
Bayesian Optimization with Adaptive Kernels for Robot Control

Ruben Martinez-Cantin

Abstract— Active policy search combines the trial-and-error
methodology from policy search with Bayesian optimization to
actively find the optimal policy. First, policy search is a type
of reinforcement learning which has become very popular for
robot control, for its ability to deal with complex continuous
state and action spaces. Second, Bayesian optimization is a sam-
ple efficient global optimization method that uses a surrogate
model, like a Gaussian process, and optimal decision making
to carefully select each sample during the optimization process.
Sample efficiency is of paramount importance when each trial
involves the real robot, expensive Monte Carlo runs, or a
complex simulator. Black-box Bayesian optimization generally
assumes a cost function from a stationary process, because
nonstationary modeling is usually based on prior knowledge.
However, many control problems are inherently nonstationary
due to their failure conditions, terminal states and other abrupt
effects. In this paper, we present a kernel function specially
designed for Bayesian optimization, that allows nonstationary
modeling without prior knowledge, using an adaptive local
region. The new kernel results in an improved local search
(exploitation), without penalizing the global search (explo-
ration), as shown experimentally in well-known optimization
benchmarks and robot control scenarios. We finally show its
potential for the design of the wing shape of a UAV.

I. INTRODUCTION

When a baby is learning a new behavior, like walking or
grasping, she performs it several times, trying to improve the
outcome of the behavior in each trial or exploring new strate-
gies. This trial and error methodology share many points
with the model-free direct policy search methodology that
has been quite successful in robotics [1]. These algorithms
are designed to maximize or minimize a respective reward
or cost function as a function of a parametrization of the
policy or behavior that the agent is following. Traditionally,
the most popular methods were variations of policy gradient
methods [2]. Recently, there has been an increasing number
of methods that have been applying Bayesian optimization in
the context of policy search for robotics. The advantages of
Bayesian optimization for policy search are: a) ability to find
the global optimum, b) after testing few policies, c) without
gradient information and d) without model or instant reward.
Recent studies have found connections between Bayesian
optimization and the way biological systems adapt and search
in nature [3].

Bayesian optimization is a classic global optimization
method [4] which has become quite popular recently for
being sample efficient [5] and applied with great success
for machine learning applications [6], etc. In the context
of robotics it has been applied for robot planning [7],

*This work was supported in part by projects DPI2015-65962-R
(MINECO/FEDER, UE), CUD2013-05 and CUD2016-17.

R. Martinez-Cantin is at Centro Universitario de la Defensa, Zaragoza,
Spain. and SigOpt, Inc. rmcantin@unizar.es

[8], control [9], [10], task optimization [11], grasping [12],
model-free reinforcement learning [13], [14], model-based
reinforcement learning [15], sensor networks [16], etc.

Bayesian optimization is the combination of two main
components: a surrogate model which captures all prior and
observed information and a decision process which performs
the optimal action, i.e.: where to sample next, based on the
previous model. Thus, the quality of the surrogate model is of
paramount importance as it also affects the optimality of the
decision process. Earliest versions of Bayesian optimization
used Wiener processes [4] as surrogate models. It was the
seminal paper of Jones et al. [5] that introduced the use of
Gaussian processes (GP). The GP model is the most pop-
ular due to its accuracy, robustness and flexibility, because
Bayesian optimization is mainly used in black or grey-box
scenarios. The range of applicability of a GP is defined by
its kernel function, which sets the family of functions that
is able to represent through the reproducing kernel Hilbert
space (RKHS) [17]. From a practical point of view, the
standard procedure is to select a generic kernel function, such
as the Gaussian (square exponential) or Matérn kernels, and
estimate the kernel hyperparameters from data. One property
of these kernels is that they are stationary. Although it might
be a reasonable assumption in a black box setup, we show
in Section II-B that this reduces the efficiency of Bayesian
optimization in most situations. It also limits the poten-
tial range of applications. Moreover, nonstationay methods
usually require extra knowledge of the function (e.g.: the
global trend or the space partition). Being global properties,
gathering this knowledge from data requires global sampling,
which is contrary to the Bayesian optimization methodology.

The main contribution of the paper is a new set of adaptive
kernels for Gaussian processes that are specifically designed
to model functions from nonstationary processes but focused
on the local region near the optimum. Thus, the new model
maintains the philosophy of global exploration/local exploita-
tion. This idea results in an improved sample efficiency of
any Bayesian optimization based on Gaussian processes. We
call this new method Spartan Bayesian Optimization (SBO).
The algorithm has been extensively evaluated in many sce-
narios and applications. Besides some standard optimization
benchmarks, we show the applicability to optimal policy
learning in reinforcement learning scenarios. Furthermore, to
highlight the general purpose of the method, we also show
an application of autonomous wing design of a UAV.

