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Abstract— This paper addresses the consistency issue of the
Extended Kalman Filter approach to the simultaneous local-
ization and mapping (EKF-SLAM) problem. Linearization of
the inherent nonlinearities of both the motion and the sensor
models frequently drives the solution of the EKF-SLAM out
of consistency specially in those situations where location un-
certainty surpasses a certain threshold. This paper proposes a
robocentric local map sequencing algorithm which: (a) bounds
location uncertainty within each local map, (b) reduces the
computational cost up to constant time in the majority of updates
and (c) improves linearization accuracy by updating the map with
sensor uncertainty level constraints. Simulation and large-scale
outdoor experiments validate the proposed approach.

I. INTRODUCTION

Probabilistic simultaneous localization and mapping
(SLAM) has become a milestone in mobile robotics literature.
By definition, it is the problem to determine the position
and heading of a vehicle moving through an unknown
environment and, concurrently, to learn useful information
from the surroundings taking into account sensor errors.

The first approximation to probabilistic SLAM, dates back
to the seminal work of Smith et al. [1], where a discrete-
time state-space framework, named the stochastic map was
originally presented. Assuming linearization of the motion and
sensor models and Gaussianity for the underlying probability
density functions, the approximate solution to the nonlinear
filtering problem was obtained by the Extended Kalman Filter
(EKF-SLAM) [2].

Recently, the consistency issues of the EKF-SLAM have
attracted the attention of the research community due to their
relevance, even with higher priority than computational cost.
Dissanayake et al. [3] proved three important convergence
properties of the EKF-SLAM: (i) The determinant of any
submatrix of the map covariance matrix decreases monotoni-
cally as observations are successively made; (ii) in the limit as
the number of observations increases, the landmark estimates
become fully correlated; and (iii) in the limit, the covariance
associated with any single landmark location estimate reaches
a lower bound determined only by the initial covariance in the
vehicle location estimate at the time of the first sighting of the
first landmark.

Fig. 1. Influence of the uncertainty of the estimated state-vector in
linearization accuracy.

Real EKF-SLAM implementations, however, do not satisfy
these properties due to inaccurate approximations of nonlinear
transformations. Moreover, for the general nonlinear case it is
well known that linearization can lead to filter divergence [2],
as has been confirmed in carefully designed experiments [4],
[5] which isolate the effects of linearization errors in the EKF-
SLAM approach.

The classical EKF linearizes both the motion and sensor
models by using a first-order Taylor series expansion around
a working point, which is the best available estimated state.
Therefore: (a) low estimation bias is required to accurately
compute the working point, and (b) because the uncertainty
of the estimated state-vector is not considered during lin-
earization it must be kept as reduced as possible to constrict
the approximation error (Fig. 1). Additionally, Figs. 2(a) and
2(b) describe the influence of observation uncertainty on the
Gaussianity assumption of the EKF approach. Clearly, the
higher the uncertainty, the worst the Gaussian approximation.

In the last few years, some works have been reported which
propose alternative linearization techniques [6], [7] or even
non-parametric approaches [8], [9]. Local map sequencing
approaches have been broadly studied in the literature [10],
[11] for their capabilities of limiting location uncertainty and
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(a)

(b)

Fig. 2. Influence of observation uncertainty in the Gaussianity assumption:
(a) low observation noise and (b) high observation noise.

because of their reduced computational cost.
In general, the minimization of linearization errors is based

on three main concepts:

1) Except during loop-closing, errors and uncertainty in-
crease with the size of the map. Consequently, a bounded
map is needed to assure a controlled numerical behavior.
A solution consists in building consecutive local maps
during exploration.

2) Except during loop-closing, computations are made with
elements topologically close to the robot, so a robot cen-
tered representation allows both lower bias and sensor
level uncertainties (Fig. 3).

3) Any linearized function computed after filter update
should be more accurate -working point closer to actual
point and lower uncertainty- than the same function
computed before the filter update. For example, obser-
vations must be taken into account as soon as possible,
postponing, whenever possible, any non-reversible lin-

W

R

E
F

(a)

W

R

E
F

(b)

Fig. 3. Comparison of the (a) absolute and (b) robocentric representations.
Note that in the robocentric approach, map features close to the robot have
lower uncertainty values leading to better approximations of nonlinearities.

earization to the integration of the observation.
These concepts can be summarized in the following idea:

Linearization errors -and filter consistency- are re-
lated to the accuracy of the estimated state and its
uncertainty in the selected representation.

Based on the previous discussion, we present a robocentric
local map sequencing approach which combines the advan-
tages of the local map sequencing approach [11] and the
robocentric mapping approach [5], and therefore: (a) bounds
location uncertainty within each local map, (b) reduce the
computational cost up to constant time in the majority of
updates and (c) improves linearization accuracy by updating
the map with sensor uncertainty level constraints1.

