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Abstract— This paper presents a robust algorithm for seg-
mentation and line detection in 2D range scans. The described
method exploits the multimodal probability density function of
the residual error. It is capable of segmenting the range data in
clusters, estimate the straight segments parameters, and estimate
the scale of inliers error noise successfully, despite of high level of
spurious data. No prior knowledge about the sensor and object
properties is given to the algorithm. The mode seeking is based
on mean shift algorithm, which has been widely used and tested
in 3D laser scan segmentation, machine learning and pattern
recognition applications. We show the reliability of the technique
with experimental indoor and outdoor manmade environment.
Compared with classical methods, a good compromise between
false positive, false negative, wrong segment split and wrong
segment merge is achieved, with improved accuracy in the
estimated parameters.

I. INTRODUCTION

Robot navigation, localization and mapping requires to deal
with a high amount of data, sometimes redundant and com-
monly noisy. In manmade environments the assumption of flat
surfaces is highly reliable (walls, doors, tables, bookshelves,
etc.). In those cases, the typical platform is a mobile robot with
a built-in 2D rangefinder sensor moving on the floor. Then, flat
surfaces from real world are transformed into straight lines on
the sensor plane.

Feature extraction in robotics takes advantage of human
capability of abstraction which reports three main advantages:
(i) data compression: features use a simple parametric model
to represents the high amount of data, (ii) denoising: since
the model is estimated from several measurements, the uncer-
tainty and bias of final estimation is lower than any of the
measurements, (iii) distinguishability: high level features and
complex structures are easier to identify and match (despite
partial observation).

Real surfaces are not planar but have relief and hence it
is an issue to define when a cluster of points, not exactly
over a line, can be approximated as straight segment. A key
concept in the approximation is the scale, defined by the
noise standard deviation. It is worth noting that this scale
is a property of each scene segment, and hence it has to
be determined from the data corresponding to the segment.
For example, in Figure 1, the cluster corresponding to the ivy
covered wall on the left has a bigger scale that the clusters
corresponding to the concrete walls on the right, despite being

sensed approximately at the same relative location with respect
to the sensor, this shows how scale, is not only determined by
the sensor but also by the scene. Right bottom part of the figure
shows a successful clustering and the corresponding σ estimate
(magnified 30 times). Classical benchmark methods [1] do
not care about scale computation. Uncertainty models were
constructed based on sensor noise, considering a perfect scene
model, and considering the noise scale as an input to the
algorithm.

Thereinafter, without losing generality, observations follows
the next hypothesis based on the structural assumptions
• Data points Y satisfy Y ∈ R2, because we suppose a

robot moving on flat surface (floor), with a 2D rangefinder
parallel to the floor.

• Environment structures are planes perpendicular to the
floor, that appears as straight lines in the working planes.

• Noise distribution v is perpendicular to the estimated lines
vi ∼ p(v|Y, θ) following a gaussian distribution vi ∼
N (0, σ)).

• The standard deviation σ of the error distribution corre-
sponds to the scale, that is, the data dispersion of inliers;
which can vary from one segment to another.

Once the scan has been segmented in clusters corresponding
to the straight segments, the line fitting with these hypothesis
can be optimally solved using Total Least Squares [2]. The
problem is that clustering and scale estimation are coupled and
have influence on the line fitting, being a unique spuriously
clustered point able to ruin down a straight segment estimate
for the whole cluster.

Focusing on a cluster, the points belonging to the cluster are
inliers. The points not belonging to the cluster are outliers. A
first set of outliers are due to noise, or to non straight scene
structures. A second group of outliers, the pseudo-outliers,
corresponds with the other clusters. A robust method has to
deal successfully with both type of outliers.

We present an adaptation for 2D range scans of the ro-
bust algorithm, ASSC. ASSC was introduced by Wang and
Suter [3] for 3D images and fundamental matrix. It com-
bines the advantages of two classical segmentation algorithms:
RANSAC and LMedS. RANSAC is able to tolerate a high
rate of outliers, but needs an estimate of the error scale for
the clustering, a predefined scale is applied for all the clusters.
LMedS can compute the scale of inliers from the data but only
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Fig. 1. This figures shows a real scan with different straight segments (pseudo-outliers) and unstructured data (outliers). Top shows a panoramic photo of the
sensed area; notice the person, the ivy covered wall behind him on the left, and the concrete walls on the right. Bottom left shows the raw laser data. Bottom
middle shows the manually detected segments. Bottom right shows the experimental results. The scale is plotted as red orthogonal dash in the middle of the
segments, 30σ is used to magnify the scale in order to make it visible. Note the different scales computed for the ivy covered wall and for the concrete walls.

can deal with up to 50% of outliers. ASSC produces a data
driven scale estimate per each cluster when segmenting, and
is able to deal with high spurious rate as RANSAC.

