in information systems makes it perfectly suitable for
response surfaces optimization strategies. Figure 5.4 illustrates it for a simple
one-dimensional example. The approach is iterative and involves three steps.

In the first step, a Bayesian regression model is learned to map the policy
parameters to the estimates of the expected cost function obtained from previ-
ous simulations. In this work, the regression function is obtained using Gaus-
sian processes (GPs), originally known as kriging [Krige 51, Rasmussen 06].
Though in figure 5.4 the GPs provide a good approximation to the expected
cost, it should be emphasized that the objective is not to provide a good es-
timate of the regression funtion or to reduce the mean squared error over the
entire feasible domain [Santner 03, Sacks 89]. Instead, we aim to predict the
expected cost well near the minima [Kushner 64, Jones 98]. The details of the
GP fit are presented in Section 5.3.1.

3For example, in our setup, a simple discretization of 100 cells per parameter, would
represents 1012 possible policies. Even bootstrap or iterative methods would be intractable
in real-time.

114 Chapter 5. Active Policy Learning

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

Policy parameter

Cost

GP mean
GP variance

Data point

Infill

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

Policy parameter

Figure 5.4: An example of active policy learning with a univariate policy using data

generated by our simulator. The figure on top shows a GP approximation of the

cost function using 11 simulated values. In reality, the true expected cost function is

unknown. The figure also shows the expected improvement (infill) of each potential

next sampling location in the lower shaded plot. The infill is high where the GP

predicts a low expected cost (exploitation) and where the prediction uncertainty is

high (exploration). Selecting and labelling the point suggested by the highest infill in

the top plot produces the GP fit in the plot shown below. The new infill function, in

the plot below, suggests that we should query a point where the cost is expected to

be low (exploitation).

5.3. Active Policy Learning 115

The second step involves active learning. Because the simulations are
expensive, we must ensure that the selected samples (policy parameter can-
didates) will generate the maximum possible improvement in terms of util-
ity/cost. Roughly speaking, it is reasonable to evaluate the policy parameters
where the GP predicts a low expected cost (exploitation of a good policy) or
where the GP variance is large (exploration of the parameter space). From
the optimization point of view, the selected points must find the best local
minimum while searching for a better global minimum. These intuitions can
be incorporated in the design of a statistical measure indicating where to sam-
ple the cost function. This measure is known as the infill function, borrowing
the term from the geostatistics literature. Figure 5.4 depicts a simple infill
function that captures our intuitions. More details on how to choose the infill
are presented in section 5.3.2.

Having defined an infill function, still leaves us with the problem of opti-
mizing it. This is the third and final step in the approach. Our thesis is that
the infill optimization problem is more amenable than the original problem
because in this case the cost function is known and easy to evaluate. Fur-
thermore, for the purposes of our application, it is not necessary to guarantee
that we find the global minimum, merely that we can quickly locate a point
that is likely to be as good as possible. On the other hand, in section 5.3.2 we
present some examples of the infill function which are highly multimodal and
could be almost flat in many areas.

To deal with this nonlinear constrained optimization problem, we adopted
the DIvided RECTangles (DIRECT) algorithm [Jones 93, Gablonsky 01]. DI-
RECT is a deterministic, derivative-free global optimization algorithm. It uses
the existing samples of the objective function to decide how to proceed to di-
vide the feasible space into finer rectangles. For low-dimensional parameter
spaces, say up to 10D, DIRECT provides a better solution than gradient ap-
proaches because the infill function tends to have many local optima and flat
regions. Another motivating factor is that DIRECT’s implementation is eas-
ily available [Finkel 03, Gablonsky 01]. However, we conjecture that for large
dimensional spaces, sequential quadratic programming or concave-convex pro-
gramming [Smola 05] might be better algorithm choices for infill optimization.

5.3.1 Gaussian processes

A Gaussian process (GP), z(·) ∼ GP (m(·), k(·, ·)), is an infinite random
process indexed by the vector θ, such that any realization z(θ) is Gaussian
[Rasmussen 06]. From a regression point of view, a Gaussian process or krig-

116 Chapter 5. Active Policy Learning

ing is a way of modeling the function as a realzation of a stochastic process.
Thus, as shown in figure 5.5, it can be seen as a distribution over functions:

m(θ) = E[z(θ)] (5.4)

k(θ, θ′) = E[(z(θ) −m(θ))(z(θ′) −m(θ′))] (5.5)

A GP is also a Bayesian kernel method that exploits the kernel trick (ap-
pendix B) for nonlinear regression or classification. The idea behind the kernel
trick is to map the nonlinear problem in a higher dimensional space φ(x) where
it becomes linear f(x) = φ(x)T w.

Thus, if we represent the real process with our linear regression model
z(θ) = φ(θ)Tw with prior w ∼ N (0,Σ), then, the posterior mean and covari-
ance functions are:

m(θ) = φ(θ)T E[w] = 0 (5.6)

k(θ, θ′) = φ(θ)T E[wwT]φ(θ) = φ(x)T Σφ(x′) (5.7)

which is exactly the same definition that we get for the kernel function. That
is, the kernel function of a Gaussian process is the covariance function of the
underlying Bayesian linear regression model. It is important to note that we
are not doing smoothing in the parameter space, instead we translate the pa-
rameter space to a new feature space where the regression becomes a simple
linear problem (appendix B). Using the kernel as a correlation function be-
tween the points of the Gaussian process, we can predict new realizations of
the process. In that way, it is a non-parametric form of regression.

For a general model, where the mean and covariance functions are unknown
and need to be explicitly computed, we can parameterize the GP hierarchically.
Then we can split the effect of the bias and the uncertainty. Also, it is easier
to work with a zero mean GP. Then, we can represent the regression function
as:

Cπ(θ) = 1µ+ z(θ)

z(·) ∼ GP (0, σ2K(·, ·))

and subsequently estimate the posterior distributions of the mean µ and scale
σ2 using standard Bayesian conjugate analysis, see for example [Santner 03,
Jones 98]. The symbol 1 denotes a column vector of ones. Assuming that n
simulations have been conducted, the simulated costs {Cπ

1:n} and the predicted

5.3. Active Policy Learning 117

(a)

(b)

Figure 5.5: Gaussian Process can be seen as a distribution over function. The top

plot represents the mean (solid), covariance (95% confidence intervals, dotted) an

some sample functions (dashed). When new information is added, the distribution

is updated. Intuitively, in the points where we have observations the uncertainty

collapses. It is also propagated to the neighborhood based on the correlation function

(bottom plot).

cost Cπ
n+1 for a new test point θn+1 are jointly Gaussian:

[
Cπ

n+1

Cπ
1:n

]
∼ N

([
1

1

]
µ, σ2

[
k kT

k K

])
,

where kT = [k(θn+1, θ1) · · · k(θn+1, θn)], k = k(θn+1, θn+1) and K is the train-
ing data kernel matrix with entries k(θi, θj) for i = 1, . . . , n and j = 1, . . . , n.
Since we are interested in regression but also finding the minimum of the func-
tion, with points getting closer next to the minimum value, the Matérn kernel
is a suitable choice for k(·|·) [Santner 03, Stein 99, Sasena 02].

In the preliminar work of Jones et al. [Jones 98], the parameters are com-
puted based on the maximum likelihood estimates. They assume noninfo-

118 Chapter 5. Active Policy Learning

mative priors. That approach is more general but also requires more data.
Instead, we assign a normal-inverse-Gamma conjugate prior to the parame-
ters: µ ∼ N (0, σ2δ2) and σ2 ∼ IG(a/2, b/2). The priors play an essential role
at the beginning of the design process, when there are only few data. The use
of informative priors results in a speed up of the general algorithm, because
the number of data points needed is reduced. Classical Bayesian analysis allow
us to obtain analytical expressions for the posterior modes of these quantities:

µ̂ = (1TK−11 + δ−2)−11TK−1Cπ (5.8)

σ̂2 =
b+ CπTK−1Cπ − (1T K−11 + δ−2)µ̂2

n+ a+ 2
(5.9)

Using the previous estimates, the GP predictive mean and variance are given
by

Ĉπ(θ) = µ̂+ kTK−1(Cπ
1:n − 1µ̂) (5.10)

ŝ2(θ) = σ̂2

{
k − kT K−1k +

(1 − 1T K−1k)2

(1T K−11 + δ−2)

}
(5.11)

It is important to note that the GP predictive mean and variance is computed
based on the assumption that σ̂2 and all the parametes of the kernel funcion,
like h are known (see appendix B). In practice, we have only estimates of those
parameters, but we take those estimates as the true values. This mathematical
trick only results in a small underestimation of the prediction error in small
samples, although this effect can be compensated with a suitable prior.

Also, we found that learning all the GP parameters and the kernel hyper-
parameters in our setup may result in an overfitting of the function, because
we want to find the minimum with few data points. Thus, we do not have
enought information to learn all those parameters. In practice, we found that
the properties of the cost function in different experiments are similar. Thus,
the Matérn kernel hyperparameters are almost invariant, so we decided to
manually fix it. It can be seen as a kernel calibration process.

A detailled derivation of the equations for the GP prediction can be found
in [Santner 03].

5.3.2 Infill Function

Once the GP function is fitted, we need to find a criterion for the next query.
The function that characterized that criterion is the infill function.

Let Cπ
min denote the current lowest (best) estimate of the cost function.

The simplest approach is to select that point as the next query. Due to the

5.3. Active Policy Learning 119

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

Policy parameter

min

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

High infillLow infill

[θ]

π

s

C π^

π

C

^

Figure 5.6: Probability of improvement (infill) function.

locality of interpolation techniques like Gaussian Processes, this method is
easily trapped in local minima. Or it can be even worse and not even a local
minimum is found, although the local minima can be forced using gradient
estimation [Jones 01].

