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Abstract— Complex robot navigation and control problems
can be framed as policy search problems. However, interactive
learning in uncertain environments can be expensive, requiring
the use of data-efficient methods. Bayesian optimization is an
efficient nonlinear optimization method where queries are care-
fully selected to gather information about the optimum location.
This is achieved by a surrogate model, which encodes past
information, and the acquisition function for query selection.
Bayesian optimization can be very sensitive to uncertainty
in the input data or prior assumptions. In this work, we
incorporate both robust optimization and statistical robustness,
showing that both types of robustness are synergistic. For robust
optimization we use an improved version of unscented Bayesian
optimization which provides safe and repeatable policies in the
presence of policy uncertainty. We also provide new theoretical
insights. For statistical robustness, we use an adaptive surrogate
model and we introduce the Boltzmann selection as a stochastic
acquisition method to have convergence guarantees and im-
proved performance even with surrogate modeling errors. We
present results in several optimization benchmarks and robot
tasks.

I. INTRODUCTION

Robot navigation in uncertain environments can be framed
as a policy search problem [1], a technique that has led to
important achievements in robotics [2], [3], [4], [5]. Those
results had been obtained using different flavours of gradient-
based policy search, which might require a large number of
trials and a good initialization to avoid suboptimal results
in local minima. Trials for robotic applications come at a
substantial cost, as each one requires to move and interact with
a robot. Alternatively, high-performance robotic simulators
still require a fair amount of computational resources. It is thus
evident that sample efficiency is of paramount importance.

Active policy search uses Bayesian optimization to drive
the search for optimality in an effective way. Bayesian
optimization is a sample efficient method for nonlinear
optimization that does not require gradients or good ini-
tialization to obtain global convergence [6]. The probabilistic
nature of Bayesian optimization allows the use of partial or
incomplete information, analogous to the stochastic gradient
descent commonly used in classical policy search [1]. In fact,
Bayesian optimization has been already used in some robotics
and reinforcement learning setups, such as robot walking [7],
[8], [9], control [10], [11], planning [12], [13], grasping [14],
[15], [16] and damage recovery [17].

Bayesian optimization relies on a probabilistic surrogate
model of the target function, typically a Gaussian process. In
the original formulation, this model is incorporated for sample
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Fig. 1. Path planning on uneven terrain with obstacles, with different
trajectories displayed (left and right). The orange regions represent slopes
with a higher traversing cost. The red rectangles are obstacles. Top: the
desired trajectories (blue dashed line). Bottom: possible deviations (blue
lines) from desired trajectories due to input noise. The right trajectory is
more efficient without input noise. Once we take into account input noise,
it becomes unsafe as it can collide with obstacles easily. The left trajectory
is safer in the presence of input noise despite being less efficient.

efficiency as it provides a memory of previous trials [18]. The
surrogate model can also be exploited for other purposes that
can be useful in robotics or reinforcement learning scenarios,
such as, guaranteeing a minimum outcome [19], detect and
remove outliers [20] or incorporate prior information [17].

In this work, we are exploiting the probabilistic features
of Bayesian optimization to provide robustness to policy
search. First, we imply robustness in the sense of robust
optimization or robust control. The resulting policy should
perform well even if the robot or agent is not able to follow
the policy with enough precision. For example, consider
the navigation problem from Figure 1, although the right
trajectory is shorter and cost-efficient, it is also riskier. If
the trajectory uncertainty increases, as in the bottom plots,
it becomes unsafe and incurs a higher cost on average. On
the contrary, the left trajectory is longer and less efficient,
but it is also safer. For a particular level of uncertainty, it
becomes a safer and more efficient route on average. If we
think on the cost function in terms of the policy parameters,
the left trajectory lies in a smooth flat region while the right
trajectory lies in a high variability region with a narrow valley.
Intuitively, in the presence of location uncertainty or safety
concerns, we want to avoid narrow optima where perturbations
might push the solution to poor performance results. Instead,
we focus on a broad optima where the solution is optimal
even after perturbation. However, depending on the task and
environmental conditions, the algorithm should be able to