II. BAYESIAN OPTIMIZATION WITH GAUSSIAN
PROCESSES

Consider the problem of finding the minimum of an
unknown real valued function f : X → R, where X

is a compact space, X ⊂ Rd, d ≥ 1. In order to find
the minimum, the algorithm has a maximum budget of N
evaluations of the target function f . The purpose of the
algorithm is to select the best query points at each iteration
such that the optimization gap or regret is minimum for the
available budget.

The surrogate model is a Gaussian process GP(x|µ, σ2,θ)
with inputs x ∈ X, scalar outputs y ∈ R and an associate
kernel or covariance function k(·, ·) with hyperparameters θ.
The hyperparameters are estimated from data using Markov
Chain Monte Carlo (MCMC) resulting in m samples Θ =
{θi}mi=1. Given a dataset at step n of query points X =
{x1:n} and its respective outcomes y = {y1:n}, then the
prediction of the Gaussian process at a new query point
xq , with kernel ki conditioned on the i-th hyperparameter
sample ki = k(·, ·|θi) is a normal distribution such as
yq ∼ 1/m

∑m
i=1N (µi, σ

2
i |xq) where:

µi(xq) = ki(xq,X)Ki(X,X)−1y

σ2
i (xq) = ki(xq,xq)

− ki(xq,X)Ki(X,X)−1ki(X,xq)

(1)

being ki(xq,X) the corresponding cross-correlation vector
of the query point xq with respect to the dataset X

ki(xq,X) = [ki(xq,x1), . . . , ki(xq,xn)]
T

and Ki(X,X) = KG + σ2
nI is the Gram matrix KG

corresponding to kernel ki for the dataset X, and σ2
n is

a noise term to represent stochastic functions or surrogate
mismodeling. The prediction at any point x is a mixture of
Gaussians because we use a sampling distribution of θ.

For the decision process, first we rely on an initial design
of p points based on Latin Hypercube Sampling (LHS) [5],
to avoid initialization bias. Subsequent points are selected
using the expected improvement criterion [4] which is defined
as the expectation of the improvement function I(x) =
max(0, ρ−f(x)). This improvement is defined over a incum-
bent target ρ, which in many applications is considered to
be the best outcome until that iteration ρ = ybest. Taking the
expectation over the mixture of Gaussians of the predictive
distribution, we can compute the expected improvement as:

EI(x) =

m∑
i=1

[(ρ− µi(x)) Φ(zi) + σi(x)φ(zi)] (2)

where φ and Φ are the corresponding Gaussian probability
density function (PDF) and cumulative density function
(CDF), being zi = (ρ − µi(x))/σi(x). At iteration n, we
select the next query at the point that maximizes the expected
improvement xn = arg maxxEI(x)

A. Kernels for Bayesian optimization
Many applications of Gaussian process regression, includ-

ing Bayesian optimization, are based on the assumption that
the process is stationary. This is a reasonable assumption
for black-box optimization as it does not assume any extra
information on the evolution of the function in the space. For
example, the use of the squared exponential (SE) kernel in
GPs is quite frequent: kSE(x,x′) = exp

(
− 1

2r
2
)

where r is

the weighted L2 norm between x and x′. The hyperparame-
ters of the kernel are the components of the weighting matrix
of the norm Λ. In many applications, the matrix is a simple
constant Λ = θ−1I (isotropic process). If we use a diagonal
matrix Λ = diag(θ−11 , . . . , θ−1d) (anisotropic process), it is
called automatic relevance determination (ARD).

Because the SE kernel is infinitely differentiable, it tends
to over-smooth functions. For Bayesian optimization, a more
suitable kernel is the Matérn kernel family, specifically the
the Matérn kernel with ν = 5/2, as it provides a good trade
off of differentiability/smoothness:

kM5(x,x′) = exp
(
−
√

5r
)(

1 +
√

5r +
5

3
r2
)

(3)

For these kernels, the hyperparameters θl represent the
length-scales that captures the smoothness or variability of
the function in the corresponding dimension [17]. Small
values of θl will be more suitable to capture signals with
high frequency components; while large values of θl result
in a model for low frequency signals or flat functions. This
effect is very important in Bayesian optimization. For the
same distance between points, a kernel with smaller length-
scale will result in higher predictive variance, therefore
the exploration will be more aggressive. This idea was
previously explored in Wang et al. [18] by forcing smaller
scale parameters to improve the exploration. More formally:

Proposition 1: [18] Given two kernels kl and ks with
large and small length scale hyperparameters respectively,
any function f in the RKHS characterized by a kernel kl is
also an element of the RKHS characterized by ks.
Thus, using ks instead of kl is safer in terms of guaranteeing
convergence. However, if the small kernel is used every-
where, it might result in unnecessary sampling of smooth
areas.