In order to achieve convergence of the global optimum, the sequence of
queries, i.e. the cost function evaluations, must be dense. Intuitively, any
globally convergent algorithm must explore regions of the parameter space
that have been relatively unexplored and sample it. In that sense, Gaussian
Processes have a statistical interpretation that can be exploited. They provide
the regression function, but also the standard deviation. The later is a good
measure of the information that we have on that region, that is, how much at-
tention has been paid to that part of the space. Thus, we combine exploration
and refinement of the parameters based on the standard deviation of the GP.

For example, as shown in figure 5.6, we can define the probability of im-
provement for any value T ≤ Cπ

min at a point θ to be

p(Cπ(θ) ≤ T) = Φ

(
T − Ĉπ(θ)

ŝ(θ)

)
,

where Cπ(θ) ∼ N (Ĉπ(θ), ŝ(θ)2) and Φ denotes the cummulative density func-
tion (cdf) of the standard Normal distribution. This measure was proposed
several decades ago by [Kushner 64], who used univariate Wiener process. Un-

120 Chapter 5. Active Policy Learning

der mild assumptions, these queries are dense, achieving global convergence
[Gutmann 01].

However, as argued by [Jones 98], the probability of improvement is sensi-
tive to the value of T . For example, if T = Cπ

min, the highest probability will
ocurr exactly at Cπ

min. Again, no exploration is made and it will suffer from
local minima. Lower values of T produce more exploratory behaviours, but
the exploration/exploitation ratio depends also on the regression function, and
it can be deceptive. To overcome this problem, Jones [Jones 01] suggested to
use different values of T running in paralel. Although the performance of this
technique is very promising, it incurs in extra query points, which is against
the phylosophy of the whole optimization algorithm. As an alternative to the
probability of improvement, [Mockus 78] defined the improvement over the
current best point as I(θ) = max{0, Cπ

min − Cπ(θ)}. The expectation of this
improvement for the GP can be computed integrating by parts

E(I(θ)) =

∫ I=∞

I=0
I(θ)

{
1√

2πŝ(θ)
exp

[
−(Cπ

min − I(θ) − Ĉπ(θ))2

2ŝ2(θ)

]}
dI(θ)

(5.12)
This resulted in the following infill function, the expected improvement (EI)
[Mockus 78]

EI(θ) =

{
(Cπ

min − Ĉπ(θ))Φ(d) + ŝ(θ)φ(d) if ŝ > 0

0 if ŝ = 0

where φ is the pdf of the standard Normal distribution and d =
Cπ

min−
bCπ(θ)

bs(θ) .

A further generalization of the infill function, proposed by [Schonlau 98],
is obtained by adding a non-negative integer parameter g, such that I(θ) =
max{0, (Cπ

min −Cπ(θ))g}. This results in a generalized expected improvement

EIg(θ) = ŝg(θ)

g∑

j=0

(−1)j
(

g!

j!(g − j)!

)
dg−jTj ,

where Tj = −φ(d)dj−1 + (j − 1)Tj−2, starting with T0 = Φ(d) and T1 =
−φ(d). The g parameter controls the trade-off between global search and local
optimization (exploration/exploitation). When g = 0, the infill function is
equivalent to the probability of improvement with T = Cπ

min. Then, emphasis
is placed on trying to improve near the current best estimate Cπ

min, unless
the observations strongly suggest improvement in areas of high variance. For
g = 1, we have again the standard expected improvement function. The case

5.4. A Cheaper Cost: The Posterior Cramér-Rao Bound 121

g = 2, i.e. E(I2) = E(I)2 + V ar(I), is interesting as it considers the standard
expected improvement, but also the variance over the improvement; that is,
the uncertainty over the improvement is explictly included. As g increases,
areas of high model uncertainty are favoured. While there is no obvious way
to select this parameter for an unknown cost function, the annealing strategy
suggested by [Sasena 02] allows global search at the beggining to smoothly
collapse to local improvement.

Convergence of the expected improvement algorithm is still an open ques-
tion. Jones et al. [Jones 98] conjetured that the sequence of queries is dense.
This has been proved for a similar one dimensional algorithm [Locatelli 97]
or when the cost function belongs to the reproducing kernel Hilbert space
generated by the kernel function of the GP [Vazquez 08].

5.4 A Cheaper Cost: The Posterior Cramér-Rao
Bound

As we have seen, the cost function is directly related to the posterior distribu-
tion of poses and maps. Thus, there is no close form of the cost function. In
section 5.2.1, we proposed a simulation approach that require to run an SLAM
filter for each simulated scenario. This approximate filtering step is not only
expensive, but also a possible source of errors when approximating the AMSE
with Monte Carlo simulations.

The posterior Cramér-Rao bound (PCRB) for nonlinear systems leads to
an alternative objective function that is cheaper to evaluate and does not re-
quire that we run a SLAM filter. That is, the criterion presented next does
not require the adoption of an EKF, UKF, particle filter or any other subopti-
mal filter in order to evaluate it. The PCRB is a “measure” of the maximum
information that can be extracted from the dynamic system when both the
measurements and states are assumed random. It is defined as the inverse of
the Fisher information matrix J and provides the following lower bound on
the AMSE:

Cπ
AMSE ≥ Cπ

PCRB = J−1

Several recursive algorithms have appeared in the literature to update the
PCRB in filtering applications where the observations arrive sequentially.

122 Chapter 5. Active Policy Learning

5.4.1 PCRB for nonlinear models

Tichavský et al. [Tichavský 98], derived the following Riccati-like recursion to
compute the Fisher information matrix for nonlinear (NL) filtering problems:

Jt+1 = Dt − CT
t (Jt + Bt)

−1Ct + At+1, (5.13)

where

At+1 = E[−∆xt+1
xt+1

log p(yt+1|xt+1)]

Bt = E[−∆xt
xt

log p(xt+1|xt,ut)]

Ct = E[−∆xt
xt+1

log p(xt+1|xt,ut)]

Dt = E[−∆xt+1
xt+1

log p(xt+1|xt,ut)],

(5.14)

where the expectations are with respect to the simulated trajectories and ∆
denotes the Laplacian operator. In general those equations are intractable,
but assuming models with additive noise:

xt+1 = f(xt,ut) + vt

yt = h(xt) + wt

(5.15)

with vt = N (0,Qt) and wt = N (0,Rt), the Laplacians in (5.14) can be
simplified to:

At+1 = E[HT (xt+1,yt+1)R
−1
t+1(yt+1)H(xt+1,yt+1)]

Bt = E[FT (ut)Q
−1
t (ut)F(ut)]

Ct = E[−FT (ut)Q
−1
t (ut)]

Dt = E[Q−1
t (ut)],

(5.16)

where the matrices H and F denote the Jacobians of the measurement and
transition models respectively.

By simulating (sampling) trajectories, using our observation and transi-
tion models, one can easily approximate these expectations with Monte Carlo
averages. These averages can be computed before the recursion and hence the
expensive matrix update of equation (5.13) only needs to be done once for all

5.4. A Cheaper Cost: The Posterior Cramér-Rao Bound 123

scenarios:

At+1 =
1

N

N∑

i=1

I(x
(i)
t+1,y

(i)
t+1)H

T (x
(i)
t+1,y

(i)
t+1)R

−1
t+1(y

(i)
t+1)H(x

(i)
t+1,y

(i)
t+1)

Bt =
1

N

N∑

i=1

FT (u
(i)
t)Q−1

t (u
(i)
t)F(u

(i)
t)

Ct = − 1

N

N∑

i=1

FT (u
(i)
t)Q−1

t (u
(i)
t)

Dt =
1

N

N∑

i=1

Q−1
t (u

(i)
t),

where I(x(i),y(i)) represents the validation gate of the simulated observation.

In SLAM, the assumption of additive noise is an approximation of the true
model. Hence, this can be a potential source of error. An alternative PCRB
approximation method that overcomes this shortcoming, in the context of
jump Markov linear (JML) models, was proposed by [Bergman 01].

5.4.2 PCRB for jump Markov linear models

An approximation of SLAM problem using Jump Markov Linear (JML) mod-
els can be represented as a function of an unobserved process st, which, in our
case, represents the different sampling scenarios:

xt+1 = Ft(st)xt + Qt(st)vt + Gt(st)ut

yt = Ht(st)xt + Rt(st)wt

(5.17)

where, for simplicity in the derivation and generality, the noise covariance
is also part of the unobserved process st, that is, vt = N (0, Invt

), wt =

N (0, Inwt
), Qt = QtQT

t and Rt = RtRT
t . The the posterior Cramér-Rao

bound can be obtained recursively as:

CPCRB
t = AtΥtA

T
t + (AtΥtCt − Bt)Φ

−1
t (AtΥtCt − Bt)

T (5.18)

with Υt = (Υ−1
t−1 +D−1

t−1)
−1 and Φ−1

t = Λ−1
t −CT

t Υ1
tCt. The matrices At, Bt,

Λt, Ct and Dt are formed by averaging the matrices from the model (5.17)
over the prior distribution of st, which represents the randon numbers used to

124 Chapter 5. Active Policy Learning

sample from xt, yt and ut.

At = E(G(st))

Bt = E(Q(st))

Λ−1
t = E(−∆vt

vt
log p(yt|xt−1, st,vt)p(vt))

= E(Q(st)R
−1
t Q(st)) + Invt

D−1
t = E(−∆

xt−1
xt−1 log p(yt|xt−1, st,vt))

= E(F(st)R
−1
t F(st))

CT
t = E(−∆

xt−1
vt log p(yt|xt−1, st,vt))

= E(Q(st)R
−1
t F(st)),

Again, we can approximate these expectations based on the Monte Carlo sam-

ples over the scenarios s
(i)
t .