model and select between narrow and flat optimum regions.
In robust optimization and robust control, the performance
is usually maintained in a bounded region or set. In this
work, we replace that region by a probability distribution
(e.g.: Gaussian), because that is the typical representation for
uncertainty in robot location. Thus, we focus on optimizing
the averaged performance, while classical robust optimization
optimizes the worst case scenario. We have developed a
variant of Bayesian optimization that relies on the unscented
transformation to consider the expected policy performance
under uncertainty. One advantage of our Unscented Bayesian
Optimization is that it can be used just for safety reasons –for
example, if we are able to train in a simulator with perfect
repeatability but we want to consider possible perturbations
when executed in the real robot– or if the policy uncertainty
comes from noisy or perturbed trials –the policy parameters
are perturbed during training–. In the experiments in this
paper, we consider the most challenging scenario of having
perturbations also during training.

It has been studied that reward functions found in robotics
might be difficult to approximate by typical surrogate models
in Bayesian optimization, resulting in unreliable performance
of the optimizer [21]. Furthermore, policy perturbations
during training, as discussed before, can also be problematic
for the surrogate model and the optimizer performance.
Therefore, in this work, we have also included another layer
of robustness to our proposal. Robust statistics deals with
statistical methods that perform reasonably well even when the
underlying assumptions are somehow violated. For example,
convergence of Bayesian optimization methods is based on the
assumption that the target function belongs to the reproducing
kernel Hilbert space spanned by the Gaussian process kernel.
Bayesian optimization relies on optimal decision theory to
actively select the next informative trial. When combined
with an inadequate model, this can lead to poor results
and lack of convergence. In this work, we employ several
strategies to provide robustness in a statistical sense. First,
we use an adaptive kernel for nonstationary environments
[21]. This provides a much more flexible surrogate model
to accommodate a larger set of target functions, such as
common reward functions. Our method also selects new trials
based on Boltzmann selection that can be robust to surrogate
modeling errors [22]. The intuition behind the Boltzmann
selection is to select new policies based on a softmax of the
acquisition function –instead of the standard optimum–. An
advantage of this approach is that it can be used to derive
convergence bounds without assuming artificially injected
exploration. Another advantage of the Boltzmann selection
is that they trivially allow to perform distributed Bayesian
optimization in a multi-robot setup or using a simulator.
Figure 2 shows the different components of our approach.

We present a new architecture for robust efficient policy
search and we provide new theoretical analysis and insights
of the methods employed. Specifically, we introduce the first
robust policy search both in terms of robust optimization
and statistical robustness. Furthermore, policy search is
performed using episodic Bayesian optimization, which
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Fig. 2. Diagram showing the different components of our approach, based on
policy search with Bayesian optimization. It depicts the Bayesian optimization
loop (top) applied to a policy search problem (bottom). The goal is to
identify the most efficient policy by sequentially querying different policies
and obtaining the corresponding reward. However, as the problem has policy
uncertainty, a perturbed policy will be evaluated instead. We highlight (bold
text) the elements that differ from a standard policy search with Bayesian
optimization: the Spartan kernel to model nonstationarity, the unscented
transform applied in unscented optimal incumbent and unscented acquisition)
to propagate the policy uncertainty and, instead of greedy acquisition function
maximization, Boltzmann selection sampling to improve exploration in the
presence of surrogate modeling errors.

requires a small number of trials to obtain optimal results. Our
extensions maintain the data efficiency of standard Bayesian
optimization. Our algorithm combines two novel methods:
Unscented Bayesian Optimization and Boltzmann selec-
tion (preliminary versions were published in [14], [22])
with other ingredients: expected improvement and Gaussian
processes with adaptive kernels to guarantee optimal and
stable solutions even under broken assumptions, biased priors,
query perturbations, etc. As secondary contributions: 1) we
design the first fully distributed robust policy search algorithm,
which allows parallel evaluations in multirobot systems and
simulators. 2) we provide a theoretical interpretation of the
unscented Bayesian optimization as an integrated response
method with polynomial complexity and a formulation based
on the scaled unscented transform, which provides more
flexibility to define the safety/stability region.