The rest of the paper is structured as follows: Section
II presents the discrete-time state-space approach to SLAM.
Robocentric mapping by using local maps is described in
section III. Finally, experimental results validate the proposed
approach for both simulated and large-scale outdoor environ-
ment.

II. PROBABILISTIC STATE-SPACE GAUSSIAN SLAM

In the probabilistic state-space SLAM, the vehicle R and a
set of environment features F = {F1, . . . , Fn} are represented
by a stochastic state vector xB with estimated mean x̂B and
estimated error covariance PB :

x̂B =
[

x̂B
R

x̂B
F

]
; PB =

[
PB

R PB
RF

PB
FR PB

F

]
(1)

where x̂B
R is the estimated location of the vehicle with respect

to (wrt) a base reference frame B, x̂B
F is the estimated location

of the features also wrt B, PB
R is the estimated error covariance

of the location of R, PB
F is the estimated error covariance

of the location of the features, and finally, PB
RF represents

the cross-covariance between the different elements of the
state vector. Additionally, it is generally assumed that the
underlaying probability density function is Gaussian, hence,
at time step k, xB

k ∼ N (x̂B
k ,PB

k ).

1Interestingly, recent research in the field of neuroscience have shown that
the human brain also builds an egocentric network of local submaps [12].
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When the vehicle moves from position at step k − 1 to
position at step k, the stochastic state vector changes according
to a nonlinear motion equation:

xB
k = fk(xB

k−1,x
Rk−1
Rk

) (2)

where the uncertain relative motion xRk−1
Rk

is estimated by
odometry and assumed to be corrupted by zero mean white
Gaussian noise, vk = N (0,Qk).

On-board sensors provide, at time k, the observation zk

related to the state vector xB
k by a nonlinear measurement

equation:
zk = hk(xB

k ,xRk

Ek
) (3)

where xRk

Ek
represents the set of uncertain observations, wrt

Rk, and corrupted by zero mean white Gaussian noise, wk =
N (0,Rk) independent from the motion noise.

Classical EKF-SLAM suboptimally propagates uncertainty
by first-order analytical linearization of both the motion (eq.
2) and measurement models (eq. 3). As reported in [4], [5]
this approach frequently leads to filter divergence after only a
few update steps. The convergence of the filter can be tested
by checking the consistency of the state estimator [2]: its
state estimation error is unbiased, i.e. E

[
xB

k − x̂B
k

]
= 0 and

the actual Mean Square Error matches the filter calculated
covariances:

E
[(

xB
k − x̂B

k

) (
xB

k − x̂B
k

)T
]

= PB
k (4)

An on-line consistency test is based on the filter innovation:

E [zk − ẑk] = 0 (5)

E
[
(zk − ẑk) (zk − ẑk)T

]
= Pzz,k (6)

For real applications, the covariance criteria can be relaxed by
considering that the estimated covariance bounds the estimated
errors, however, a too pessimistic approach would lead to non-
informative maps and greater data association ambiguity.

III. ROBOCENTRIC MAPPING

EKF-SLAM using a robot centered representation adopts
the previous formulation where the current robot position is
considered as the base reference in contrast to the absolute
representation where a global reference is used.

Let xRk−1
k−1 ∼ N (x̂Rk−1

k−1 ,PRk−1
k−1 ) be the map at time k − 1

wrt the reference frame Rk−1. Being the relative motion of
the vehicle xRk−1

Rk
independent from the map, it can be added

to the state vector as a new uncorrelated feature:

x̂Rk−1

k|k−1 =

⎡
⎢⎣ x̂Rk−1

B

x̂Rk−1
F

x̂Rk−1
Rk

⎤
⎥⎦ ; PRk−1

k|k−1 =

⎡
⎣ PRk−1

B PRk−1
BF 0

PRk−1
FB PRk−1

F 0
0 0 Qk

⎤
⎦

(7)
where B represents the first vehicle location within the current
robocentric map. With this approach, during filter update, not
only the map but also the relative estimated motion would be
improved, thus reducing subsequent linearization errors.

The map at time k, xRk−1
k ∼ N (x̂Rk−1

k ,PRk−1
k ) is com-

puted by using the classical filter update equations:

x̂Rk−1
k =x̂Rk−1

k|k−1 + Kk(zk − hk(x̂Rk−1

k|k−1))

PRk−1
k �(I − KkHk)PRk−1

k|k−1 (8)

Kk =PRk−1

k|k−1H
T
k (HkP

Rk−1

k|k−1H
T
k + Rk)−1

where,

Hk =
∂hk

∂xRk−1
k

∣∣∣∣∣
x̂

Rk−1
k|k−1

Finally, the map at time k in the reference frame of the
current robot location Rk is obtained by using the improved
relative motion of the vehicle and map feature locations
obtained from eq. 8:

x̂Rk

k =

[
�x̂Rk−1

Rk
⊕ x̂Rk−1

B

�x̂Rk−1
Rk

⊕ x̂Rk−1
F

]
(9)