At =
1

N

N∑

i=1

(G(s
(i)
t))

Bt =
1

N

N∑

i=1

(Q(s
(i)
t))

Λ−1
t =

1

N

N∑

i=1

(I(s
(i)
t)Q(s

(i)
t)R−1

t (s
(i)
t)Q(s

(i)
t)) + Invt

D−1
t =

1

N

N∑

i=1

(I(s
(i)
t)G(s

(i)
t)R−1

t (s
(i)
t)G(s

(i)
t))

CT
t =

1

N

N∑

i=1

(I(s
(i)
t)Q(s

(i)
t)R−1

t (s
(i)
t)G(s

(i)
t)),

The AMSE simulation approach of Section 5.2.1 using the EKF requires
that we perform an expensive Ricatti update (EKF covariance update) for
each simulated trajectory. In contrast, the simulation approach using the
PCRB only requires one Ricatti update (equation (5.13) or (5.18)). Thus, the
latter approach is considerably cheaper. Yet, the PCRB is only a lower bound
and hence it is not guaranteed to be necessarily tight. Also, both PCRB are
approximations of the exact bound. In the following section, we will provide
empirical comparisons between the three simulation approaches, called AMSE,
(nonlinear) NL-PCRB and (jump Markov linear) JML-PCRB respectively.

5.5. Experiments 125

Figure 5.7: Empirical AMSE cost as a function of policy improvement iterations.

For this 6D parameter space, the solution converges to the minimum in almost 40

iterations. The figure also shows the actual computed trajectories at three different

iteration steps.

5.5 Experiments

We present two sets of experiments. The first experiment is very simple as
it is aimed at illustrating the approach. It involves a fixed-horizon stochastic
planning domain. The second set of experiments is concerned with exploration
with receding horizon policies in more realistic settings. In all cases, the aim
is to find the optimal path in terms of posterior information about the map
and robot pose. For clarification, other terms contributing to the cost, such
as time and obstacles are not considered, but the implementation should be
straightforward.

126 Chapter 5. Active Policy Learning

Planning
step

Replanning
step

Original
trajectory

Replanned
trajectory

Unobserved
feature

Figure 5.8: Replanning trajectory after reaching the first way-point. Due to the lo-

calization and mapping uncertainty, one of the landmarks remains unobserved. Con-

sequently, the replanning system adapt the original planned trajectory to increase

the likelihood of seing that landmark. However, it tries also to remain close to the

landmark with the lowest uncertainty, to improve localization.

5.5.1 Fixed-horizon planning

The first experiment is the one that we introduced in figure 5.1. There, the
start and end positions of the path are fixed. The robot has to compute the
coordinates of three intermediate way-points and, hence, the policy has six
parameters. For illustration purposes we chose a simple environment consist-
ing of 5 landmarks (with vague priors). We placed an informative prior on
the initial robot pose. When the robot fails to reach the target within a spec-
ified time, the corresponding simulation is rejected. This rejection sampling
mechanism works well in this very simple simulation setting.

Figure 5.7 shows three different robot trajectories computed during policy

5.5. Experiments 127

−5 0 5 10 15 20 25
−5

0

5

10

15

[m]

[m
]

Landmark location
Map Estimate

−10 −5 0 5 10 15 20 25
−5

0

5

10

15

[m]

[m
]

OLC1

−10 −5 0 5 10 15 20 25
−10

−5

0

5

10

15

[m]

[m
]

OLC3

−10 −5 0 5 10 15 20 25
−6

−4

−2

0

2

4

6

8

10

12

[m]

[m
]

OLFC3

Figure 5.9: Trajectories generated using OLC1, OLC3 and OLFC3. The blue and

red ellipses represent the landmark and robot location 95% confidence intervals. The

robot field of view is shown in green. OLC3 is more exploratory than OLC1, which

gets stuck repeatedly updating the first landmark it encounters. Yet, only OLFC3,

because of being able to replan at each step, is able to fully explore the map and

reduce the uncertainty.

optimization. The trajectories are also indicated in the Monte Carlo AMSE
cost evolution plot. The 6D optimization requires less than 50 iterations. We
found that the optimal trajectory allowed the robot to observe the maximum
number of features. However, since the prior on the robot’s initial pose is very
informative, it is narrow Gaussian, feature A is originally detected with very
low uncertainty (see figure 5.7). Consequently, the robot tries to maintain
that feature in the field of view to improve the localization. A greedy strategy
would have focused only on feature A, improving the estimation of that feature
and the robot, but dropping the global posterior estimate. Figure 5.8 shows
the process of replanning the trajectory after reaching the first way-point. We
can see how the robot has missed one of the features (feature E), mainly due
to the high noise in the prior map. As a result, the re-planning algorithm

128 Chapter 5. Active Policy Learning

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

steps

R
es

ul
tin

g
co

va
ria

nc
e

tr
ac

e

OLC1
OLC3
OLFC3

Figure 5.10: Evolution of the trace of the state covariance matrix for 15 runs on the

trap experiment using OLC1, OLC3 and OLFC3, with 99% confidence intervals.

changes the planned path so as to increase the likelihood of observing that
feature and reduce the uncertainty. Nevertheless, the robot remains close to
feature A to improve the localization as mentioned in the previous paragraph.

5.5.2 Receding-horizon planning

We have created a simulated testbed for preliminary experimental validations.
In this setup, the environment is a free space area with several point features
distributed at random. An a priory map is known with very high uncertainty
σx = σy = 1m. The robot is a differential drive vehicle equipped with odome-
ters and a stereo camera that provides the location of features. The field
of view is limited to 7 meters and 90o, which are typical values for reliable
stereo matching. We assume that the camera and a detection system that
provides a set of observations every 0.5 seconds. The sensor noise is Gaussian
for both range and bearing, with standard deviations σrange = 0.2 · range and
σbearing = 0.5o. The policy is given by a set of ordered way-points. Each way-
point is defined in terms of heading and distance with respect to the robot
pose at the preceding way-point. The distance between way-points is limited
to 10 meters and the heading should be in the interval [−3π/4, 3π/4] to avoid

5.5. Experiments 129

10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8

9

10

steps

R
es

ul
tin

g
co

va
ria

nc
e

tr
ac

e
OLC1
OLC3
OLFC3

Figure 5.11: Evolution of the trace of the state covariance matrix for 15 random

maps using OLC1, OLC3 and OLFC3, with 99% confidence intervals.

backwards trajectories. The motion commands are computed by a controller
to guarantee that the goal is reached in 10 seconds.

First, we compare the behavior of the robot using different planning and
acting horizons. The three methods that we implemented are:

OLC1 : This is an open loop greedy algorithm that plans with only 1 way-
point ahead.

OLC3 : This is an open loop algorithm that plans with 3 way-points ahead.

OLFC3 : This is an open loop feedback controller with a receding horizon.
The planning horizon is 3 way-points, but the execution horizon is only
1 step. Thus, the last 2 way-points plus a new way-point are recomputed
after a way-point is reached (re-planning).

It is obvious that the OLC algorithms have a lower computational cost.
Using the AMSE cost and the map of figure 5.9, the times for OLC1, OLC3
and OLFC3 are approximately 6, 30 and 75 minutes (using an un-optimized
Matlab implementation). On the other hand, they can get easily trapped
in local minima, as can be clearly shown in figure 5.9. Due to the limited
planning horizon of OLC1, it barely explores new areas. This behavior can

130 Chapter 5. Active Policy Learning

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

steps

R
es

ul
tin

g
co

va
ria

nc
e

tr
ac

e

NL−PCRB
JML−PCRB
AMSE

Figure 5.12: Evolution of the trace of the state covariance matrix for 15 runs with

AMSE, Tychavsy-PCRB and Bergman-PCRB cost function using OLFC3.

be catastrophic when the distribution of landmarks is sparse. OLC3 tends to
overshoot as it only replans at the third way-point. OLFC3, on the other hand,
replans at each step and as a result is able to steer to the unexplored part of
the map. Myopic algorithms, such as OLC1 and OLC3, use past observations
to compute the path. However, new information during the execution of the
trajectory is neglected. Figure 5.10 plots the evolution of the uncertainty
in the trap situation in 15 runs. The controller with feedback is clearly the
winner because it avoids the trap situation. This behavior is very stable across
different runs.

As a generalization of previous results, we run the same experiment with
different random landmark distributions (with 5 landmarks). It can be seen,
in figure 5.11, that open loop approaches perform greedy and obtaining good
results in the first steps. However, OLFC3 is able to generate more informative
trajectories, and it is also more stable -tight error bounds-.

The previous experiments were based on AMSE cost function with high
number of samples to reduce the approximation error. In this point, it is
important to note that for long planning horizons and high uncertainties, in-
consistency issues may appear, therefore, standard techniques for consistency
improvements should be applied for the AMSE cost computations like those

5.6. Conclusions 131

presented in chapters 3 and 4. In general, AMSE approach is intractable for
a real robot due to the high computational cost.

The next set of simulations is used to experimentally validate the PCRB
approximation to the AMSE cost. Therefore, we increase the size and the
complexity of the environment to 30 landmarks in a 25x25 meters squared
area. Figure 5.12 shows the covariance matrix evolution of the map and the
robot estimated using OLFC3 and the different cost functions presented in
this paper. JML-PCRB remains close to the AMSE behavior, with narrow
confidence intervals. However, NL-PCRB results in poor performance. This
suggests, but does not confirm, that JML-PCRB is a tight bound in this ex-
ploration domain. This is particularly encouraging since the PCRB is a much
cheaper simulation method and opens up room for real-time implementation.

5.6 Conclusions

We have presented an approach for stochastic exploration and planning rooted
in strong statistical and decision-theoretic foundations. The next step is to
test the proposed simulator on a real robotic domain. We also note that
our method is directly applicable to the problem of planning the architecture
of a dynamic sensor network. In terms of modelling, we need to introduce
richer cost functions and constraints. In terms of algorithm improvement, we
must design infill optimization strategies for high-dimensional policies. We
also need to design non-parametric regression processes that are more suitable
for handling discontinuities than GPs. Whenever gradients are available, the
approach presented here could be improved by ensuring that the regression
function matches the gradients at the query points. Finally, on the theoret-
ical front, we plan to build upon early work on correlated bandits to obtain
theoretical performance bounds.