II. BACKGROUND

A. Active policy search

Policy search consists of finding the optimal parameters x∗

of a policy πx(ak|sk) with respect to the expected return Uπ ,
denoted E[Uπ] = E[

∑M
k=1 γ

kRπ(sk,ak)]. Here, a denotes
the action, s the state, γ the discounted factor and M the
episode length. Without loss of generality, we assume finite
horizon on episodic policy search. The expectation is under
the policy and the system dynamics which together form
a distribution over trajectories τ . If we use an episodic
formulation, such as REINFORCE [1], the expectation is
usually approximated from Monte-Carlo rollouts τ (i) ∼ τ of
the robot trajectory. In this setup, finding the optimal policy
parameters can be framed as a pure optimization problem,



where the objective function is then computed as:

f(x) = Eτ [Uπ] ≈
N∑
i=1

M∑
k=1

γkR
(
τ
(i)
k

)
x∗ = arg max

x∈X
Eτ [Uπ]

(1)

where x∗ are the parameters of the optimal policy π∗ =

πx∗ , R(τ
(i)
k ) is the instantaneous reward at time step k

following rollout τ (i) and N is the number of rollouts.
Active policy search [23] computes the optimal policy pa-
rameters using Bayesian optimization. Similarly to stochastic
gradient descent in gradient-based policy search, Bayesian
optimization can directly be applied to stochastic optimization
thanks to the probabilistic surrogate model [24]. Therefore,
the expectation in equation (1) can be approximated with a
small batch of rollouts or even a single episode. Algorithm
1 summarized the active policy search strategy. Section II-
B details the steps of updating the surrogate model and
generating the next set of policy parameters xt+1.

Algorithm 1 Active Policy Search
Input: Optimization budget T

1: Initialize x1 based on a low discrepancy sequence.
2: for each optimization iteration t until budget T do:
3: Generate episode τxt

∼ {s0, a0, R1, s1, a1, . . .}
4: yt ←

∑M
k=1 γ

kRk
5: Add (xt, yt) to surrogate model with equation (3)
6: Generate xt+1 using equation (2)
7: end for

B. Bayesian optimization

Bayesian optimization is a framework that aims to effi-
ciently optimize noisy, expensive, blackbox functions. It uses
two distinct components: a probabilistic surrogate model p(f)
that learns the properties and features of the target function
using previously evaluated observations and an acquisition
function α(x, p(f)) that, based on the surrogate model, builds
an utility function which rates how promising a subsequent
query could be. Although our contributions are agnostic to
these choices, for the remainder of the paper, the discussion
and results are based on the use of a Gaussian process as
the surrogate model and the expected improvement as the
acquisition function because they are the most commonly
used in the literature due to their excellent performance in a
large variety of problems.

Formally, Bayesian optimization attempts to find the global
optima of an expensive unknown function f : X → R over
some domain X ⊂ Rd by sequentially performing queries. At
iteration t, all previously observed values y = y1:t at queried
points X = x1:t are used to learn a probabilistic surrogate
model p(f |y1:t,x1:t). Typically, the next query xt+1 is then
determined by greedily optimizing the acquisition function
in X :

xt+1 = arg max
x∈X

α (x, p(f | y1:t,x1:t)) (2)

although we will replace the greedy selection in Section IV-A.

a) Surrogate Model: The most common surrogate model
is the Gaussian process (GP). For the remainder of the paper
we consider a GP with zero mean and kernel k : X ×X → R.
The GP posterior model allows predictions at query points
xq which are normally distributed yq ∼ N (µ(xq), σ

2(xq)),
such that:

µ(xq) = k(xq)
TK−1y

σ2(xq) = k(xq,xq)− k(xq)
TK−1k(xq)

(3)

where k(xq) = [k(xq,xi)]xi∈X and K =

[k(xi,xj)]xi,xj∈X + Iσ2
n. For the kernel, we have

used the Spartan kernel which provides robustness to
nonstationary function and improves convergence, which
has been shown to be critical for reinforcement learning
problems [25].

b) Kernel function: The Spartan kernel [25] is the
combination of several local kernels kl applied over moving
regions –defined by weighting functions ωl(x′|θp)–, with
a global kernel kg for the rest of the space –defined by
weight ωg(x)–. Each weighting functions follow a normal
distribution:

ωg = N
(
ψ, Iσ2

g

)
,

ωl = N
(
θp, Iσ

2
l

)
∀ l = 1 . . .M

(4)

where ψ and θp can be seen as the center of the influence
region of each kernel while σg and σl can be interpreted
as the size of each area of influence. The regions of the
local kernels are centered in a single point θp with multiple
diameters, creating a funnel structure. In order to achieve
smooth interpolation between regions, we use normalized
weights λj(x) =

√
ωj(x)/

∑
p ωp(x):

kS(x,x′|θS) = λg(x)λg(x
′)kg(x,x

′|θg)

+

M∑
l=1

λl(x|θp)λl(x′|θp)kl(x,x′|θl)
(5)

In the experiments, we have used Matérn kernels with
automatic relevance determination for kg and kl [26]. For the
local kernels, we estimate the center of the funnel structure θp
based on the data gathered. Thus, we consider θp as part of
the hyperparameters jointly with the Matérn hyperparmeters
θg and θl:

θS = [θg,θl1 , . . . ,θlM ,θp] (6)

c) Hyperparameter estimation: In many GP applica-
tions, including Bayesian optimization, kernel hyperparam-
eters are estimated using the empirical Bayes approach. In
that case, a point estimate like the maximum likelihood or
maximum a posteriori is used, resulting in an overconfident
estimate of the GP uncertainty [26]. Instead, we use a
fully Bayesian approach based on Markov chain Monte
Carlo (MCMC) to generate a set of samples {θi}Ni=1 with
θi ∼ p(θ|y,X). In particular, we use the slice sampling
algorithm which has already been used successfully in
Bayesian optimization [27].



d) Acquisition Function: The expected improvement
(EI) [28] is a standard acquisition function defined in terms
of the query improvement at iteration t and is defined as:

EIt(x) = (ρt − µt) Φ(zt) + σtφ(zt) (7)

where φ and Φ are the corresponding Gaussian probability
density function (PDF) and cumulative density function
(CDF), being zt = (ρt − µt)/σt. In this case, (µ, σ2) are
the prediction parameters computed with (3) and ρt =
max(y1, . . . , yt) is the incumbent optimum at that iteration.

III. ROBUST OPTIMIZATION

Robust optimization is the field of optimization that deals
with uncertainty in the parameters of the problem itself or
its solution. Specifically, local robustness guarantees that
the optimality of the solution is valid even after small
perturbations of the solution. Usually, these perturbations
are defined in terms of a valid set or region. However, in
robotics, perturbations such as location error are represented
with probabilistic distributions. Thus, instead of selecting the
point that optimizes a single outcome, we select the point
that optimizes an integrated outcome:

g(x) =

∫
X
f(x)p(x)dx = Ep(x)[f(x)] (8)

where f(x) is the expected utility from equation (1) and
p(x) corresponds to the probability associated with the local
perturbations. It can be interpreted objectively as noise on
the input variables x or, subjectively, as a probabilistic
representation of the local stability or safety region. That
is, a region that guarantees good results even if the query is
repeated several times. Instead of f(·), the integrated outcome
g(·) becomes the function that will be optimized. For the
remainder of the paper, we assume that the perturbations
–or safety region– are normally distributed, that is, p(x) =
N (0,Σx).

Classical robust optimization, considering the worst case
scenario, has been previously studied in the context of
Bayesian optimization [29]. Input noise has been addressed
to find narrow optima despite query perturbations [30].

In this paper, we present an integrated response method
based on the unscented transformation, which serves as a
cheap and scalable numerical integration method. A prelimi-
nary version of this method was published in Nogueira et al.
[14]. In this case, we use a flexible variant of the unscented
transformation, called the scaled unscented transformation
[31], to allow more control on the stability region and avoid
numerical issues. Furthermore, previous preliminary work
[14] interpreted p(x) as a subjective safety region of stability
without actual input noise during training. In this case, we
consider the more challenging scenario of both stability and
input noise, where the objective is not only to find a broad
maximum, but queries are also perturbed x ± ∆x during
training.