ASSC is based on the mean shift search for maxima and
minima in the probability density function (pdf) of the point
error with respect to the straight segment defined by a cluster.
The pdf is coded considering the scanner points as samples of
the error distribution.

II. STATE OF THE ART

The problem of line extraction in 2D range scans has been
widely studied in the robotics literature. Several algorithms
have appeared with different properties and performance [1].
Here we introduced the most popular methods.

A. Line-building Algorithms

Line-building algorithms directly compute a suboptimal
parametric solution of a multiple structure, exploiting the
property that a single scan is an open chain of sorted points
with no loops. Segmentation is done concatenating consecutive
points that accomplish some heuristic line criteria. Usually, the
criteria are very simple, like checking an error bound, being
the fastest line detector algorithms. However, it requires a
prior knowledge of inliers scale. Moreover, none probabilistic
uncertainty model is assumed. Consequently, basic heuristic
conditions work very well with simple pseudo-outliers, but
crowded environments and gross outliers require complicated
rules being highly dependable of the application.

Examples of these algorithms are Split and Merge [4] and
Incremental [5], also called Line-Tracking. Essentially, Split
and Merge recursively splits the original parameter model

(e.g.: a straight line between the first and last point), when the
maximum residue is higher than a fixed threshold. Resulting
lines are thereupon merged following the same rule, i.e: the
maximum residue of two collinear segments is lower than the
threshold. On the other hand, Incremental Algorithm starts
with two close points (i.e: the first and second point), adding
the next scan point to the end of the segment when the line
criteria is validated. If the criteria is not achieved, then the
current line is finished and a new line is started at the next
point.

B. Hough Transform

The Hough transform [6] is based on a voting strategy to
determine the best fit for a data subset. The main drawback of
the method is that the parametric space must be discretized,
consequently, the accuracy is highly affected in a real time
application, since computational cost is O(nd) where n is the
number of data points and d is the size of the voting grid.

Hough Transform resembles to our approach regarding there
is no prior assumption about the error bounds or the level of
spurious. In addition, as a single majority voting strategy, it
can intrinsically deal with both outliers and pseudo-outliers.

C. Random Samplimg Segmentation Algorithms

In this case, the aim of the algorithms is to find a suboptimal
probabilistic model to classifying the data points and to
separate inliers from outliers.

If we consider independent normally distributed inliers
xi(θ) ∼ N (0, σ), and assume that the scale estimate, or
dispersion coefficient, corresponds to the estimated standard
deviation σ. The inliers are taken to be those data points which



normalized squared residual follows a χ2 distribution
(

xi(θ)
σ

)2

≤ χ2
1−α,n i = 1 . . . n (1)

where the χ2 distribution is a constant value for a fixed
probability of false positives (i.e: α = 0.01). Then, a scale
factor σ is mandatory to classify the data.

The clustering step is made by random sampling, taken
minimal subsets to compute several parametric models θi. The
winning subset model θ̂ is that which maximizes an utility
function Uθ. The optimal model is used to label the data using
the scale parameter σ (see equation 1). These algorithms can
intrinsically handle multiple structures using a recursive search
through the remaining data. Finally, a TLS algorithm is applied
to every cluster separately in order to correct the bias.

Considering that p is the size of a subset to compute a
minimal parametric model (e.g: 2 for a segment). The number
of samples to draw in order to find a subset with no outliers
with probability P is [7]

m =
log(1− P )

log[1− (1− ε)p]
(2)

where ε is the ratio of outliers.
In contrast to previously introduced algorithms the compu-

tational cost of random sampling approaches does not depend
on the size of the data set but on the spurious rate.