132 Chapter 5. Active Policy Learning

Chapter 6

Conclusions

After twenty years of research and development, Simultaneous Localization
And Mapping (SLAM) has become one of the most theoretical challenging
problems in robotics. The recursive nature of the problem combined with the
inherent correlation between all the variables in the problem requires a deep
control of error and approximations. A small approximation error in the algo-
rithm, propagated in time and through other variables may be catastrophic.
Although there are promising implementations and algorithms in the litera-
ture, achieving excellent results, the lack of a strong theoretical background
has created some concerns to the reliability of a commercial platform. From
the theoretical point of view, the statistical consistency of the results is not
clear.

In this thesis, we have provided some insights from the statistical and algo-
rithmical point of view. We have analized the source of the problems, hidden
in the roots and the fundamentals of the algorithms, and we have provided
some clarification on the hows and whys of those problems. We have seen
that the main difficulties arise from three properties of SLAM: nonlinearity of
the models, non-Gaussianity of the underlying probability distributions and
nonstationarity of the dynamic part of the system.

We started the journey by reviewing the fundamentals of the most extended
algorithm in the field, the Extended Kalman Filter (EKF). We saw that the
source of the statistical inconsistency is related to the linearization of the
models and the underlying uncertainty that is propagated through. Thus, we
provided improvements in both cases. First, we exploited the structure of the
SLAM problem to reduce the uncertainty that has to be propagated through
the models. Then, we validated different linearization techniques, which are
specially intended for probabilistic models. The experimental results showed

133

134 Chapter 6. Conclusions

some improvement over the standard methods, being more robust and reliable.

However, the theoretical consistency was still missing. Thus, we analized
another technique with promising results in the robotics and machine learning
fields: the Sequential Monte Carlo (SMC) methods. Those methods are spe-
cially suited for nonlinear and non-Gaussian problems like SLAM. Although
being a numerical method, and therefore, with an inherent approximation er-
ror, it is not propagated in time. However, certain conditions must be satisfied
before that claim. Some authors, after the astonishing results that SMC meth-
ods were providing in other fields, provided some implementations in SLAM,
based on a straightforward modifications of the EKF algorithms. The results
were good, but not as expected.

In this thesis, we proved that the required conditions for statistical con-
sistency in SMC methods that are are not fulfilled in current SLAM imple-
mentations. We also analized that the inconsistency of the algorithm came
from the fact that the Monte Carlo algorithm is based on the EKF, combining
state variables and static parameters in a extended state space. This is a valid
trick for EKF and related algorithms, but it jeopardizes the nice statistical
properties of SMC algorithms.

Therefore, we proposed Marginal-SLAM, a SLAM algorithm that treats
state and parameters variables separately. However, the lack of a full Bayesian
algorithm for joint state and parameter estimation in general models, con-
straints our algorithm to a Maximum Likelihood (ML) algorithm. But, stan-
dard SMC methods still fail to learn maximum likelihood parameters. For that
reason, we introduced some advanced Monte Carlo methods. This algorithm
had none of the problems found in this thesis. It could deal with nonlinear,
non-Gaussian, joint state and parameter estimation. It is a new promising
field for SLAM.

Nevertheless, joint estimation has some extra requirements. Since there
is no algorithm to estimate the belief of the parameters, we are limited to
point-based approximations. Thus, nonstationarity appeared as a new source
of errors.

Finally, our journey ended by addressing the problem of active SLAM. The
aim of SLAM is to be used by autonomous vehicles and robots, where they
can take decisions and move following some sort of optimality. We analized
the idea of using the robot decisions to reduce the uncertainty and, therefore,
overcome the inconsistency issues in an active way. However, the problem
of finding the optimal decisions is based on a function that is unknown and
really time consuming to evaluate. We presented a new algorithm, called
Active Policy Learning, for optimizing such kind of functions using response

135

surfaces to reduce the number of evaluations. We also introduced a cheaper
evaluation method to measure the information, and therefore, the uncertainty
reduction, based on the Posterior Cramer-Rao Bound (PCRB). The validity
of those methods was tested on carefully designed simulations.

As a future work, we continue analizing the theoretical insights of the
Marginal-SLAM algorithm, trying to find a solution of the nonstationarity
restriction. Some interesting results in measure theory seems to provide a way
to overcome that limitation. On the other hand, we plan to continue improving
the Active Policy Learning algorithm. Also, we want to find a mathematical
proof to guarantee the convergence of the algorithm.

136 Chapter 6. Conclusions

Appendix A

Transformation and Jacobians
in 2D

Two basic operations used in stochastic mapping are transformation inversion
and composition, which were represented by [Smith 88] using operators ⊖ and
⊕:

x̂B
A = ⊖x̂A

B

x̂A
C = x̂A

B ⊕ x̂B
C

The Jacobians of these operations are defined as:

J⊖

{
x̂A

B

}
=
∂
(
⊖xA

B

)

∂xA
B

∣∣∣∣∣
(x̂A

B)

J1⊕

{
x̂A

B , x̂
B
C

}
=
∂
(
xA

B ⊕ xB
C

)

∂xA
B

∣∣∣∣∣
(x̂A

B , x̂B
C)

J2⊕

{
x̂A

B , x̂
B
C

}
=
∂
(
xA

B ⊕ xB
C

)

∂xB
C

∣∣∣∣∣
(x̂A

B
, x̂B

C
)

In 2D, the location of a reference B relative to a reference A (or trans-
formation from A to B) can be expressed using a vector with three d.o.f.:
xA

B = [x1, y1, φ1]
T . The location of A relative to B is computed using the

137

138 Appendix A. Transformation and Jacobians in 2D

inversion operation:

xB
A = ⊖xA

B =

−x1 cosφ1 − y1 sinφ1

x1 sinφ1 − y1 cosφ1

−φ1

The Jacobian of transformation inversion is:

J⊖{xA
B} =

− cosφ1 − sinφ1 −x1 sinφ1 − y1 cosφ1

sinφ1 − cosφ1 x1 cosφ1 + y1 sinφ1

0 0 −1

Let xB
C = [x2, y2, φ2]

T be a second transformation. The location of reference
C relative to A is obtained by the composition of transformations xA

B and xB
C :

xA
C = xA

B ⊕ xB
C =

x1 + x2 cosφ1 − y2 sinφ1

y1 + x2 sinφ1 + y2 cosφ1

φ1 + φ2

The Jacobians of transformation composition are:

J1⊕{xA
B ,x

B
C} =

1 0 −x2 sinφ1 − y2 cosφ1

0 1 x2 cosφ1 − y2 sinφ1

0 0 1

J2⊕{xA
B ,x

B
C} =

cosφ1 − sinφ1 0

sinφ1 cosφ1 0

0 0 1

A generalization of the ⊕ operator to also represent the composition of
transformations with feature location vectors, which results in the change of
base reference of the feature, can be found in [Tardós 02].

Appendix B

Kernel Methods for Learning

In this appendix we explain some kernel based techniques for regresion and
clustering that appeared in the thesis.

B.1 Kernel trick

Solving a linear regresion problem like:

f(x) = xTw y = f(x) + ε

where x is the input vector, w is the vector of parameters of the lineal model
and y is the observed value; is trivial.

When the observations are perturbed by some white Guassian noise ε, the
problem is ill-posed, but we can still solve it analytically. From a Bayesian view
point, we define a prior distribution over the parameters w ∼ N (0,Σ). Then
we can compute the maximum a posteriori (MAP) estimate of the parameters.
This is equivalent to the Tikhonov regularization.

However, linear models are very limited. A simple idea to extend the linear
model applicability to nonlinear problems consists in projecting the inputs into
a high dimensional space, where the linear model can be directly applied. For
example, polinomial regression of a scalar x can be achieved using a linear
model in the space of powers of x, i.e. φ(x) = (1, x, x2, x3, . . .)T . Then, the
regression function is:

f(x) = φ(x)T w

If the mapping function φ is independent of the parameters w, then the model
become linear in the space of powers of x. Furthermore, the feature space only

139

140 Appendix B. Kernel Methods for Learning

appears in the posterior distribution in the form of:

k(x,x′) = φ(x)T Σφ(x′)

which is called the kernel. The kernel can also be seen as the result of a dot
product in the high dimensional space. If the algorithm is defined solely in
terms of dot products in the input space, it can be replaced by the kernel func-
tion. Thus, the feature space is never explicitly computed. This is desirable,
because, as we have seen in the polynomial example, the high-dimensional
space may be infinite-dimensional [Rasmussen 06].

A similar problem which is solved using the kernel trick is the kernel
smoothing. The difference with respect to the linear model is that the kernel
smoothing is a linear combination on the training set y, that is:

f(x) = φ(x)T y

Also, the kernel smoother use an stationary kernel function centered on each
data point.

B.2 Type of kernels

Selecting the specific kernel function for a concrete application or algorithm
can be tricky. There are many kernel functions in the literature with inter-
esting propperties. Here, we will show a brief survey of stationary kernel
functions, where the covariance is expresed in terms of ξ = (|x−x′|)/h, being
h the so-called scale factor. The kernels presented in this section can be used
both for regression or smoothing. In general, regression admits any kind of
covariance function as a kernel, even nonstationary or anisotropic. On the
other hand, smoothing kernels does not need to be covariance functions.

B.2.1 Epanechnikov kernel

This is the simplest kernel in terms of a dot product:

kEpa(ξ) =

{
1
2c

−1
d (d+ 2)(1 − ξT ξ) if ξT ξ ≤ 1

0 otherwise
(B.1)

where cd is the volume of a d-dimensional hypersphere of unit radius (i.e:
c1 = 2, c2 = π). In our setup, being ξ = (|x− x′|)/h, the kernel function is an
hipersphere Sh(x) defined in the sampling space centered at x with radius h.

Despite its simplicity, it provides excelent results for gradient estimation
in terms of efficiency and accuracy. Theorethically, this kernel provides the
minimum integrated squared error (MISE).