A. Scaled unscented Bayesian optimization

The unscented transformation is a method to propagate
probability distributions through nonlinear transformations
with a trade off between computational cost and accuracy.
The unscented transformation uses a set of deterministically
selected samples from the original distribution (called sigma
points) and transforms them through the nonlinear function
f(·). Then, the transformed distribution is computed based on
the weighted combination of the transformed sigma points:

X0:d =
{
x̄, x̄±

(√
(d+ γ)Σx

)
i

}
∀ i = 1 . . . d (9)

where (
√
·)i is the i-th row or column of the corresponding

matrix square root, γ = α2(2d + κ) − d and Σx is the
covariance matrix of the perturbation probability distribution.
The weight for the initial point is w0 = γ

d+γ and w(i) =
1

2(d+γ) for the rest. The parameters should follow κ ≥ 0 and
0 ≤ α ≤ 1, while the standard unscented transformation is
a special case for α = 1. As pointed out by van der Merwe
[32], we recommend a κ = 0 and α close to 1. For the matrix
square root function, we use the Cholesky decomposition for
its numerical stability and robustness [32].

Using the unscented transform, we can approximate
Ep(x)[f(x)] ≈

∑2d
i=0 f(Xi)wi. The unscented transformation

is used twice in our algorithm. First, we need to drive
the queries towards points where the improvement is very
likely within the safety or perturbed region. Thus, we apply
the unscented transformation to the acquisition function,
resulting in the unscented expected improvement, that is,
UEI(x) =

∑2d
i=0EI(Xi)wi. Intuitively, the UEI will be

large when the expected improvement is also large within
a region –for example, if the optimum is flat– and UEI
will be small when the expected improvement is high only
in a small region –like a narrow optimum–. However, when
exploring, the algorithm might query and select narrow optima
by chance. Thus, the incumbent ρt cannot be chosen solely
based on observed values because we might end up selecting
an unstable solution. Therefore, we further compute the un-
scented optimal incumbent to select the most stable optimum
ρt = maxx∈X Ep(x)[f(x)] ≈ maxx∈X

∑2d
i=0 f(Xi)wi. Note

that, in the context of Bayesian optimization, we want to
reduce the number of evaluations of f(x). Therefore, the
sigma points are evaluated in the surrogate model, using the
GP mean function as an approximation of the target function
µ(x) ≈ f(x). For that, we approximate the integrated
outcome ĝ(x) =

∑2d
i=0 µ(Xi)wi, where µ(x) is obtained

from equation (3). We define the unscented optimal incumbent
as ρ̃t = maxx∈X ĝ(x), that can be used in equation (7).
Most importantly, we select the final optimal incumbent
ρ̃T ≈ maxx∈X Ep(x)[f(x)] as the output of the optimization
process.

B. The Unscented transform as integration

The unscented transform can be interpreted as a prob-
abilistic integration method. The unscented transformation
with α = 1 and κ = 0 is equivalent to the three point
Gauss-Hermite quadrature rule [32]. While the Gauss-Hermite



method computes the integral exactly under the Gaussian and
polynomial assumptions, it has a cost of O(nd) where n is
the polynomial order of the function in the region. Meanwhile
the unscented transform, has a quadratic cost O(d2) for
computing the integrated response [32]. The low cost of the
unscented transformation is also an advantage compared to
other more advanced integration methods such as Monte Carlo
or Bayesian quadrature, which have higher computational
cost. Note that, during optimization the integrated outcome
g(x) is always approximated with respect to the Gaussian
process mean function µ(x) to avoid increasing the number of
queries of f(x). Therefore, the integral would be as accurate
as the Gaussian process with respect to the target function.
We found that, in practice, it is more efficient to employ the
computational resources to improve the surrogate model (for
example, using MCMC on the kernel hyperparameters), than
to provide a better integrated outcome.

IV. STATISTICAL ROBUSTNESS

In this section, we focus on mitigating the effect of
surrogate modeling errors. In Bayesian optimization, the
exploration and exploitation is guided by the surrogate model.
By selecting a specific surrogate model (specific GP kernels,
Bayesian neural network architectures...) we introduce some
assumptions that the target function might not satisfy. Having
input noise during the optimization is another source of
misleading observations, as the observed query will deviate
from the intended query. In practice, a biased or overconfident
model produces limited exploration or erroneous exploitation,
resulting in even more biased data. This might result in lack
of convergence. We propose using an alternative acquisition
method, called Boltzmann selection, to enhance exploration
and provide statistical robustness.