PRk

k �[J2 J1] PRk−1
k

[
JT

2

JT
1

]
(10)

where the Jacobians are given by [13]:

J1 =

[
J1⊕{�x̂Rk−1

Rk
, x̂Rk−1

B }J�{x̂Rk−1
Rk

}
J1⊕{�x̂Rk−1

Rk
, x̂Rk−1

F }J�{x̂Rk−1
Rk

}

]

and

J2 =

[
J2⊕{�x̂Rk−1

Rk
, x̂Rk−1

B } 0
0 J2⊕{�x̂Rk−1

Rk
, x̂Rk−1

F }

]

A. Robocentric Map-Joining

Mapping large-scale environments represents an open chal-
lenge for the SLAM community. As reported in [11] a compu-
tationally attractive approach consists in building a sequence
of consecutive uncorrelated local maps and subsequently join
them together in a common reference frame resulting in a full
correlated global map. This technique limits the number of
update steps for each local map, thus, limiting both feature
location uncertainties and the effects of linearization errors
within each local map. Only the map joining step incurs in
O(n2) computational complexity, where n is the number of
features in the global map.

This section formulates the general map joining algorithm
by using the robot centered representation. Let the current
robocentric local map be given by:

MRl

F = (x̂Rl

F ,PRl

F ) ; F = {Bl, F1, . . . , Fm}
and let the previous robocentric local map be given by:

MRl−1
E = (x̂Rl−1

E ,PRl−1
E ) ; E = {Bl−1, E1, . . . , En}

Because the two maps have been built sequentially a link
between them is established by considering Rl−1 = Bl, i.e.
the last updated vehicle position in map l − 1 coincides with
the first vehicle position in map l.
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Therefore, the full stochastic map, including all the available
features in a common reference frame Rl would be written as:

MRl

F+E = (x̂Rl

F+E ,PRl

F+E)

where,

x̂Rl

F+E =
[

x̂Rl

F
x̂Rl

E

]
=

[
x̂Rl

F
x̂Rl

Rl−1
⊕ x̂Rl−1

E

]
(11)

and,

PRl

F+E �
[

PRl

F PRl

F JT
1

J1P
Rl

F J1P
Rl

F JT
1 + J2P

Rl−1
E JT

2

]
(12)

with,

J1 =

⎡
⎢⎢⎣

J1⊕{x̂Rl

Rl−1
, x̂Rl−1

Bl−1
} . . . 0

...
...

J1⊕{x̂Rl

Rl−1
, x̂Rl−1

En
} . . . 0

⎤
⎥⎥⎦

and,

J2 =

⎡
⎢⎢⎣

J2⊕{x̂Rl

Rl−1
, x̂Rl−1

Bl−1
} . . . 0

...
. . .

...
0 . . . J2⊕{x̂Rl

Rl−1
, x̂Rl−1

En
}

⎤
⎥⎥⎦

Finally, data association is computed inside the full stochas-
tic map MRl

F+E to remove multiple hypotheses of common
features between sets F and E . Filter update proceeds accord-
ing to eq. 8.

IV. EXPERIMENTS

In this section, a series of experiments with synthetic and
real outdoor data are presented to validate the proposal.

A. Simulation

In a first set of experiments, we have simulated the explo-
ration of a narrow single-loop corridor of 120 m by a vehicle
equipped with odometry and a mid-noise 2D range scanner.
Noises are Gaussian distributed in polar coordinates. Filter
updates occur once per meter of trajectory. Data association
is performed at each step by using the Joint Compatibil-
ity algorithm [14] which maximizes innovation consistency.
Heading uncertainty has been identified as the critical measure
of performance to compare the different approaches due to
its direct influence in nonlinear effects in both the motion
and the measurement models. A theoretical lower-bound for
vehicle heading uncertainty has been obtained by computing
the linearization Jacobians at the correct linearization point,
i.e. with zero error bias (solid lines in figures 4(a) and 4(b)).

Different experiments have been done to analyze the influ-
ence of the choice of representation in EKF-SLAM. Figure
4(a) describes the results by using an absolute representation,
both in the case of building a monolithic map (dotted line) or
by joining together a sequence of local maps (dashed line).
In both cases, after some update steps, the vehicle heading
uncertainty drops below its theoretical lower-bound leading
to inconsistency and filter divergence. The use of local maps
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Fig. 4. Heading uncertainty (1σ-bound) using (a) absolute representation
and (b) robocentric representation. The figure describes the evolution of the
heading uncertainty of the vehicle in the theoretical case (solid lines), when
a complete monolithic map is built (dotted lines) and when the global map is
built by joining a sequence of local maps (dashed lines).

slightly pushes further in time the appearance of inconsistency,
nevertheless, a similar saturation effect is observed in both
experiments.