B. Nonstationary Gaussian processes

Consider the problems of Section V-B.1 where a biped
robot (agent) is trying to learn the walking pattern (policy)
that maximizes the walking speed (reward). In this setup,
there are some policies that reach undesirable states or result
in a failure condition, like the robot falling or losing the
upright posture. Then, the system returns a null reward or
arbitrary penalty. In cases where finding a stable policy
is difficult, the reward function may end up being almost
flat, except for a small region of successful policies where
the reward is actually informative in order to maximize the
speed.

Modeling these kind of functions with Gaussian processes
require kernels with different length scales for the flat/non-
flat regions or specially designed kernels to capture that
behavior. Furthermore, Bayesian optimization is inherently
a local stationary process depending on the acquisition func-
tion. It has a dual behavior of global exploration and local
exploitation. Ideally, both samples and uncertainty estimation
end up being distributed unevenly, with many samples and
small uncertainty near the local optima and sparse samples
and large uncertainty everywhere else.

Definition 1: Let f : Rd → R be a function andHk be the
reproducing kernel Hilbert space generated by kernel k(·, ·).
• We say that a function f(x) is stationary if ∃ k(x,x′) =
k(τ) where τ = x− x′ and f ∈ Hk.

• In contrast, we say that a function f(x) is nonstationary
if @ k(x,x′) = k(τ) where τ = x− x′ and f ∈ Hk.

• Finally, we say that a function f(x) is local stationary
if there is a subset X ⊂ Rd so that the function is
stationary ∀x ∈ X and nonstationary ∀x ∈ Rd \ X .

According to the previous definition, most applications of
Bayesian optimization are nonstationary or local stationary.
Also, even for stationary problems, we might want different
levels of exploration in different regions, which might require
using two or more length-scales as seeing in Section II-A.

There have been several attempts to model nonstationarity
in Bayesian optimization. Bayesian treed GPs were used
in Bayesian optimization combined with an auxiliary local
optimizer [19]. An alternative is to project the input space
through a warping function to a stationary latent space [20].
Later, Assael et al. [21] built treed GPs where the warping
model was used in the leaves. These methods were direct
application of regression methods, that is, they model the
nonstationary property in a global way. However, as pointed
out before, sampling in Bayesian optimization is uneven, thus
the global model might end up being inaccurate.

III. SPARTAN BAYESIAN OPTIMIZATION

Our approach to nonstationarity is based on the model
presented in Krause & Guestrin [22] where the input space
is partitioned in different regions such that the resulting GP is
the linear combination of local GPs: ξ(x) =

∑
j λj(x)ξj(x).

Each local GP has its own specific hyperparameters, making
the final GP nonstationary even when the local GPs are
stationary. In order to achieve smooth interpolation between
regions, the authors suggest the use of a weighting function
ωj(x) for each region, having the maximum in region j and
decreasing its value with distance to region j [22]. Then,
we can set λj(x) =

√
ωj(x)/

∑
p ωp(x). In practice, the

mixed GP can be obtained by a combined kernel function
of the form: k(x,x′|θ) =

∑
j λj(x)λj(x

′)kj(x,x
′|θ). A

related approach of additive GPs was used by Kandasamy
et al. [23] for Bayesian optimization of high dimensional
functions under the assumption that the actual function is a
combination of lower dimensional functions.

For Bayesian optimization, we propose the combination
of a local and a global kernels and with multivariate normal
distributions as weighting functions. We have called this
kernel, the Spartan kernel:

k(x,x′|θS) = λ(g)(x)λ(g)(x′)k(g)(x,x′|θg)
+ λ(l)(x|θp)λ(l)(x′|θp)k(l)(x,x′|θl)

(4)

where the normalized local weight λ(l)(x|θp) includes pa-
rameters to move the influence region. The unnormalized
weights ω are defined as:

ω(g) = N
(
ψ, Iσ2

g

)
ω(l) = N

(
θp, Iσ2

l

) (5)

0.0 0.2 0.4 0.6 0.8 1.0

0

1

Global kernel

Local kernel

Normalized global weight Moving normalized local weight

Spartan kernel

Fig. 1. Representation of the Spartan kernel in SBO. Typically, the local
and global kernels have a small and large length-scale respectively. The
influence of each kernel is represented by the normalized weight at the
bottom of the plot. Note how the kernel with small length-scale produces
larger uncertainties which is an advantage for fast exploitation, but it can
perform poorly for global exploration as it tends to sample equally almost
everywhere. On the other hand, the kernel with large length-scale provides
a better global estimate, but it can be too constrained locally.

