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Abstract— This paper presents an experimentally validated
alternative to the classical extended Kalman filter approach
to the solution of the probabilistic state-space Simultaneous
Localization and Mapping (SLAM) problem. Several authors
have recently reported the divergence of this classical approach
due to the linearization of the inherent non-linear nature
of the SLAM problem. Hence, the approach described in
this work aims to avoid the analytical linearization based on
Taylor-series expansion of both the model and measurement
equations by using the unscented filter. An innovation-based
consistency checking validates the feasibility and applicability
of the unscented SLAM approach to a real large-scale outdoor
exploration mission.

Index Terms— SLAM, Unscented filtering, consistency, nor-
malized innovation squared test

I. INTRODUCTION

The simultaneous localization and mapping (SLAM) is the
problem to determine the localization of an autonomous ve-
hicle on an unknown environment and, concurrently, to learn
the most significant features of the environment to safely
and robustly complete the commanded mission. Different
approaches to the solution of this problem have been reported
for indoor [3], outdoor [7], underwater [15] and air-borne [13]
applications.

From a theoretical view-point the SLAM problem can be
interpreted as a non-linear filtering problem which involves a
pair of discrete-time stochastic processes, {xk, 0 ≤ k < ∞}
named state process, and {zk, 0 ≤ k < ∞}, named
measurement process with a given joint probability density
function (pdf). The solution consists of the recursive com-
putation of the conditional pdf (the posterior pdf) of xk

given the observations in the past {zl, 0 ≤ l ≤ k} and the
previous knowledge about xk (the prior pdf). Unfortunately,
the optimal solution to this problem cannot be obtained in a
finite time [14].

The most popular feasible approximation to SLAM, dates
back to the seminal work of [16] where a discrete-time state-
space framework, named the stochastic map was originally
presented. Assuming linearization of the state and measure-
ment models and Gaussianity of the underlying pdf’s, the
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approximate solution to the non-linear filtering problem was
obtained by the Extended Kalman Filter (EKF) [2]. Recently,
different improvements of the classical algorithm have been
reported in the literature [7], [17], [18]. Due to the inherent
non-linearity of the SLAM problem, consistency checking of
the state estimation is of paramount importance. As reported
in [6] the solution of the EKF-based SLAM is consistent in
the linear-Gaussian case, however for the general non-linear
problem it is well known that linearization can lead to filter
divergence [2], as has been confirmed in carefully designed
experiments [9], [4] which isolate the effects of linearization
errors in the EKF-based approach.

In [10] and references therein, Julier and Uhlmann pro-
posed the unscented filter as an alternative to the EKF for
recursive state estimation, increasing the accuracy of the state
estimation with a comparable computational cost in low-
dimensional systems. At time step k, the unscented filter
estimates the first two moments of the underlying pdf (i.e.
mean and covariance) by a linear weighted regression of
evaluations of the true non-linear models at the so-called
sigma-points. This method resembles the most ambitious
particle filtering [19] approach although in this case, small-
scale deterministic sampling is used as opposed to the large-
scale random sampling used in particle filtering. As proved
in the literature, an O(n), with n the dimension of the
state vector, number of sigma-points precisely and accurately
approximates the estimated moments up to second order in
the Gaussian case. From a practical view-point, the increased
accuracy in the computation of the mean and covariance
of the state pdf suggests a reduction in the ambiguity of
data association, hence, low-complexity validation gate ap-
proaches could reliably and robustly be utilized. The first
implementation of the unscented filter in SLAM was reported
in [5] where preliminary work on a small-scale indoor
environment was considered. More recently, [1] describes
the application of the unscented transformation to the vehicle
states by assuming linearity both in the prediction of the map
features and the update of the complete state vector.

This paper focus on the SLAM problem from the per-
spective of the unscented filter, demonstrating its feasibility
and on-line consistency for a large-scale outdoor mission.



A controlled simulation experiment, which isolates the ef-
fects of linearization errors, describes the improvement in
the consistency of the unscented filter over the EKF-based
approach. The rest of the paper is structured as follows:
Section II presents the discrete-time state-space approach to
SLAM, where a general recursive algorithm for the approx-
imate solution is sketched. The concept of consistency of a
state estimator is given in section III. Then, the unscented
SLAM approach is described in sections IV and V. Finally,
experimental results validate the proposed approach for large-
scale outdoor environment.