Figure 4(b) shows the improvement in performance obtained
by the robocentric representation either using a monolithic
(dotted line) or a local map sequencing (dashed line) approach.
Note that both results have been transformed back to the base
reference frame for ease of comparison with figure 4(a). In
this case, filter consistency was satisfied after each update.
Computationally, the robocentric local map approach outper-
formed the monolithic approach at the cost of being slightly
more pessimistic during the construction of each local map,
from the point of view of the global reference frame. However,
within each local map, due to the robocentric representation,
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feature location uncertainty was kept down to sensor noise
levels. As can be observed in the figure 4(b), the same level
of heading uncertainty was computed after joining each local
map to the previous global map (at every 10 update steps in
this experiment).

B. Outdoor EKF-SLAM

For large-scale outdoor testing experiments, a benchmark
dataset has been used [15]. It was collected using a truck
(Ackerman vehicle) driving through Victoria Park (Sydney,
Australia). On-board sensors provided 2D range scans and
odometry (speed and steering). The environment provided a
high number of distinguishable landmarks (trees), although
with a significant level of spurious observations (e.g. people,
cars). Moreover, the bumpy terrain introduced many unex-
pected odometry perturbations. The complete trajectory was
about 3.5 km with several short loops and two critical big
loops due to the absence of reliable features in some areas.

Figure 5 shows the the final robocentric map, transformed
back to the global frame, and superimposed to a satellite image
of the navigated area. Uncertainty ellipses have been drawn for
each mapped feature. Data association was, again, performed
by using the Joint Compatibility [14] algorithm.

Similarly to the simulation experiments, the vehicle heading
uncertainty has been used as the measure of performance
to compare the different algorithms. Figure 6 describes its
evolution for the navigated outdoor trajectory for the robot
centered representation both using a monolithic and a sequence
of local maps approaches. The final level of uncertainty for
both approaches is comparable after each local map is joined
to the previous global map as was observed in the simulation
experiments. However, because the local map approach better
limits linearization errors within each local map, the final
result becomes slightly more pessimistic in comparison to the
monolithic approach.

Position uncertainty (i.e. σx and σy) is represented in fig. 7
for the mapped landmarks after filter update in the final step of
the vehicle trajectory for each of the compared algorithms. Due
to the greater level of uncertainty when using local maps, as
compared to the monolithic case, data association ambiguity
grows and therefore the number of false negatives provided
by the JC algorithm also increases. Therefore, as observed
in the figure, the final number of landmarks is greater in the
local map joining approach than in the monolithic approach.
Unmatched landmarks means information loss during update.

As observed in figures 7(b) and 7(c), for this particular data
set, both local map joining algorithms performed similarly in
terms of the final level of position uncertainty of the mapped
features. The improvement in the linearization effects of the
robocentric representation over the absolute representation, for
the chosen size of the local maps, were compensated by the
difficulties of data association in correctly find the appropiate
matchings.

For a general application, a trade-off between the overall
uncertainty level and the computational cost must be estab-
lished. More accurate and informative maps are obtained by

Fig. 5. Trajectory and final feature map superimposed to a satellite image
(courtesy of Google Earth http://earth.google.com)
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Fig. 6. Heading uncertainty (1σ-bound) for robocentric mapping: Building a
monolithic map (solid-thick line) and joining a sequence of local maps (dotted
line).

using the monolithic robocentric mapping approach, however,
more computationally attractive solutions are obtained when
using the robocentric local map joining approach, preserving
consistency and convergence. More robust data association
algorithms, in the presence of ambiguity, would adequately
drive the performance of the latter towards the performance
of the former in terms of accuracy and map information.

V. CONCLUSION

In this paper we have presented an algorithm, namely,
robocentric local map sequencing to minimize the effects of
linearization errors in the EKF-SLAM approach. The use of
local maps bounds the uncertainty along the vehicle trajectory,
and it also provides an efficient solution from the computa-
tional point-of-view. The use of the robocentric representation
improves linearization accuracy by updating the map with
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Fig. 7. Position uncertainty (i.e. σx, solid-line and σy , dotted-line) for
mapped landmarks: (a) Robocentric monolithic, (b) Robocentric with local
map joining and (c) Absolute local map joining.

sensor uncertainty level constraints. Simulation results have
shown that our approach behaves similarly to the ideal case
of error-free linearization of both the motion and sensor
models. Thus, consistency is greatly improved over the classic
EKF-SLAM solution. Large-scale outdoor experiments have
validated the approach for a real dataset.

Further work considers the use of alternative linearization
techniques, e.g. statistical linearization, within the proposed
robocentric representation. Also, new data association algo-
rithms would be required for a robust performance in the
presence of ambiguity, clutter and nonlinear models.
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