where ψ and θp can be seen as the centers of the influence
region of each kernel while σ2

g and σ2
l represents the area of

influence. The Spartan kernel is shown in Figure 1.
1) Global weight parameters: Unless we have prior

knowledge of the function, the parameters of the global
weight are mostly irrelevant. In most applications, we can
use a uniform weight, which can be easily approximated
with a large σ2

g . For example, assuming a normalized input
space X = [0, 1]d, we can set ψ = [0.5]d and σ2

g = 10.
2) Local weight parameters: For the local weight, we

propose to consider the center of the influence area of the
local kernel θp as part of the hyperparameters for the Spartan
kernel, that also includes the parameters of the local and
global kernels, that is:

θS = [θg,θl1, . . . ,θ
l
M ,θ

p]

Thus, θp is also estimated from data. The variance of the
weight of the local kernel (extension of the influence area)
could also be adapted including the terms σ2 as part of
the kernel hyperparameters θS . However, in that case the
problem becomes ill-posed, resulting in overfitting. Instead
of adding regularization terms, we found simpler to fix
the value of σ2

l or fix the number of samples within 2σ2
l .

The second method has the advantage that, while doing
exploitation, as the number of local samples increase, the
area gets narrower, allowing better local modeling.

3) Learning the parameters: As commented in Section II,
when new data is available, all the parameters are updated
using MCMC. Therefore, the position of the local kernel θp

is moved each iteration to represent the posterior, as can be
seen in Figure 2. Due to the sampling behavior in Bayesian
optimization, we found that it intrinsically moves more likely
towards the more densely sampled areas in many problems,
which corresponds to the location of the function minima.
Furthermore, as we have m MCMC samples, there are m
different positions for the local kernel Θp = {θpi }mi=1.

It is important to note that, although we have described
SBO relying on GPs and EI, the Spartan kernel also works
with other popular models such as Student-t processes, vari-
ational GPs; other criteria such as upper confidence bound

Fig. 2. Gramacy function [21]. The path bellow the surface represents
the location of the local kernel as being sampled by MCMC for each BO
iteration. Clearly, it moves towards the nonstationary section of the function.
For visualization, the path is colored depending on the iteration (start →
blue → black → green → red → end).

[16], relative entropy [24]; and specific configuration such
as trajectory aware kernels [15], [8].

The intuition behind SBO is the same of the sampling
strategies in Bayesian optimization: the aim of the model
is not to approximate the target function precisely in every
point, but to provide information about the location of the
minimum. Many optimization problems are difficult due to
the fact that the region near the minimum is heteroscedastic,
i.e.: it has higher variability than the rest of the space, like the
function in Figure 2. In this case, SBO greatly improves the
performance of the state of the art in Bayesian optimization.

IV. ACTIVE POLICY SEARCH

Reinforcement learning algorithms usually rely on variants
of the Bellman equation to optimize the policy step by
step considering each instantaneous reward rt separately.
Some algorithms also rely on partial or total knowledge of
the transition model. Other methods tackle the optimization
problem directly, considering the problem of finding the
optimal policy as a stochastic optimization problem, being
called direct policy search. In that way, the use of Bayesian
optimization for reinforcement learning falls in the family of
direct policy search, being called active policy search [13]
for its connection with active learning and how samples are
carefully selected based on current information.

The main advantage of using Bayesian optimization to
compute the optimal policy is that it can be done with very
little information. In fact, as soon as we are able to simulate
scenarios and return the total reward

∑T
t=1 rt, we do not

need to access the dynamics, the instantaneous reward or
the current state of the system. Furthermore, there is no
need for space or action discretization, building complex
features or tile coding [25]. We found that for many control
problems, a simple, low dimensional policy is able to achieve
state-of-the-art performance if properly optimized. We also
solve stochasticity by running each episode several times and
returning the average reward, as an approximation of the
expected reward.

A frequent issue for applying general purpose optimization
algorithms for policy search is that, in many problems, the
occurrence of failure states or scenarios results in large
discontinuities or flat regions due to large penalties for all
failing policies. This is opposed to the behavior of the
reward near the optimal policy where small variations on a

suboptimal policy can considerably change the performance
achieved. Therefore, the resulting reward function presents a
nonstationary behavior with respect to the policy.

V. EVALUATION AND RESULTS

We have selected a variety of benchmarks from the opti-
mization, RL/control and robotics literature. For evaluation
purposes and to highlight the robustness of SBO, we took the
simpler approach to fix the variance of ωl. We found that a
value of σ2

l = 0.05 was robust enough in all the experiments
once the input space was normalized to the unit hypercube.