B.2. Type of kernels 141

B.2.2 Exponential/Gaussian kernel

The Gaussian kernel, sometimes refered as the squared exponential, is the
most widely-used kernel in the Bayesian community. It is a special case of the
exponential kernel for p = 2, where the exponential kernel is:

kexp(ξ, p) = exp

(
−(ξT ξ)p

2

)
(B.2)

The exponential kernel is less flexible than other kernels, like the Matérn
kernel (see below), because it is not mean square differentiable except for
p = 2, when it is infinitely differentiable. It has been argued that the Gaussian
kernel tends to oversmooth the process [Stein 99]. Also, Sasena [Sasena 02]
found that the Gaussian kernel becomes numerically unstable when ξ → 0.

B.2.3 Matérn kernel

The Matérn class of kernels is given by:

kMat(ξ, ν) =
21−ν

Γν

(√
2νξ
)ν

Kν

(√
2νξ
)

(B.3)

whereKν is a modified Bessel function [Rasmussen 06] and ν is an extra kernel
parameter related to the differentiability of the regression function. That is,
the function f(x) is k-times mean square differentiable if and only if ν > k.
Note that, the Matérn kernel for ν → ∞ is equivalent to the Gaussian kernel.

The most interesting cases for learning are ν = 3/2 and ν = 5/2, which
are sometimes named as the Matérn linear and cubic kernel.

kMat(ξ, ν = 3/2) = (1 +
√

3ξ) exp(−
√

3ξ) (B.4)

kMat(ξ, ν = 5/2) =

(
1 +

√
5ξ +

5

3
ξ2
)

exp(−
√

5ξ) (B.5)

B.2.4 Piecewise polynomial kernels

Finally, an interesting family of kernels is the piecewise polynomial or spline
kernels with compact support. For instance, a cubic spline kernel can be
defined as:

kSpl(ξ) =

1 − 6ξ2 + 6ξ3 if |ξ| < 1/2

2((1 − ξ)3) if 1/2 ≤ |ξ| < 1

0 otherwise

(B.6)

142 Appendix B. Kernel Methods for Learning

These kernels, like the Epanechnikov kernel, are exactly zero except in
a neighbourhood. For Bayesian regression, the posterior covariance will be
sparse, having some computational advantages.

Bibliography

[Andrade-Cetto 05] J. Andrade-Cetto, T. Vidal-Calleja & A. Sanfeliu. Un-
scented Transformation of Vehicle States in SLAM. In
Proc. of the IEEE Int. Conf. on Robotics & Automa-
tion, pages 324–329, Barcelona, Spain, April 2005.

[Andrieu 99] C. Andrieu, N. de Freitas & A. Doucet. Sequential
MCMC for Bayesian Model Selection. In IEEE Higher
Order Statistics Workshop, pages 130–134, Caesarea,
Israel, 1999.

[Bailey 06a] T. Bailey, J. Nieto, J. Guivant, M. Stevens & E. Nebot.
Consistency of the EKF-SLAM Algorithm. In Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2006.

[Bailey 06b] T. Bailey, J. Nieto & E. Nebot. Consistency of
the FastSLAM Algorithm. In Proc. of the IEEE
Int. Conf. on Robotics & Automation, 2006.

[Bar-Shalom 01] Y. Bar-Shalom, X. Rong Li & T. Kirubarajan. Esti-
mation with applications to tracking and navigation.
Wiley InterScience, 2001.

[Baxter 01] J. Baxter & P.L. Bartlett. Infinite-Horizon Policy-
Gradient Estimation. J. of AI Research, vol. 15, pages
319–350, 2001.

[Beevers 07] K. Beevers & Huang W.H. Fixed-lag Sampling Strate-
gies for Particle Filtering SLAM. In Proc. of the IEEE
Int. Conf. on Robotics & Automation, 2007.

143

144 BIBLIOGRAPHY

[Benveniste 07] A. Benveniste & L. Mevel. Nonstationary Consistency
of Subspace Methods. IEEE Trans. Autom. Control,
vol. 52, no. 6, pages 974–984, June 2007.

[Bergman 99] N. Bergman. Recursive Bayesian Estimation: Naviga-
tion and Tracking Applications. PhD thesis, Linköping
University, 1999.

[Bergman 01] N. Bergman, A. Doucet & N.J. Gordon. Optimal Es-
timation and Cramér-Rao Bounds for Partial Non-
Gaussian State Space Models. Ann. Inst. Stat. Math.,
vol. 52, no. 1, pages 1–17, 2001.

[Bertsekas 95] D.P. Bertsekas. Dynamic programming and optimal
control. Athena Scientific, 1995.

[Bosse 03] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten
& S. Teller. An Atlas Framework for Scalable Map-
ping. In Proc. of the IEEE Int. Conf. on Robotics &
Automation, pages 1899–1906, Taipei, Taiwan, 2003.

[Brunskill 05] E. Brunskill & N. Roy. SLAM using Incremental
Probabilistic PCA and Dimensionality Reduction. In
Proc. of the IEEE Int. Conf. on Robotics & Automa-
tion, Barcelona, Spain, 2005.

[Bryson 08] M. Bryson & S. Sukkarieh. Observability Analysis
and Active Control for Airborne SLAM. IEEE Trans.
Aerosp. Electron. Syst., vol. 44, no. 1, pages 261–280,
January 2008.

[Cacoullos 66] T. Cacoullos. Estimation of a multivariate density.
Ann. Inst. Stat. Math., vol. 18, pages 179–189, 1966.

[Castellanos 99] J. A. Castellanos, J. M. M. Montiel, J. Neira & J.D.
Tardós. The SPmap: A Probabilistic Framework for
Simultaneous Localization and Map Building. IEEE
Trans. Robot. Autom., vol. 15, no. 5, pages 948–952,
1999.

[Castellanos 04] J.A. Castellanos, J. Neira & J.D. Tardós. Limits to
the Consistency of EKF-based SLAM. In Proc. of the

BIBLIOGRAPHY 145

5th IFAC Symp. on Intelligent Autonomous Vehicles,
Lisbon, July 2004.

[Castellanos 07] J.A. Castellanos, R. Martinez-Cantin, J.D. Tardós
& J. Neira. Robocentric Map Joining: Improving
the Consistency of EKF-SLAM. Robotics and Au-
tonomous Systems, vol. 55, pages 21–29, 2007.

[Chaloner 95] K Chaloner & I Verdinelli. Bayesian experimental de-
sign: A review. J. of Statistical Science, vol. 10, pages
273–304, 1995.

[Cheng 95] Y. Cheng. Mean Shift, Mode Seeking, and Clustering.
IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 8,
pages 790–799, August 1995.

[Chong 99] K. S. Chong & L. Kleeman. Mobile Robot Map Building
for an Advanced Sonar Array and Accurate Odometry.
Int. J. Robotics Research, vol. 18, no. 1, pages 20–36,
1999.

[Civera 08] J. Civera, A.J. Davison & J.M.M. Montiel. Inverse
Depth Parametrization for Monocular SLAM. IEEE
Trans. Robot., 2008. to appear.

[Clark 99] J.M.C. Clark, D.L. Ocone & C. Coumarbatch. Rela-
tive Entropy and Error Bounds for Filtering of Markov
Processes. Math. of Control, Signals, and Systems,
vol. 12, no. 4, pages 346–360, Nov. 1999.

[Comaniciu 02] D. Comaniciu & P. Meer. Mean Shift: A Robust Ap-
proach toward Feature Space Analysis. IEEE Trans.
Pattern Anal. Mach. Intell., vol. 24, no. 5, pages 603–
619, 2002.

[Coquelin 07] P.A. Coquelin, R. Deguest & R. Munos. Numerical
methods for sensitivity analysis of Feynman-Kac mod-
els. Technical report, INRIA, 2007.

[Cox 64] H. Cox. On the estimation of state variables and pa-
rameters for noisy dynamic systems. IEEE Trans. Au-
tom. Control, vol. AC-9, pages 5–12, Feb. 1964.

146 BIBLIOGRAPHY

[Crisan 02] D. Crisan & A. Doucet. A Survey of Convergence
Results on Particle Filtering for Practitioners. IEEE
Trans. Signal Process., vol. 50, no. 3, pages 736–746,
2002.

[Davison 05] A.J. Davison. Active Search for Real-Time Vision. In
Proc. of the Int. Conf. on Computer Vision, 2005.

[Dellaert 06] F. Dellaert & M. Kaess. Square Root SAM: Simultane-
ous Localization and Mapping via Square Root Infor-
mation Smoothing. Int. J. Robotics Research, vol. 25,
no. 12, pages 1181–1204, 2006.

[Delyon 96] B. Delyon. General results on the Convergence of
Stochastic Algorithms. IEEE Trans. Autom. Control,
vol. 41, no. 9, pages 1245–1255, September 1996.

[Dissanayake 01] M.W.M.G. Dissanayake, P. Newman, S. Clark,
H. Durrant-Whyte & M. Csorba. A Solution to the
Simultaneous Localization and Map Building (SLAM)
Problem. IEEE Trans. Robot. Autom., vol. 17, no. 3,
pages 229–241, 2001.

[Doucet 98] A Doucet. On Sequential Simulation-Based Methods
for Bayesian Filtering. Technical report CUED/F-
INFENG/TR 310, Department of Engineering, Cam-
bridge University, 1998.

[Doucet 00] A Doucet, N de Freitas, K Murphy & S Russell. Rao-
Blackwellised Particle Filtering for Dynamic Bayesian
Networks. In Proc. of the Sixteenth Conf. on Uncer-
tainty in Artificial Intelligence, 2000.

[Doucet 01] A. Doucet, N. de Freitas & N.J. Gordon, editors. Se-
quential Monte Carlo methods in practice. Springer-
Verlag, 2001.