1) Least Median Squares (LMedS): The median estimator
is probably the most extended robust estimator due to its sim-
plicity and robustness when the ratio of inliers is higher than
0.5. In this case, the optimization criteria involve minimize
the median of the squared errors. Using a voting analogy, it
is similar to ask for an absolute majority.

Thus, the scale estimate is given by [7]

σ̂ = 1.4826
(

1 +
5

n− p

) √
medθ̂ r2 (3)

where medθ̂ r2 is the minimum median, n is the number of
samples and p is the dimension of the parameter space.

The main problem of LMedS appear in scenes with multiple
structures, because the level of pseudo-outliers is noticeably
bigger than 0.5.

2) RANdom SAmpling Consensus: RANSAC: RANSAC as-
sumes the inliers are the largest cluster for a predefined scale,
which can be an heuristic threshold or obtained from sensor
calibration. Consequently, the optimization criteria consist of
maximizing the number of inliers.

θ̂ = arg max
θ̂

nθ̂ (4)

where θ̂ is the parameter estimate and nθ̂ is the number
of inliers. Provided a good scale estimate for every cluster,
RANSAC is able to cope with large amounts of outliers. Nev-
ertheless, the prior scale knowledge is sometimes unavailable
or inaccurate. This a priori scale resembles to the Split and
Merge and Incremental error bound.

Following in the voting analogy, this algorithm performs
several referendums and it selects the option with biggest
majority.

III. ASSC: A KERNEL-BASED SCALE ESTIMATOR

Adaptive Scale Sample Consensus (ASSC) [3] is a modi-
fication of RANSAC involving an adaptive scale estimation.
The data driven scale estimate is computed using mean shift
method [8]. In this case, the utility function takes into account
both the number of inliers and the scale factor. Concluding
the voting analogy, this algorithm merely requires a simple
majority to achieve quorum.

Mean shift is an algorithm that can be used for clustering,
in this case, collinear data. Given a random sample of the
parametric model, we use the residual space to identify the
clusters of data. The actual inlier data is the first cluster found
with point error closer to 0. Subsequently, a LMedS algorithm
is applied to the cluster in order to compute the final scale. In
this case, LMedS converges to a solution because the cluster
includes a single structure and few outliers.

A. Mean Shift Clustering

The mean shift paradigm [9] is a nonparametric method to
find maxima and minima of an unknown pdf; the pdf is defined
by a sample. In our case the random variable is the orthogonal
error of a point with respect to a scene line segment, all the
scanner points define the sample of the random variable.

Mh(x) ≡ Hh
∇̂f(x)

f̂(x)
(5)

where f̂(x) is the density estimated and Hh is a bandwidth
coefficient related to the amount of information [8]. It has been
proved that mean shift vector points towards the direction of
the maximum increase in the density. Consequently, the mode
can be obtained using an iterative process

xk+1 = xk + Mh(xk) (6)

Mean shift vector computation is based on the kernel density
estimation and Parzen windows theory. Given a set of samples
X = {X1, . . . , Xn|Xi ∈ Rd}, the kernel density estimator is
defined as

f̂(x) =
1

nhd

n∑

i=1

K

(
x−Xi

h

)
(7)

where K(·) is a window or kernel function of width h. We have
selected the Epanechnikov kernel that yields the minimum
mean integrated square error (MISE)

Ke(ξ) =
{

1
2c−1

d (d + 2)(1− ξ′ξ) if ξ′ξ ≤ 1
0 otherwise

(8)

where cd is the volume of a d-dimensional hypersphere of unit
radius (i.e: c1 = 2, c2 = π). If we define ξ = (x − Xi)/h
then, the Kernel function is an hipersphere Sh(x) defined
in the sampling space centered at x with radius h. For the
Epanechnikov kernel, the amount of information Hh is

He
h =

h2

d + 2
(9)



Consequently, using the Epanechnikov kernel, the mean shift
vector can be rewritten as follows:

Me
h(x) =

1
ne

∑

Xe

Xi − x (10)

where Xe = {X1..ne |Xi ∈ Sh(x)} is the subset of ne samples
that fall within the hipersphere. As a result, the mean shift
vector depends only on the samples and the scale, see (12). It
can be proved that mean shift vector converges to the closest
mode of the unknown pdf [10], which is the desired cluster for
the current parametric solution. In addition, the same method
can be used to find the closest valley to the mode, following
the opposite mean shift vector

V e
h (x) = −Me

h(x) = x− 1
ne

∑

Xe

Xi (11)

This valley (see algorithm 1) will be used to define the
bounds for the data cluster. In our case, the selected interval
is [0, xvalley], because the residual data is always positive.