A. Boltzmann selection

As a sequential decision making process, we can interpret
the Bayesian optimization framework as a partially observ-
able Markov decision process (POMDP) [33], [22]. In this
interpretation, the state is the target function, the action is the
next query point, the belief is the surrogate model and the
action-value (Q-function) is the acquisition function for each
possible query. Note that this POMDP model would represent
the actual learning/optimization process during policy search.
Therefore, equation (2) can be interpreted as a meta-policy,
since it is used on a higher abstraction level to learn the actual
robot policy πx. We can see that the Bayesian optimization
meta-policies found in the literature are greedy, that is, they
select the single action or next query that maximizes the
acquisition function or Q-function.

Our approach consist on replacing the greedy policy of
equation (2) with a stochastic policy such as the Boltzmann
policy (also known as Gibbs or softmax policy):

p(xt+1 | y1:t,x1:t) =
eβtα(xt+1,p(f | y1:t,x1:t))∫

x∈X e
βtα(x,p(f | y1:t,x1:t))dx

(10)

which defines a probability distribution for the next query
or action [22]. Thus, the actual next query is selected by

sampling that distribution xt+1 ∼ p(xt+1 | y1:t,x1:t). This
policy allows exploration even if the model is completely
biased or overconfident, increasing the performance in the
presence of modeling errors. This approach can be applied
to any acquisition function or surrogate model that can be
found in the literature. Since it relies on sampling from a
Boltzmann policy, we refer to this query selection approach
as the Boltzmann selection.

Theoretical analysis shows that the standard greedy ex-
pected improvement policy may not converge for unknown GP
hyperparameters. Instead, in order to guarantee near-optimal
convergence rates, it is necessary a greedy in the limit with
infinite exploration (GLIE) policy [34], [22]. A simple and
well-known GLIE policy is the ε-greedy strategy. This was
the policy used to obtain the convergence rates [34], but it is
highly inefficient and it is never used in practice. Selecting
an appropriate βt sequence, the policy from equation (10)
is GLIE by construction [22]. Thus, the Boltzmann policy
used in this work is the first policy based on the expected
improvement that has both good performance in practice and
guaranteed theoretical convergence.

B. Distributed Bayesian optimization

A secondary advantage of using the Boltzmann selection
is that they also trivially enable distributed optimization,
where different policy parameters can be evaluated in parallel
in a fully distributed fashion. This could be applied in
multi-robot scenarios or for simulation-based reinforcement
learning. Many parallel methods for Bayesian optimization
have been proposed in the past few years with heuristics to
enforce diverse queries. Some authors include artificially
augmented data by hallucinated observations [35], [27],
combine optimization with some degree of active learning
in order maximize the knowledge about the target function
[36], [37], [38] or enforce spatial coverage [39]. All these
methods have in common the need for a central node that
shares and synchronizes the data and the queries to enforce
diversity in the parallel runs.

Sampling using this Boltzmann selection already ensures
diverse queries with random numbers [22]. Thus, a centralized
node is not required and all computation can be done
in each node in a fully distributed manner. In terms of
communication, the nodes only need to broadcast their latest
evaluated query and observation value {xt, yt}, requiring
minimal communication bandwidth. Communication can be
asynchronous and it is robust to delays or failures in the
network, as the order of the queries and observations is
irrelevant.

C. Baseline surrogate model

Surrogate model selection introduces some assumptions
that might not be satisfied in the problem at hand. This might
result in a biased model as discussed before. This effect
can be mitigated by choosing an expressive and flexible
model, compatible with Bayesian optimization. In Gaussian
processes, model expressiveness is related to the choice
of kernel, which also encodes the prior information about
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Fig. 3. Benchmark functions optimization results. In general, UBO is able to find a more stable solution than the vanilla BO, resulting in a better average
value. However, using Boltzmann selection results in an improved stability. Parallelized runs had a much lower walltime without a penalty in performance.