[Doucet 06] A. Doucet, M. Briers & S. Senecal. Efficient Block
Sampling Strategies for Sequential Monte Carlo. J. of
Comp. and Graph. Stat., vol. 15, no. 3, pages 693–711,
2006.

BIBLIOGRAPHY 147

[Duda 01] R.O. Duda, P.E. Hart & D.G. Stork. Pattern classifi-
cation. Wiley InterScience, 2001.

[Elfes 87] A. Elfes. Sonar-Based Real-World Mapping and Nav-
igation. IEEE Trans. Robot. Autom., vol. 3, no. 3,
pages 249–265, 1987.

[Eliazar 05] A.I. Eliazar & R. Parr. Hierarchical Linear/Constant
Time SLAM using Particle Filters for Dense Maps. In
Advances in Neural Information Processing Systems,
2005.

[Elinas 06] P. Elinas, R. Sim & J. Little. σSLAM: Stereo Vision
SLAM Using the Rao-Blackwellised Particle Filter and
a Novel Mixture Proposal Distribution,. In Proc. of the
IEEE Int. Conf. on Robotics & Automation, 2006.

[Estrada 05] C. Estrada, J. Neira & J.D. Tardós. Hierarchical
SLAM: real-time accurate mapping of large environ-
ments. IEEE Trans. on Robotics, vol. 21, no. 4, pages
588–596, August 2005.

[Eustice 05] R. Eustice, H. Singh, J. Leonard, M. Walter & R. Bal-
lard. Visually Navigating the RMS Titanic with SLAM
Information Filters. In Proc. of Robotics: Science and
Systems, Cambridge, MA, USA, June 2005.

[Fearnhead 98] P. Fearnhead. Sequential Monte Carlo Methods in Fil-
ter Theory. PhD thesis, Dept. of Statistics, Oxford
University, England, 1998.

[Fearnhead 02] P. Fearnhead. MCMC, Sufficient Statistics and Par-
ticle Filters. J. of Comp. and Graph. Stat., vol. 11,
pages 848–862, 2002.

[Finkel 03] D.E. Finkel. DIRECT optimization algorithm user
guide. Center for Research in Scientific Computation,
North Carolina State University, 2003.

[Fox 01] D. Fox, S. Thrun, W. Burgard & F. Dellaert. Particle
Filters for Mobile Robot Localization. In A. Doucet,
N. de Freitas & N.J. Gordon, editors, Sequential Monte
Carlo Methods in Practice. Springer-Verlag, 2001.

148 BIBLIOGRAPHY

[Frese 05] U. Frese, P. Larsson & T. Duckett. A Multilevel Re-
laxation Algorithm for Simultaneous Localization and
Mapping. IEEE Trans. Robot., vol. 21, no. 2, pages
196–207, April 2005.

[Frese 06] U. Frese. Treemap: An O(logn) Algorithm for Indoor
Simultaneous Localization and Mapping. Autonomus
Robots, vol. 21, no. 2, pages 103–122, 2006.

[Fukunaga 75] K. Fukunaga & L.D. Hostetler. The Estimation of the
Gradient of a Density Function, with Applications in
Pattern Recognition. IEEE Trans. Inf. Theory, vol. IT-
21, no. 1, pages 32–40, 1975.

[Gablonsky 01] J.M. Gablonsky. Modification of the DIRECT Algo-
rithm. PhD thesis, Department of Mathematics, North
Carolina State University, Raleigh, North Carolina,
2001.

[Guivant 01] J. Guivant & E. Nebot. Optimization of the Simul-
taneous Localization and Map-Building Algorithm for
Real-Time Implementation. IEEE Trans. Robot. Au-
tom., vol. 17, no. 3, pages 242–257, 2001.

[Gutmann 99] J.S. Gutmann & K. Konolige. Incremental mapping
of large cyclic environments. In Proc. of the IEEE
Int. Conf. on Intelligent Robots and Applications,
1999.

[Gutmann 01] H.M. Gutmann. A radial basis function method for
global optimization. J. of Global Optimization, vol. 19,
no. 3, pages 201–227, 2001.

[Hernandez 04a] M.L. Hernandez. Optimal sensor trajectories in
bearings-only tracking. In Per Svensson & Johan Schu-
bert, editors, Proc. of the Seventh Int. Conf. on In-
formation Fusion, volume II, pages 893–900, Mountain
View, CA, Jun 2004. International Society of Informa-
tion Fusion.

[Hernandez 04b] M.L. Hernandez, T. Kirubarajan & Y. Bar-Shalom.
Multisensor resource deployment using posterior

BIBLIOGRAPHY 149

Cramèr-Rao bounds. IEEE Trans. Aerosp. Electron.
Syst., vol. 40, no. 2, pages 399– 416, April 2004.

[Horowitz 76] S.L. Horowitz & T. Pavlidis. Picture Segmentation by
a Tree Traversal Algorithm. J. of the ACM, vol. 23,
no. 2, pages 368–388, April 1976.

[Hough 62] P.V.C. Hough. Methods and Means for Recognising
Complex Patterns. US Patent 3 069 654, 1962.

[Ito 00] K. Ito & K. Xiong. Gaussian Filters for Nonlinear Fil-
tering Problems. IEEE Trans. Autom. Control, vol. 45,
no. 5, pages 910–927, 2000.

[Jazwinski 70] A.H. Jazwinski. Stochastic processes and filtering the-
ory. Academic Press, 1970.

[Jones 93] D.R. Jones, C.D. Perttunen & B.E. Stuckman. Lips-
chitzian Optimization Without the Lipschitz Constant.
J. of Optimiz. Theory. App., vol. 79, no. 1, pages 157–
181, October 1993.

[Jones 98] D.R. Jones, M. Schonlau & W.J. Welch. Efficient
Global Optimization of Expensive Black-Box Func-
tions. J. of Global Optimization, vol. 13, no. 4, pages
455–492, 1998.

[Jones 01] D.R. Jones. A Taxonomy of Global Optimization Meth-
ods Based on Response Surfaces. J. of Global Opti-
mization, vol. 21, pages 345–383, 2001.

[Julier 00] S. Julier, J.K. Uhlmann & H. Durrant-Whyte. A New
Method for the Nonlinear Transformation of Means
and Covariances in Filters and Estimators. IEEE
Trans. Autom. Control, vol. 45, no. 3, pages 477–482,
March 2000.

[Julier 01] S. Julier & J.K. Uhlmann. A Counter Example to the
Theory of Simultaneous Localization and Map Build-
ing. In Proc. of the IEEE Int. Conf. on Robotics &
Automation, pages 4238–4243, Seoul, Korea, 2001.

150 BIBLIOGRAPHY

[Julier 02] S. Julier & J.K. Uhlmann. The Scaled Unscented
Transformation. In IEEE American Control Conf.,
pages 4555–4559, Anchorage AK, USA, 8–10 May
2002.

[Julier 04] S. Julier & J.K. Uhlmann. Unscented Filtering and
Nonlinear Estimation. Proceedings of the IEEE,
vol. 92, no. 3, pages 401–422, 2004.

[Kaelbling 90] L.P. Kaelbling. Learning in Embedded Systems. PhD
thesis, Stanford University, 1990.

[Kaess 07] M. Kaess, A. Ranganathan & F. Dellaert. iSAM: Fast
Incremental Smoothing and Mapping with Efficient
Data Association. In Proc. of the IEEE Int. Conf. on
Robotics & Automation, pages 1670–1677, Rome,
Italy, 2007.

[Kalman 60] R.E. Kalman. A new approach to linear filtering
and prediction problems. Transactions of the ASME,
vol. 82D, pages 35–45, March 1960.

[Kawahara 06] Y. Kawahara, T. Yairi & K. Machida. A Kernel Sub-
space Method by Stochastic Realization for Learning
Nonlinear Dynamical Systems. In Advances in Neural
Information Processing Systems, 2006.

[Kim 07] J. Kim & S. Sukkarieh. Real-time implementation of
airborne inertial-SLAM. Robotics and Autonomous
Systems, vol. 55, pages 62–71, 2007.

[Kitagawa 96] G. Kitagawa. Monte Carlo filter and smoother for non-
Gaussian nonlinear state space models. J. of Comp.
and Graph. Stat., vol. 5, no. 1, pages 1–25, 1996.

[Klaas 05] M. Klaas, N. de Freitas & A. Doucet. Toward Prac-
tical N2 Monte Carlo: The Marginal Particle Filter.
In Proc. of the 21st Conf. on Uncertainty in Artificial
Intelligence, 2005.

[Klaas 06] M. Klaas, M. Briers, N. de Freitas, A. Doucet,
S. Maskell & D. Lang. Fast Particle Smoothing: If

BIBLIOGRAPHY 151

I Had a Million Particles. In Proc. of the Int. Conf.
on Machine Learning, 2006.

[Knight 01] J. Knight, A.J. Davison & I. Reid. Towards Con-
stant Time SLAM using Postponement. In Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, Acapulco, Mexico, 2001.

[Kohl 04] N. Kohl & P. Stone. Policy gradient reinforcement
learning for fast quadrupedal locomotion. In Proc. of
the IEEE Int. Conf. on Robotics & Automation, 2004.

[Kollar 06] T. Kollar & N. Roy. Using Reinforcement Learning to
Improve Exploration Trajectories for Error Minimiza-
tion. In Proc. of the IEEE Int. Conf. on Robotics &
Automation, 2006.

[Kopp 63] R.E. Kopp & R.J. Orforf. Linear regression applied
to system identification for adaptive control systems.
AIAA J., vol. 1, no. 10, pages 2300–2306, 1963.

[Krige 51] D.G. Krige. A Statistical Approach to Some Basic
Mine Valuation Problems on the Witwatersrand. J.
of the Chemical, Metallurgical and Mining Society of
South Africa, vol. 52, no. 6, pages 119–139, 1951.

[Kushner 64] H.J. Kushner. A New Method of Locating the Maxi-
mum of an Arbitrary Multipeak Curve in the Presence
of Noise. J. of Basic Eng., vol. 86, pages 97–106, 1964.