Although this method allows for any combination of local
and global kernels, for the purpose of evaluation, we used
the Matérn kernel from equation (3) with ARD for both
–local and global– kernels. Furthermore, the length-scales
were initialized with the same prior for the both kernels.
Therefore, we let the data determine which kernel has smaller
length-scale. We found that the typical result is the behavior
from Figure 1. However, in some problems, the method may
learn a model where the local kernel has a larger length-
scale (i.e.: smoother and smaller variance) than the global
kernel, which may also improve the convergence in plateau-
like functions. Besides, if the target function is stationary,
the system might end up learning a similar length-scale for
both kernels, thus being equivalent to a single kernel. We
can say that standard BO is a special case of SBO where the
local and global kernels are the same.

Given that for a single Matérn kernel with ARD, the
number of kernel hyperparameters is the dimensionality of
the problem, d, the number of hyperparameters for the
Spartan kernel in this setup is 3d. As we will see in the
experiments, this is the only drawback of SBO compared
to standard BO, as it requires running MCMC in a larger
dimensional space, which results in higher computational
cost. However, because SBO is more efficient, the extra
computational cost can be easily compensated by a reduced
number of samples.

We implemented Spartan Bayesian Optimization (SBO)
using the BayesOpt library [26]. This allowed us to evaluate
the setup for many surrogates and criteria. For comparison,
we also implemented the input warping (WARP) method
from Snoek et al. [20]. To our knowledge, this is the
only Bayesian optimization algorithm that has deal with
nonstationarity using GPs in a fully correlated way.

For the experiments reported here we used: a Gaussian
process with unit mean function like in Jones et al. [5]. For
BO and WARP we also used a Matérn kernel ν = 5/2
with ARD. The kernel hyperparameters, including θp for
SBO and (α, β) for the warping functions were estimated
using MCMC (i.e.: slice sampling). Due to the computational
burden of MCMC, we used a small number of samples
(i.e.: 10), while trying to decorrelate every resample with
large burn-in periods (i.e.: 100 samples) as in Snoek et al.
[6]. All experiments were repeated 20 times using common
random numbers. The starting function evaluations of the
plots represents the initial design using latin hypercube
sampling. Plots show the average results over all runs with
95% confidence intervals.

10 20 30 40 50 60

func. evaluations

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

op
tim

iz
at

io
n

ga
p

Gramacy function

BO
SBO
WARP

10 15 20 25 30 35 40

func. evaluations

−2

0

2

4

6

8

10

m
in

im
um

va
lu

e

Branin function

BO
SBO
WARP

10 20 30 40 50 60 70

func. evaluations

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
in

im
um

va
lu

e

Hartmann 6D function

BO
SBO
WARP

Fig. 3. a) Gramacy function. b) Michalewicz 10D function with m=10. c) Branin-Hoo function, d) Hartmann 6D function. For the nonstationary functions,
a) and b), the proposed SBO method results in an outstanding convergence speed compared to the state of the art. For the Gramacy function, SBO finds
the minimum in about 30 function evaluations in all tests. For the stationaty functions, c) and d) BO and SBO are barely identical, with SBO producing
more accurate results and with smaller uncertainty. The WARP method sometimes improves over standard BO (a,b and d) or produces worse results (c).

A. Optimization benchmarks

We evaluated the algorithms on a set of well-known test
functions for global optimization both smooth or with sharp
drops (see Figure 3). The selected functions have become a
standard in the Bayesian optimization literature.

First, we show the results for the optimization benchmarks
for functions with sharp drops where local optimization is
fundamental. Figure 3a shows the results of the Gramacy
function found in [21]. Our method (SBO) provides excellent
results, by reaching the optimum in less than 35 samples for
all tests. Because the function is nonstationary, the WARP
method outperforms standard BO, but its convergence is
much slower than SBO. Figure 3b shows the results for the
Michalewicz function. This function has a parameter to de-
fine the dimensionality d and the steepness m. This function
is known to be a hard benchmarks in global optimization
due to the many local minima (d!) and steep drops. We used
d = 10 and m = 10, resulting in 3628800 minima with very
steep edges. For this problem, SBO clearly outperforms the
rest of the methods by a large margin.

We have also evaluated stationary and smooth functions
with large valleys near the global minimum. Bayesian op-
timization is more suitable for these functions and standard
kernels perform well in general. Therefore, there is barely
room from improvement. However, we show that, even in
this situation, SBO is equal or better than standard BO.
In terms of accuracy, there is no penalty for the extra
complexity of the SBO model, while the WARP method may
require more samples due to the extra complexity. For the
Branin-Hoo function (see Figure 3c), the differences between
SBO and BO are insignificant. Meanwhile, the warping
function in WARP introduces an exploration bias at early
stages, resulting in slower convergence. For the Hartmann
6D function (see Figure 3d), the differences are small, which
imply that the function is most likely stationary and simple to
exploit. However, we can see that during the final iterations,
nonstationary methods (SBO and WARP) slightly improve
standard BO, both in terms of average result (convergence)
and variance (robustness).