the function space. The most frequent kernels in Bayesian
optimization are stationary kernels k(x, x′) = k(|x − x′|)
like the Matérn kernel. However, robotic and reinforcement
learning settings typically showcase nonstationarity [21],
therefore a nonstationary kernel is needed. Consider again
the example from Figure 1. Given that the optimum can
be either trajectory depending on the trajectory uncertainty
level, our optimization algorithm must be able to model
both if needed. Thus, it must be able to model the shape
or both narrow and broad optima in different regions. This
is known to be problematic in Bayesian optimization. For
that reason, we have incorporated the Spartan kernel [25]
as presented in Section II-B. Furthermore, we estimate the
kernel hyperparameters using MCMC. Contrary to maximum
likelihood or maximum a posteriori estimates which tend
to underestimate the model uncertainty, MCMC allows a
more flexible model. Note that both unscented Bayesian
optimization and the Boltzmann selection are agnostic of
the kernel or estimation algorithm choice. By selecting a
flexible surrogate as a baseline, we highlight the importance
of Boltzmann selection even with limited bias.

V. RESULTS

In this section we describe the experiments used to
compare the performance of different Bayesian optimization
methods in the presence of input noise. We compare a vanilla
implementation of Bayesian optimization (BO), the unscented
Bayesian optimization with a greedy policy (UBO) and the
unscented Bayesian optimization with the Boltzmann selection
(UBO-Boltz). We also compare with a parallel version of the
Boltzmann selection with 4 nodes (UBO-Boltz-x4) to study
the performance impact of adding parallelization. Note that in
the results we show the number of function evaluations, not
iterations. For example, at the 20 evaluation, the UBO-Boltz-
x4 method had run only for 5 iterations, therefore requiring
less wall time and using only the previous information from
16 trials instead of 19.

All methods share the same configuration as a baseline:
expected improvement (EI) as the acquisition function and
a Gaussian process as the surrogate model with the Spartan
kernel and MCMC for the hyperparameters. Given that EI is

known to be unstable during the first iterations due to lack
of information [18], [34], the optimization is initialized with
p evaluations from a low discrepancy Sobol sequence.

The performance of each method was evaluated in the
following way: For every function evaluation xt, each method
computes their best solution (the optimal incumbent ρt or
the unscented optimal incumbent ρ̃t) using the observations
(x1:t, y1:t) and according to their model at that point of the
optimization. Then, we evaluate the integrated outcome at the
best solution g(x̃t) by approximating (8) using 1000 Monte
Carlo samples from p(x) over the actual function f(·). For the
plots, we repeat each optimization 20 times and display the
mean value with 95% confidence interval. Common random
numbers were used for all the methods. We assume isotropic
input noise, reported as σ such that Σx = Iσ2 from (9). The
input space is normalized on all the problems between 0 and
1, so the reported input noise σ is already normalized.

A. Benchmark Optimization Functions

We have evaluated the methods on synthetic benchmark
functions for optimization. We have used the functions
previously used in the BO literature: the RKHS function [40]
and a Mixture of 2D Gaussian distributions (GM) [14]. These
functions have unstable global optima for certain levels of
input noise. This means that in order to locate the safe optima,
we need to model and take into account the input noise. We
have also used a 4D Michalewicz function1, a popular test
problem for global optimization because of its sharp edges and
the large number of local optima. All benchmark functions
use input noise σ = 0.02 and 100 evaluations. The number of
initial samples is set based on the dimensions of each problem
to 5, 20 and 30 samples for RKHS, GM and Michalewicz.

Figure 3 shows the results on the benchmark functions.
Although UBO finds better stable optima than BO, using
the Boltzmann selection further improves the performance.
It also shows that adding parallelization barely impacts the
optimization results. This means that we can achieve better
performance and wall-time using the parallel approach.

1https://www.sfu.ca/ ssurjano/optimization.html
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Fig. 4. Robot pushing problem and rover path planning optimization results. For the more complex problems, the UBO is not able to find a stable solution,
unlike the Boltzmann selection.
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Fig. 5. Examples of optimized trajectories found by different methods (rows)
and trials (columns), showing the possible deviations from the trajectories
by simulating input noise σ = 0.02. We display the cost of the desired
trajectory (assuming no input noise) and the average cost from possible
deviations over each result. Note that BO (first row) does not find the safe
path in any of the trials. The best trial is found by UBO (2nd row and
column: noiseless cost 0.27, noisy cost 0.40), however most of the time
lacks exploration to find a good one. The Boltzmann selection (serial in row
3 and parallel in row 4) improves exploration allowing better results overall.