[Kushner 67] H.J. Kushner. Approximations to optimal nonlinear
filters. IEEE Trans. Autom. Control, vol. 12, pages
546–556, 1967.

[Larimore 83] W.E. Larimore. System identification, reduced order
filters and modelling via canonical variate analysis. In
Proc. of the Amer. Control Conf., pages 445–451, June
1983.

[Lawrence 03] G. Lawrence, N. Cowan & S. Russell. Efficient Gradi-
ent Estimation for Motor Control Learning. In Proc. of

152 BIBLIOGRAPHY

the Nineteenth Conf. on Uncertainty in Artificial Intel-
ligence, pages 354–36, San Francisco, CA, 2003. Mor-
gan Kaufmann.

[Lee 98] K.M. Lee, P. Meer & R.H. Park. Robust Adaptive
Segmentation of Range Images. IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 20, no. 3, pages 200–205,
February 1998.

[LeGland 97] F. LeGland & L. Mevel. Recursive estimation in hidden
Markov models. In Proc. of the 36th IEEE Conf. on
Decision and Control, volume 4, pages 3468–3473, Dec.
1997.

[Leonard 03] J.J. Leonard & P.M. Newman. Consistent, Convergent
and Constant-Time SLAM. In Proc. of the Int. Joint
Conf. on Artificial Intelligence, Acapulco, Mexico, Au-
gust 2003.

[Leung 05] C Leung, S Huang, G Dissanayake & T Forukawa.
Trajectory Planning for Multiple Robots in Bearing-
Only Target Localisation. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2005.

[Liu 01] J. Liu & M. West. Combined parameter and state es-
timation in simulation-based filtering. In A. Doucet,
N. de Freitas & N.J. Gordon, editors, Sequential Monte
Carlo Methods in Practice. Springer-Verlag, 2001.

[Ljung 77] L. Ljung. Analysis of Recursive Stochastic Algorithms.
IEEE Trans. Autom. Control, vol. AC-22, pages 551–
575, Aug. 1977.

[Ljung 79] L. Ljung. Asymptotic Behavior of the Extended
Kalman Filter as a Parameter Estimator for Linear
Systems. IEEE Trans. Autom. Control, vol. AC-24,
pages 36–50, Feb. 1979.

[Locatelli 97] M. Locatelli. Bayesian Algorithms for One-
Dimensional Global Optimization. J. of Global Op-
timization, vol. 10, no. 1, pages 57–76, January 1997.

BIBLIOGRAPHY 153

[Maciejowski 02] J.M. Maciejowski. Predictive control: with constraints.
Prentice-Hall, 2002.

[Martinez-Cantin 05] R Martinez-Cantin & J.A. Castellanos. Unscented
SLAM for Large-Scale Outdoor Environments. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pages 328–333, 2005.

[Martinez-Cantin 06a] R. Martinez-Cantin & J.A. Castellanos. Bounding Un-
certainty in EKF-SLAM: The Robocentric Local Ap-
proach. In Proc. of the IEEE Int. Conf. on Robotics &
Automation, pages 430–435, 2006.

[Martinez-Cantin 06b] R. Martinez-Cantin, J.A. Castellanos, J.D. Tardós &
J.M.M. Montiel. Adaptive Scale Robust Segmentation
for 2D Laser Scanner. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2006.

[Maybeck 79] P. Maybeck. Stochastic models, estimation, and con-
trol, volume 1. Academic Press, 1979.

[Maybeck 82] P. Maybeck. Stochastic models, estimation, and con-
trol, volume 2. Academic Press, 1982.

[Mercère 07] G. Mercère & M. Lovera. Convergence analysis of in-
strumental variable recursive subspace identification al-
gorithms. Automatica, vol. 43, no. 8, pages 1377–1386,
2007.

[Metivier 84] M. Metivier & P. Priouret. Applications of a Kushner
and Clark Lemma to General Classes of Stochastic Al-
gorithms. IEEE Trans. Inf. Theory, vol. IT-30, pages
140–151, March 1984.

[Mockus 78] J. Mockus, V. Tiesis & A. Zilinskas. The application of
Bayesian methods for seeking the extremum. In L.C.W.
Dixon & G.P. Szego, editors, Towards Global Optimi-
sation 2, pages 117–129. Elsevier, 1978.

[Montemerlo 03a] M. Montemerlo & S. Thrun. Simultaneous Localization
and Mapping with Unknown Data Association using
FastSLAM. In Proc. of the IEEE Int. Conf. on Robotics
& Automation, 2003.

154 BIBLIOGRAPHY

[Montemerlo 03b] M. Montemerlo, S. Thrun, D. Koller & B. Wegbreit.
FastSLAM 2.0: An Improved Particle Filtering Algo-
rithm for Simultaneous Localization and Mapping that
Provably Converges. In Proc. of the Int. Joint Conf. on
Artificial Intelligence, Acapulco, Mexico, 2003.

[Montiel 06] J.M.M. Montiel & A.J. Davison. A Visual Compass
based on SLAM. In Proc. of the IEEE Int. Conf. on
Robotics & Automation, pages 1917–1922, 2006.

[Moore 96] A.W. Moore & J. Schneider. Memory-based Stochas-
tic Optimization. In David S. Touretzky, Michael C.
Mozer & Michael E. Hasselmo, editors, Advances in
Neural Information Processing Systems, volume 8,
pages 1066–1072. The MIT Press, 1996.

[Mourikis 07] A. I. Mourikis, N. Trawny, S.I. Roumeliotis, A.E. John-
son & L.H. Matthies. Vision-Aided Inertial Navigation
for Precise Planetary Landing: Analysis and Experi-
ments. In Proc. of Robotics: Science and Systems,
Atlanta, GA, June 2007.

[Mozos 05] O. Martinez Mozos, C. Stachniss & W. Burgard. Su-
pervised Learning of Places from Range Data using Ad-
aBoost. In Proc. of the IEEE Int. Conf. on Robotics &
Automation, pages 1742–1747, 2005.

[Murphy 99] K. Murphy. Bayesian Map Learning in Dynamic En-
vironments. In Advances in Neural Information Pro-
cessing Systems, 1999.

[Neira 01] J. Neira & J.D. Tardós. Data Association in Stochas-
tic Mapping Using the Joint Compatibility Test. IEEE
Trans. Robot. Autom., vol. 17, no. 6, pages 890–897,
2001.

[Newman 02] P.M. Newman, J.J. Leonard, J. Neira & J.D. Tardós.
Explore and Return: Experimental Validation of Real
Time Concurrent Mapping and Localization. In
Proc. of the IEEE Int. Conf. on Robotics & Automa-
tion, pages 1802–1809, Washington D.C., May 2002.

BIBLIOGRAPHY 155

[Ng 00] A.Y. Ng & M.I. Jordan. PEGASUS: A Policy Search
Method for Large MDPs and POMDPs. In Proc. of
the Sixteenth Conf. on Uncertainty in Artificial Intel-
ligence, 2000.

[Ng 04] A. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte,
B. Tse, E. Berger & E. Liang. Inverted autonomous
helicopter flight via reinforcement learning. In Proc. of
the Int. Symp. on Experimental Robotics, 2004.

[Nguyen 05] V. Nguyen, A. Martinelli, N. Tomatis & R. Siegwart.
A Comparison of Line Extraction Algorithms using
2D Laser Rangefinder for Indoor Mobile Robotics. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2005.

[Nørgaard 00] M. Nørgaard, N.K. Poulsen & O. Ravn. New Devel-
opments in State Estimation for Nonlinear Systems.
Automatica, vol. 36, no. 11, pages 1627–1638, Novem-
ber 2000.

[Olson 07] E. Olson, J. Leonard & S. Teller. Spatially-Adaptive
Learning Rates for Online Incremental SLAM. In
Proc. of Robotics: Science and Systems, Atlanta, GA,
USA, June 2007.

[Olsson 08] J. Olsson, O. Cappé, R. Douc & E. Moulines. Se-
quential Monte Carlo smoothing with application to pa-
rameter estimation in non-linear state space models.
Bernoulli, vol. 14, no. 1, pages 155–179, 2008.

[Paris 02] S. Paris & J.P. Le Cadre. Planification for Terrain-
Aided Navigation. In Fusion 2002, pages 1007–1014,
Annapolis, Maryland, July 2002.

[Parzen 62] E. Parzen. On estimation of a probability density func-
tion and mode. Ann. Math. Statist., vol. 33, pages
1065–1067, 1962.

[Paskin 03] M. A. Paskin. Thin Junction Tree Filters for Simul-
taneous Localization and Mapping. In G. Gottlob &
T. Walsh, editors, Proc. of the Int. Joint Conf. on

156 BIBLIOGRAPHY

Artificial Intelligence, pages 1157–1164. Morgan Kauf-
mann, 2003.

[Paskin 05] M.A. Paskin & S. Thrun. Robotic Mapping with Polyg-
onal Random Fields. In Faheim Bacchus & Tommi
Jaakkola, editors, Proc. of the 21st Conf. on Uncer-
tainty in Artificial Intelligence, July 2005.

[Paz 07] L.M. Paz & J. Neira P. Jensfelt J.D. Tardós. EKF
SLAM updates in O(n) with Divide and Conquer
SLAM. In Proc. of the IEEE Int. Conf. on Robotics &
Automation, 2007.

[Pearson 01] K. Pearson. On Lines and Planes of Closest Fit to
Systems of Points in Space. Philoshophical Magazine,
vol. 2, pages 559–572, 1901.

[Peters 06] J. Peters & S. Schaal. Policy Gradient Methods for
Robotics. In Proc. of the IEEE/RSJ Int. Conf. on In-
telligent Robots and Systems, 2006.

[Pitt 99] M K Pitt & N Shephard. Filtering Via Simulation:
Auxiliary Particle Filters. J. of the Amer. Stat. Assoc.,
vol. 94, no. 446, pages 590–599, 1999.