B. Reinforcement learning experiments

We evaluated SBO with several RL/control problems.
They all rely on continuous states, actions. We assume the

problems are episodic, with a finite time horizon. We have
compared our method in three well-known benchmarks with
different level of complexity.

1) Walker: The first problem is learning the controller
of a three limb robot walker presented in Westervelt et al.
[27] using their Matlab code. The controller modulates the
walking pattern of a simple biped robot. The desired behavior
is a fast upright walking pattern, the reward is based on
the walking speed with a penalty for not maintaining the
upright position. The dynamic controller has 8 continuous
parameters. The walker problem was already used as a
Bayesian optimization benchmark [24].

2) Mountain Car: The second problem is the mountain
car problem [25] based on a Python implementation from
Martin H. [28]. The state of the system is the car hor-
izontal position. The action is the horizontal acceleration
a ∈ [−1, 1]. Contrary to the many solutions that discretize
both the state and action space, we can directly deal with
continuous states and actions. The policy is a simple lin-
ear perceptron model inspired by Brochu et al. [29]. The
potentially unbounded policy parameters w = {wi}7i=1 are
computed as w = tan ((π − επ) w01 − π/2) where w01 are
the policy parameters bounded in the [0, 1]7 space. The term
επ > 0 was used to avoid wi →∞.

3) Helicopter hovering: The third problem is the hovering
helicopter from the RL-competition 1. It is one of the most
challenging scenarios of the competition, being presented
in all the editions since 2008. This problem is based on
a simulator of the XCell Tempest aerobatic helicopter. The
simulator model was learned based on actual data from the
helicopter using apprenticeship learning [30]. The model was
used to learn a policy that was later used in the real robot.
The simulator included several difficult wind conditions. The
state space is 12D (position, orientation, translational veloc-
ity and rotational velocity) and the action is 4D (forward-
backward cyclic pitch, lateral cyclic pitch, main collective
pitch and tail collective pitch). The reward is a quadratic
function that penalizes both the state error (inaccuracy) and
the action (energy). Each episode is run during 10 seconds
(6000 control steps). If the simulator enters a terminal state
(crash), a large negative reward is given, corresponding to

1http://www.rl-competition.org/

10 15 20 25 30 35 40

func. evaluations

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

re
w

ar
d

3-limb walker control

BO
SBO
WARP

10 15 20 25 30 35 40

func. evaluations

−600

−400

−200

0

200

400

600

800

1000

re
w

ar
d

Mountain Car Control

BO
SBO
WARP

Fig. 4. Total reward for: a) the three limb walker, b) the mountain car and c) the hovering helicopter control problem. For the first problem, SBO is
able to achieve higher reward, while other methods get stuck in a local maxima. For the mountain car, SBO is able to achieve maximum performance in
all trials after just 27 policy trials (17 iterations + 10 initial samples). For the helicopter problem, BO and WARP have slow convergence, because many
policies results in an early crash, providing almost no information. However, SBO is able to exploit good policies and quickly improve the performance.

getting the most negative reward achievable for the remaining
time.

We used the weak baseline controller that was included
with the helicopter model. This weak controller is a simple
linear policy with 12 parameters (weights). In theory, this
controller is enough to avoid crashing but is not very robust.
We show how this policy can be easily improved with few
iterations. In this case, initial exploration of the parameter
space is specially important because the number of policies
not crashing in few control steps is very small. For most
policies, the reward is the most negative reward achievable.
Thus, in this case, we have used Sobol sequences for the
initial samples of Bayesian optimization. These samples are
deterministic, therefore we guarantee that the same number
of non-crashing policies are sampled for every trial and every
algorithm. We also increased the number of initial points to
40 due to the higher dimensionality.

Figure 4 shows the performance for the three limb walker
presented, the mountain car and the helicopter problem. In
all cases, the results obtained by SBO were more efficient
in terms on number of trials and accuracy, with respect
to standard BO and WARP. Furthermore, we found that
the results of SBO were comparable to those obtained by
popular reinforcement learning solvers like SARSA [25], but
with much less information and prior knowledge about the
problem. For the helicopter problem, other solutions found
in the literature require a larger number of scenarios/trials to
achieve similar performance [31].

C. Automatic wing design using CFD simulations

The next test is to find the shape of the wing that
minimizes the drag while maintaining enough lift. Wing
design using computational fluid dynamics (CFD) simulators
is also a well known difficult optimization problem due to the
chaotic nature of fluid dynamics [32]. Even though we use
a commercial CFD software (XFlow) to simulate the wind
tunnel, sample efficiency is mandatory as an average CFD
simulation can still take days or months of CPU time.