B. Robot Pushing

Next, we have used the active learning for robot pushing
setup and code from Wang et al. [41]. The task is to push an
object towards a designated goal location. In the 3D problem,
the policy parameters are the robot location (rx, ry) ∈ [−5, 5]
and pushing duration tr ∈ [1, 30], while pushing direction
rθ towards the object is assumed to be known. In the 4D
problem, rθ ∈ [0, 2π) is included as the fourth parameter.
The problem is simulated in a 2D environment with a circular
robot and a square object. The robot follows a constant linear
motion from (rx, ry) in rθ direction during tr timesteps and
the simulation is run until both object and robot reach zero
velocity. The policy cost is the distance between the object
and the designated goal. In both functions, we use 10 initial
queries and a budget of 100 function evaluations during
optimization. The 3D version uses σ = 0.02 while the 4D
version uses σ = 0.01. We reduced the input noise in the

4D function because the robot angle parameter rθ is very
sensitive to input noise, as a small change in direction of the
robot might result in completely missing the goal.

Figure 4, shows the Robot Pushing results. Contrary to
benchmark results, UBO no longer guarantees stable solutions.
Instead, it shows that Boltzmann selection is required to
achieve good results. Parallel performance remains similar.

C. Robot Path Planning

In this section we cover the problem of safe path planning.
The objective is to find a stable and efficient trajectory of
a rover through a rugged terrain with multiple obstacles. It
is based on optimizing rover trajectories from Wang et al.
[42]. In this case, there are 4 policy parameters within the
[0, 1] interval, a pair of 2D reference points for a trajectory
defined by a quadratic B-Spline with smoothness condition
set to 0 (to enforce it to go through the reference points). The
robot has to perform path planning while avoiding obstacles,
which might be dangerous for the rover to collide with, and
steep slopes, which might be dangerous as the rover can
tip over. The cost for traversing obstacles or getting out of
bounds is 20.0, for slopes is 1.0 and a constant cost of 0.05
for penalizing trajectory length. The overall policy cost is
computed by integrating along the trajectory. In the figures,
obstacles are red rectangles and slopes are orange regions.
We are interested in finding stable trajectories that avoid the
danger that might arise from trajectory deviations. This is a
common problem in robot navigation as localization errors
might result in the robot not following the desired trajectory
accurately [23], [12].

We study this problem using 2 different input noises: σ =
0.015 and σ = 0.02. We use 30 initial samples and 100
function evaluations during optimization. Figure 4 shows the
resulting optimization performance of each method. Figure
5 shows some trajectories obtained using different methods.
We can see how both BO and UBO are prone to get stuck in
suboptimal trajectories as solutions while Boltzmann selection
methods return a solution closer to the safe trajectory.

VI. CONCLUSIONS

In this paper, we propose the first active policy search
algorithm that is robust both in a statistical and optimization
point of view. For achieving both types of robustness, we use



multiple techniques, such as, the unscented transformation to
deal with input noise and local perturbations, a Boltzmann
selection to enhance the exploration and convergence guaran-
tees of the acquisition function. Therefore, this paper presents
several contributions that provide synergistic results. First,
we have presented a new formulation and interpretation of
the unscented Bayesian optimization algorithm and shown
its robustness both for safety/stability conditions and against
small perturbations in the queries. Second, for statistical
robustness, we have used a Boltzmann selection of the
acquisition function for actively preventing surrogate bias
and guaranteeing near-optimal convergence. This further
highlights previous results that indicates that the ubiquitous
greedy strategy in the Bayesian optimization literature can
be suboptimal in many applications. In the experiments,
we have used an an adaptive Gaussian process with the
Spartan kernel for modeling the nonstationarity of reward/cost
functions in robotic applications, to guarantee a strong and
flexible baseline. The method has been evaluated on several
benchmark functions and robotic applications which showcase
the influence of input noise, such as safe robot navigation.
We also take advantage of the embarrassingly parallel nature
of the Boltzmann selection that could be used in multi-robot
setups or simulation environments.
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