[Poyadjis 05a] G. Poyadjis, A. Doucet & S.S. Singh. Maximum Like-
lihood Parameter Estimation using Particle Methods.
In Joint Statistical Meeting, 2005.

[Poyadjis 05b] G. Poyadjis, A. Doucet & S.S. Singh. Particle methods
for optimal filter derivative: Application to parameter
estimation. In Proc. of the Int. Conf. on Acoustics,
Speech, and Signal Processing, 2005.

[Rasmussen 06] C.E. Rasmussen & C.K.I. Williams. Gaussian pro-
cesses for machine learning. The MIT Press, Cam-
bridge, Massachusetts, 2006.

[Ribas 08] D. Ribas, P. Ridao, J.D. Tardós & J. Neira. Under-
water SLAM in Man Made Structured Environments.
Journal of Field Robotics, 2008. to appear.

BIBLIOGRAPHY 157

[Rousseeuw 87] P.J. Rousseeuw & A. Leroy. Robust regression and
outlier detection. Wiley InterScience, 1987.

[Russell 02] S. Russell & P. Norvig. Artificial intelligence: A mod-
ern approachn. Prentice-Hall, 2002.

[Sacks 89] J. Sacks, W.J. Welch, T.J. Mitchell & H.P. Wynn. De-
sign and Analysis of Computer Experiments. Statisti-
cal Science, vol. 4, no. 4, pages 409–423, 1989.

[Santner 03] T.J. Santner, B. Williams & W. Notz. The design and
analysis of computer experiments. Springer-Verlag,
2003.

[Sasena 02] M.J. Sasena. Flexibility and Efficiency Enhancement
for Constrained Global Design Optimization with Krig-
ing Approximations. PhD thesis, University of Michi-
gan, 2002.

[Schonlau 98] M. Schonlau, W. Welch & D. Jones. Global Versus Lo-
cal Search in Constrained Optimization of Computer
Models. In N. Flournoy, W.F. Rosenberger & W.K.
Wong, editors, New Developments and Applications
in Experimental Design, volume 34, pages 11–25. In-
stitute of Mathematical Statistics, 1998.

[Siah 04] E.S. Siah, M. Sasena & J.L. Volakis. Fast Parameter
Optimization of Large-Scale Electromagnetic Objects
Using DIRECT with Kriging Metamodeling. IEEE
Trans. Microw. Theory Tech., vol. 52, no. 1, pages 276–
285, January 2004.

[Sim 05] R. Sim & N. Roy. Global A-Optimal Robot Exploration
in SLAM. In Proc. of the IEEE Int. Conf. on Robotics
& Automation, 2005.

[Sim 06] R. Sim & J.J. Little. Autonomous vision-based ex-
ploration and mapping using hybrid maps and Rao-
Blackwellised particle filters. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, pages
2082–2089, 2006.

158 BIBLIOGRAPHY

[Singh 05] S. Singh, N. Kantas, A. Doucet, B.N. Vo & R.J. Evans.
Simulation-Based Optimal Sensor Scheduling with Ap-
plication to Observer Trajectory Planning. In Proc. of
the IEEE Conf. on Decision and Control and Eur. Con-
trol Conference, pages 7296– 7301, 2005.

[Smallwood 73] R.D. Smallwood & E.J. Sondik. The Optimal Control
of Partially Observable Markov Processes over a Finite
Horizon. Operations Research, vol. 21, pages 1071–
1088, 1973.

[Smith 88] R. Smith, M. Self & P. Cheeseman. A Stochastic Map
For Uncertain Spatial Relationships. In O. Faugeras &
G. Giralt, editors, Robotics Research, The Fourth Int.
Symp., pages 467–474. The MIT Press, 1988.

[Smola 05] A.J. Smola, S.V.N. Vishwanathan & T. Hofmann. Ker-
nel Methods for Missing Variables. In Proc. of the Int.
Conf. on AI and Statistics, pages 325–332, 2005.

[Spall 03] J.C. Spall. Introduction to stochastic search and opti-
mization. Wiley InterScience, 2003.

[Stachniss 05a] C. Stachniss, G. Grisetti & W. Burgard. Information
Gain-based Exploration Using Rao-Blackwellized Par-
ticle Filters. In Proc. of Robotics: Science and Sys-
tems, Cambridge, USA, June 2005.

[Stachniss 05b] C. Stachniss, G. Grisetti & Wolfram Burgard. Recov-
ering Particle Diversity in a Rao-Blackwellized Parti-
cle Filter for SLAM After Actively Closing Loops. In
Proc. of the IEEE Int. Conf. on Robotics & Automa-
tion, pages 667–672, Bercelona, Spain, 2005.

[Stachniss 06] C. Stachniss. Exploration and Mapping with Mobile
Robots. PhD thesis, Institute of Computer Science,
University of Freiburg, 2006.

[Stein 99] M.L. Stein. Interpolation of spatial data. Springer-
Verlag, 1999.

[Storvik 02] G. Storvik. Particle Filters for State-Space Models
With the Presence of Unknown Static Parameters.

BIBLIOGRAPHY 159

IEEE Trans. Signal Process., vol. 50, no. 2, pages 281–
289, 2002.

[Tadic 05] V.B. Tadic & A. Doucet. Exponential Forgetting and
Geometric Ergodicity for Optimal Filtering in General
State-Space Models. Stochastic Processes and Their
Applications, vol. 115, pages 1408–1436, 2005.

[Tardós 02] J. D. Tardós, J. Neira, P. M. Newman & J. J. Leonard.
Robust Mapping and Localization in Indoor Environ-
ments using Sonar Data. Int. J. Robotics Research,
vol. 21, no. 4, pages 311–330, 2002.

[Taylor 96] R. Taylor & P. Probert. Range Finding and Fea-
ture Extraction by Segmentation of Images for Mobile
Robot Navigation. In Proc. of the IEEE Int. Conf. on
Robotics & Automation, 1996.

[Thrun 93] S. Thrun. Exploration and Model Building in Mobile
Robot Domains. In E. Ruspini, editor, Proc. of the
IEEE Int. Conf. on Neural Networks, pages 175–180,
1993.

[Thrun 01] S. Thrun. A Probabilistic Online Mapping Algorithm
for Teams of Mobile Robots. Int. J. Robotics Research,
vol. 20, no. 5, pages 335–363, 2001.

[Thrun 02] S. Thrun. Robotic Mapping: A Survey. In G. Lake-
meyer & B. Nebel, editors, Exploring Artificial Intelli-
gence in the New Millenium. Morgan Kaufmann, 2002.

[Thrun 04] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani
& H. Durrant-Whyte. Simultaneous Localization and
Mapping With Sparse Extended Information Filters.
Int. J. Robotics Research, vol. 23, pages 693–716, 2004.

[Thrun 05a] S. Thrun, W. Burgard & D. Fox. Probabilistic robotics.
The MIT Press, 2005.

[Thrun 05b] S. Thrun & M. Montemerlo. The GraphSLAM Al-
gorithm With Applications to Large-Scale Mapping of
Urban Structures. Int. J. Robotics Research, vol. 25,
no. 5/6, pages 403–430, 2005.

160 BIBLIOGRAPHY

[Tichavský 98] P. Tichavský, C. Muravchik & A. Nehorai. Posterior
Cramér-Rao Bounds for Discrete-Time Nonlinear Fil-
tering. IEEE Trans. Signal Process., vol. 46, no. 5,
pages 1386–1396, 1998.

[Tremois 99] O. Tremois & J.P. LeCadre. Optimal Observer Tra-
jectory in Bearings-Only Tracking for Manoeuvring
Sources. IEE Proc. Radar, Sonar Navig., vol. 146,
no. 1, pages 31–39, 1999.

[van der Merwe 01] R. van der Merwe & E. Wan. The Square-Root
Unscented Kalman Filter for State and Parameter-
Estimation. In Proc. of the Int. Conf. on Acoustics,
Speech, and Signal Processing, Salt Lake City, Utah,
May 2001.

[van der Merwe 04] R. van der Merwe. Sigma-Point Kalman Filters for
Probabilistic Inference in Dynamic State-Space Mod-
els. PhD thesis, OGI School of Science & Engineering,
Oregon Health & Science University, April 2004.

[Vazquez 08] E. Vazquez & J. Bect. On the convergence of
the expected improvement algorithm. arXiv.org,
vol. arXiv:0712.3744v2 [stat.CO], February 2008.

[Vidal-Calleja 06] T. Vidal-Calleja, A.D. Davison, J. Andrade-Cetto &
D.W. Murray. Active Control for Single Camera
SLAM. In Proc. of the IEEE Int. Conf. on Robotics &
Automation, pages 1930–1936, 2006.

[Walter 05] M. Walter, R. Eustice & J. Leonard. A Provably Con-
sistent Method for Imposing Exact Sparsity in Feature-
based SLAM Information Filters. In Proc. of the
Int. Symp. of Robotics Research, San Francisco, CA,
USA, October 2005.

[Wand 95] M.P. Wand & M. Jones. Kernel smoothing. Chapman
& Hall, 1995.

[Wang 04] H. Wang & D. Suter. Robust Adaptative-Scale Para-
metric Model Estimation for Computer Vision. IEEE
Trans. Pattern Anal. Mach. Intell., vol. 26, no. 11,
pages 1459–1474, November 2004.

BIBLIOGRAPHY 161

[Williams 92] R.J. Williams. Simple Statistical Gradient-Following
Algorithms for Connectionist Reinforcement Learning.
Machine Learning, vol. 8, no. 3, pages 229–256, 1992.

[Wurm 07] K.M. Wurm, C. Stachniss, G. Grisetti & W. Burgard.
Improved Simultaneous Localization and Mapping us-
ing a Dual Representation of the Environment. In
Proc. of the Eur. Conf. on Mobile Robots, Freiburg,
Germany, 2007.