First, as a common practice in this kind of problems, we
assumed a 2D simulation of the fluid along the profile of
the wing. This is a reasonable assumption for wings with
large aspect ratio (large span compared to the chord), and it
considerably reduces the wall time of each simulation from
days to hours. For the parametrization of the profile, there

10 20 30 40 50 60 70 80 90 100

design trials

50

100

150

200

250

300

dr
ag

fo
rc

e

Wing Optimization

BO
SBO
WARP

Fig. 5. Results for the wing design optimization (10 runs per plot).

are many alternatives based on geometric or manufacturing
principles. In our case, we used Bezier curves for their
simplicity to generate the corresponding shape. However,
note that Bayesian optimization is agnostic of the geometric
parametrization and any other parametrization could also be
used. The Bezier curve of the wing was based on 7 control
points, that is, 14 parameters which were reduced to 5 by
adding some physical and manufacturing restrictions.

The problem of minimizing the drag directly is that the
best solutions tend to generate flat wings that do not provide
enough lift for the plane. As a simple approach, we added a
large penalty to the wings without enough lift. We also found
that, due to fluid dynamics, the drag value was very chaotic.
For example, the flow near the trailing edge can transition
from laminar to turbulent regime due to a small change in
the wing shape. Thus, the resulting forces are completely
different, increasing the drag and reducing the lift. Figure
5 shows how both BO and WARP fail to find the optimum
wing shape, under these conditions. However, SBO finds a
better wing shape and in very few iterations.

D. Computational cost

The main difference between the three methods (BO, SBO
and WARP) in terms of the algorithm is within the kernel
function k(·, ·), which includes the evaluation of the weights
in SBO and the evaluation of the warping function (the
cumulative density function of a Beta distribution) in WARP.
We found that the time differences between the algorithms
were mainly driven by the dimensionality and shape of the
posterior distribution of the kernel hyperparameters because
MCMC was the main bottleneck. Also, the evaluation of the
Beta CDF was more involved and computationally expensive

TABLE I
AVERAGE CPU TIME FOR THE TOTAL OPTIMIZATION (IN SECONDS).

Time(s) Gram. Branin Hartm. Michal. Walker MCar
#dims 2 2 6 10 8 7
#evals 60 40 70 210 40 40

BO 120 171 460 8 360 47 38
SBO 2 481 3 732 10 415 225 313 440 797
WARP 13 929 28 474 188 942 4 445 854 20 271 18 972

than the evaluation of the Matérn kernel or the Gaussian
weights. That extra cost became an important factor as the
kernel function is called millions of times for each Bayesian
optimization run.

Table I shows the average CPU time of the different
experiments for the total number of function evaluations. We
did not include the helicopter and wing problems because
both rely on multiple process synchronization, convoluting
the measurements, although the relative computation time
were similar to other examples.

VI. CONCLUSIONS

In this paper, we have presented a new algorithm called
Spartan Bayesian Optimization (SBO) in the context of
active policy search for robot control. Our method combines
a local and a global kernel in a single adaptive kernel to deal
with the exploration/exploitation trade-off and the inherent
nonstationarity in the search process during policy search
using Bayesian optimization. For nonstationary problems,
like robot control problems, the method provides excellent
results compared to standard Bayesian optimization and the
state of the art method for nonstationarity. Furthermore,
SBO also performs well in stationary problems by improving
local refinement while retaining global exploration capabil-
ities. We evaluated the algorithm extensively in standard
optimization benchmarks and control/reinforcement learning
scenarios. Moreover, our contribution can be directly applied
to other setups. As an example, we also evaluated SBO in an
autonomous wind design problem. The results have shown
that SBO increases the convergence speed and reduces the
number of samples in many problems. In addition, we have
shown how SBO is more efficient in terms of CPU usage
than other nonstationary methods for Bayesian optimization.

REFERENCES

[1] M. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search
for robotics,” Foundations and Trends in Robotics, vol. 2, no. 1-2, pp.
1–142, 2013.

[2] J. Peters and S. Schaal, “Policy gradient methods for robotics,”
in Proceedings of the IEEE International Conference on Intelligent
Robotics Systems (IROS 2006), 2006.

[3] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, p. 503507, 2015.

[4] J. Mockus, V. Tiesis, and A. Zilinskas, “The application of Bayesian
methods for seeking the extremum,” in Towards Global Optimisation
2, L. Dixon and G. Szego, Eds. Elsevier, 1978, pp. 117–129.

[5] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” Journal of Global
Optimization, vol. 13, no. 4, pp. 455–492, 1998.

[6] J. Snoek, H. Larochelle, and R. Adams, “Practical Bayesian optimiza-
tion of machine learning algorithms,” in NIPS, 2012, pp. 2960–2968.