B. Adaptative Scale Sample Consensus (ASSC)

The main advantage of ASSC [3] is that the scale factor
is computed for every cluster separately, instead of being a
heuristic threshold.

Kernel density estimation [11] and, thereby, mean shift
method [9], are based on the smoothing of the sample distrib-
ution. Wide kernels produce oversmoothed pdf, while narrow
kernels yield peaked pdf. Consequently, the performance of the
mean shift vector is related to the kernel width h. For instance,
while searching the mode it is interesting to oversmooth the
actual density function to avoid small local maxima during
the gradient search. As a result, a oversmoothed bandwidth
selector [10] has been chosen

h =
[

4
3n

] 1
5

Sq (12)

where n is the total number of data and S(q) is a coarse
preestimation of the standard deviation, that is, the scale of
inliers. In ASSC algorithm, Wang and Suter suggested using
a generalization of the median estimator based in percentiles
smaller than 50% [12]

S(q) =
dq

Φ−1
[
1+q
2

] (13)

where q ∈ [0, 1] is the expected maximum ratio of inliers, dq

is the half-width of the shortest window including the fraction
q of total residuals and Φ−1[·] is the argument of the normal
cumulative density function. Note that S(0.5) is the median
estimator. We have tested during the experiments that the q
value is not significant for the performance of line extraction.
For instance, a good policy is to use a pessimistic assumption
in the ratio of inliers. Wang and Suter [3] suggest q = 0.2,
which is analogous to rely on the 20% of data points with
minimum error, for the initial scale estimation used to define
h in equation (12).

Thereupon, mean shift is applied to find the bounds of the
cluster. Finally, the actual scale of every cluster is recomputed
using LMedS algorithm, taking in to account only the data
inside the cluster. Hence, we avoid the problem of LMedS
with multiple structures.

The utility function should be directly proportional to the
number of points nk and inversely proportional to the disper-
sion of points σk. Therefore, the utility function is defined
as:

U(θk) = nk/σk (14)

In consequence, RANSAC is a particular case of ASSC for a
fixed scale model. ASSC has the capability to handle multiple
scale models even in a single scan.

Algorithm 1 ASSC algorithm
for iteration in 1 to m do

θk = g(Yp)|Yp ∼ Y subset sample
X = res(Y, θk)
compute h
repeat

compute Mh(xi)
xi+1 = xi + Mh(xi)

until Mh(xi) = 0 ⇒ xi = xpeak

repeat
compute Vh(xi)
xi+1 = xi + Vh(xi)

until Vh(xi) = 0 ⇒ xi = xvalley

Xk = X ∈ [0, valley]
σk = 1.4826

(
1 + 5

n−p

) √
medX2

k

U(θk) = nk/σk

end for
θ̂ = arg max U(θk)

Since ASSC has no restriction about scale, it needs a stop
criteria to avoid selecting outlier data after having clustered
all inliers. A basic test has been implemented to detect the
directionality of data based on the ratio between segment
length and estimated scale (li/σi) ≥ β. In the subsequent
experiments, β = 10.

IV. EXPERIMENTS

For the experimental results a data set has been collected us-
ing a mobile platform equipped with a SICK laser range finder
along Ada Byron building, at the University of Zaragoza. The
robot has been driven along 600 meters indoor and outdoor
manmade environment. The environment is interesting due to
the presence of different walls (concrete, tiles, glass, steel).
For example, an important piece of the trajectory is done next
to a ivy-covered wall (see pictures in figures 1 and 3) which
increase the noise level, and hence the scale, of those features.
There are also some blinds and grassy slopes which provide
poor and noisy reflections. The architecture of the building
presents challenging staircase-shaped walls with acute and
obtuse angles (figure 3). Furthermore, there are some curved
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Fig. 2. Door segmentation a) Manual segmentation b) ASSC c) RANSAC
with low noise model d) RANSAC with high noise model e) LMedS f) Split
and Merge + LMeds

TABLE I
COMPARISON OF DETECTION PERFORMANCE IN SCALE ALGORITHMS.

Algorithm False neg. False pos. Split segs Merged segs

LMedS 32% 33% 38% 30%

S&M + LMedS 31% 3% 85% 0%

RANSAC high 16% 24% 19% 27%

RANSAC low 12% 11% 48% 5%

ASSC 10% 17% 19% 11%

elements like people, baskets and decorative elements, which
should be detected as outliers during segmentation.

Some random scans and some specially difficult scans have
been selected to perform a manual segmentation of data
points. The whole experiment consist of 38 labeled scans
and 190 features. A total least squares (TLS) estimated has
been computed with the labeled data as a benchmark for the
algorithms.

We contrast the reliability of ACCS algorithm versus
RANSAC with two different predefined scales (high and low),
LMedS and a combination of Split and Merge and LMedS, as
proposed in [13]. The only constrains imposed to segmentation
algorithm are the minimum number of inliers nmin = 10 and
the maximum distance between points to break the segment
dmax = 1m. The manual benchmark takes into account
these constrains. See table I for a comparative in estimate
performance. If the actual segment length differs more than
10% compared with the extracted segment, we classify the
segment as split or merged respectively.
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Fig. 3. Corridor segmentation. Up wall: ivy Down walls: concrete and blinds.
For ASSC, ivy wall has bigger uncertainty that the concrete wall. a) Manual
segmentation b) ASSC c) RANSAC with low noise model d) RANSAC with
high noise model e) LMedS f) Split and Merge + LMeds

ASSC offers a good compromise between all false positive,
false negative, wrong split and wrong merged segments. Next
in performance is RANSAC, having the problem of finding a
unique predefined scale for all the segments. RANSAC with
high level noise fails in in the corners, where it is difficult to
distinguish the end current line and the beginning of another
line; usually, one or two pseudo-outliers are included in the
RANSAC clusters. On the other hand, a low scale RANSAC
splits noisy segments like ivy, providing an underestimate
of the final segment. Finally, due to its low breaking point,
LMedS algorithm is unstable in structures formed by several
concatenated elements (i.e: more than 2) and Split and Merge
discards or splits segments with outliers.

We have selected a specially difficult part of the experiment,
which is very frequent in man made environments, to show the
improvement of our approach: doors in a wall (see figure 2).
This situation is very deceptive since features are almost
collinear. In addition, some intermediate points appear in the
doorframe, hindering segmentation.
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Fig. 4. Error distributions: a) lateral error, b) orientation error, c) length error

Usually, line extraction algorithms tend to include the doors
as a part of the wall segment because the elements are
collinear according to the error model or the algorithm can
not deal with multiple structures. A simple approach would
consist in adjust the error model. Nevertheless, this could
lead to overconfidence and inaccuracies in other parts of the
environment with more texture. In contrast, ASSC is able to
distinguish between texture and multiple close structures, as
shown in figure 2. Basically, our approach determine the best
scale for each structure, which sometimes, is imposible to be
determined previously.

Other interesting situation appears when moving through
an outdoor corridor where on one side is a simple flat surface
but covered with ivy and on the other side is a concrete wall,
although with a complex structure (see figure 3).

Figure 4 shows the histograms of lateral, orientation and
length error distribution of the features detected in the whole
experiment. It is worth to notice that the histograms has been
truncated to clearly represent the information. The last bin
includes all error thereinafter. Our approach also improve the
accuracy of classical approaches since it is able to select a
tight uncertainty for every segment.

V. CONCLUSION

This paper presents an algorithm for robust data segmen-
tation involving multiple structures and high percentage of
outliers. The main advantage is the capability to compute
a data driven scale. This behavior improves, not only the
segmentation but also the final accuracy. Furthermore, our
approach does not require any previous calibration of the
sensor or tuning of the parameters of the algorithm. This
feature allows to reuse the code in different platforms, sensors
and application. Furthermore, the algorithm has proved its
robustness dealing with different objects in the same scene,
for instance bumpy ivy-covered walls and flat concrete walls.
Originally designed for 3D laser scanner, we have adapted
and tested the ASSC algorithm for 2D range scan data. The
method has been experimentally validated indoor and outdoor
manmade environments for robotics applications, surpassing

current algorithms performance both in estimation and detec-
tion.
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