[7] R. Martinez-Cantin, N. de Freitas, E. Brochu, J. Castellanos, and
A. Doucet, “A Bayesian exploration-exploitation approach for optimal
online sensing and planning with a visually guided mobile robot.”
Autonomous Robots, vol. 27, no. 3, pp. 93–103, 2009.

[8] R. Marchant and F. Ramos, “Bayesian optimisation for informative
continuous path planning,” in IEEE International Conference on
Robotics and Automation (ICRA), 2014.

[9] R. Calandra, A. Seyfarth, J. Peters, and M. Deisenroth, “Bayesian opti-
mization for learning gaits under uncertainty,” Annals of Mathematics
and Artificial Intelligence (AMAI), vol. 1 1, pp. 1–19 1–19, 2015.

[10] M. Tesch, J. Schneider, and H. Choset, “Adapting control policies for
expensive systems to changing environments,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2011.

[11] O. Kroemer, R. Detry, J. Piater, and J. Peters, “Combining active learn-
ing and reactive control for robot grasping,” Robotics and Autonomous
Systems, vol. 58, no. 9, pp. 1105–1116, 2010.

[12] J. Nogueira, R. Martinez-Cantin, A. Bernardino, and L. Jamone,
“Unscented Bayesian optimization for safe robot grasping,” in Proc.
of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2016.

[13] R. Martinez-Cantin, N. de Freitas, A. Doucet, and J. A. Castellanos,
“Active policy learning for robot planning and exploration under
uncertainty,” in Robotics: Science and Systems, 2007.

[14] S. R. Kuindersma, R. A. Grupen, and A. G. Barto, “Variable risk
control via stochastic optimization,” The International Journal of
Robotics Research, vol. 32, no. 7, pp. 806–825, 2013.

[15] A. Wilson, A. Fern, and P. Tadepalli, “Using trajectory data to improve
bayesian optimization for reinforcement learning,” Journal of Machine
Learning Research, vol. 15, pp. 253–282, 2014.

[16] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
in Proc. International Conference on Machine Learning (ICML), 2010.

[17] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine
Learning. Cambridge, Massachusetts: The MIT Press, 2006.

[18] Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and N. de Freitas,
“Bayesian optimization in a billion dimensions via random embed-
dings,” JAIR, vol. 55, pp. 361–387, 2016.

[19] M. A. Taddy, H. K. Lee, G. A. Gray, and J. D. Griffin, “Bayesian
guided pattern search for robust local optimization,” Technometrics,
vol. 51, no. 4, pp. 389–401, 2009.

[20] J. Snoek, K. Swersky, R. S. Zemel, and R. P. Adams, “Input warping
for Bayesian optimization of non-stationary functions,” in Interna-
tional Conference on Machine Learning, 2014.

[21] J. M. Assael, Z. Wang, and N. de Freitas, “Heteroscedastic treed
bayesian optimisation,” arXiv, Tech. Rep., 2014.

[22] A. Krause and C. Guestrin, “Nonmyopic active learning of Gaussian
processes: an exploration-exploitation approach,” in International Con-
ference on Machine Learning (ICML), Corvallis, Oregon, June 2007.

[23] K. Kandasamy, J. Schneider, and B. Poczos, “High dimensional
bayesian optimisation and bandits via additive models,” in Interna-
tional Conference on Machine Learning (ICML), 2015.

[24] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani, “Pre-
dictive entropy search for efficient global optimization of black-box
functions,” in NIPS, 2014.

[25] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. The MIT Press, 1998.

[26] R. Martinez-Cantin, “BayesOpt: A Bayesian optimization library for
nonlinear optimization, experimental design and bandits,” Journal of
Machine Learning Research, vol. 15, pp. 3735–3739, 2014.

[27] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and
B. Morris, Feedback control of dynamic bipedal robot locomotion.
CRC press, 2007, vol. 28.

[28] J. A. Martin H., “A reinforcement learning environment in Python,”
https://jamh-web.appspot.com/download.htm.

[29] E. Brochu, V. Cora, and N. de Freitas, “A tutorial on Bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning,” arXiv.org,
eprint arXiv:1012.2599, December 2010.

[30] P. Abbeel, A. Coates, M. Quigley, and A. Ng, “An application of
reinforcement learning to aerobatic helicopter flight,” in NIPS, 2006.

[31] R. Koppejan and S. Whiteson, “Neuroevolutionary reinforcement
learning for generalized control of simulated helicopters,” Evolution-
ary intelligence, vol. 4, no. 4, pp. 219–241, 2011.

[32] A. I. Forrester, N. W. Bressloff, and A. J. Keane, “Optimization
using surrogate models and partially converged computational fluid
dynamics simulations,” Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences, vol. 462, no.
2071, pp. 2177–2204, 2006.