II. PROBABILISTIC STATE-SPACE GAUSSIAN SLAM

In the probabilistic state-space to SLAM, the vehicle R
and a set of environment features F = {F1, . . . , Fn} is
represented by a stochastic state vector xW with estimated
mean x̂W and estimated error covariance PW :

x̂W =
[

x̂W
R

x̂W
F

]
; PW =

[
PW

R PW
RF

PW
FR PW

F

]
(1)

where x̂W
R is the estimated location of the vehicle with re-

spect to (wrt) a base reference frame W , x̂W
F is the estimated

location of the features also wrt W , PW
R is the estimated

error covariance of the location of R, PW
F is the estimated

error covariance of the location of the features, and finally,
PW

RF represents the cross-covariance between the different
elements of the state vector. Additionally, it is generally
assumed that the underlaying probability density function is
Gaussian, hence, at time step k, xW

k ∼ N (x̂W
k ,PW

k ).
When the vehicle moves from position at step k − 1

to position at step k, the stochastic state vector changes
according to the non-linear motion equation:

xW
k = fk(xW

k−1,x
Rk−1
Rk

) (2)

where the uncertain relative motion xRk−1
Rk

is estimated by
odometry and assumed to be white Gaussian.

From a Bayesian view-point, suppose that the stochastic
map xW

k−1 ∼ N (x̂W
k−1,P

W
k−1) is available at time k − 1,

then, the predicted stochastic map at time k result from:

x̂W
k|k−1 = E[fk(xW

k−1,x
Rk−1
Rk

)] (3)

Pk|k−1 = E[(xW
k − x̂W

k|k−1)(x
W
k − x̂W

k|k−1)
T ]

On-board sensors provide, at time k, the observation zk

related to the state vector xW
k by the non-linear measurement

equation:
zk = hk(xW

k ,xRk

Ek
) (4)

where xRk

Ek
represents the set of white Gaussian gathered

observations. This new information about the state vector, can
be incorporated into the state by using the update equations
of a linear (in the measurements) estimator:

x̂W
k = x̂W

k|k−1 + PxzP−1
zz (zk − ẑk) (5)

PW
k = PW

k|k−1 − PxzP−1
zz Pzx

with:

Pzz = E[(zk − ẑk)(zk − ẑk)T ] (6)

Pxz = E[(xW
k − x̂W

k|k−1)(zk − ẑk)T ]

The classical EKF-based SLAM approach computes the es-
timated covariance matrices of equations (3) and (6) by first-
order analytical linearization of the motion and measurement
models respectively. As shown in the literature [9], [4] this
approach frequently leads to filter divergence after only a few
update steps. This paper shows the improvement achieved by
using statistical linearization techniques [10] instead.

III. SLAM CONSISTENCY

Let x̂W
k and PW

k be the first two moments of the SLAM
state estimated at time k. The state estimator is called con-
sistent [2] if its state estimation error xW

k − x̂W
k is unbiased,

i.e. E
[
xW

k − x̂W
k

]
= 0 and the actual Mean Square Error

matches the filter calculated covariances:

E
[(

xW
k − x̂W

k

) (
xW

k − x̂W
k

)T
]

= PW
k (7)

When the ground true solution for the state variables is
available, a statistical test for filter consistency can be carried
out on the Normalized Estimation Error Squared (NEES):

(
xW

k − x̂W
k

)T (
PW

k

)−1 (
xW

k − x̂W
k

) ≤ χ2
r,1−α (8)

where χ2
r,1−α is a threshold obtained from the χ2 distribution

with r = dim(xW
k ) degrees of freedom, and α the desired

significance level (usually 0.05).
Unfortunately, for most real-time applications, the ground

true solution for the state variables would not be available.
However, a statistical test for real-time consistency could still
be carried out, in this case, on the Normalized Innovation
Squared (NIS):

νT
k S−1

k νk ≤ χ2
r,1−α (9)

where νk = zk − ẑk is called the innovation of the filter, and
now r = dim(νk).

In practice, one of the most critical factors that jeopardize
the consistency of any SLAM algorithm are the incorrect data
associations between observations and map features due to
optimistic estimation of location uncertainty.

IV. UNSCENTED FILTERING

The core of unscented filtering is the so-called Unscented
Transformation (UT) [11]. Small-scale deterministic sam-
pling from the prior pdf provides a minimal set of samples,
named sigma points, which capture the moments of the un-
derlying density function. The moments of the posterior pdf
are then obtained by means of weighted linear regression of
evaluations of the non-linear function at the selected samples
points. Figure 1 compares the propagation of a pdf through
a nonlinear function obtained by analytical linearization and
by the unscented transformation (i.e. statistical linearization).



Fig. 1. Propagation of a pdf through a nonlinear function. The first order
Taylor expansion (dotted) only use the mean point to compute the linear
approximation, while the UT (dashed) approach the function with a linear
regression of several sigma points. The actual distribution is the solid one.
(Adapted from [20])

Recently, the Scaled Unscented Transform (SUT) has been
proposed [12], [20] which allows the sigma-points to be
scaled to an arbitrary dimension. For an N -dimensional state
vector, a symmetric set of 2N + 1 sigma-points is given by:

X (0) = x̂

X (j) = x̂ +
(√

(N + λ)P
)

j
, j = 1, . . . , N

X (j) = x̂ −
(√

(N + λ)P
)

j
, j = N + 1, . . . , 2N

(10)
where x̂ and P are, respectively, the mean and covariance
of the sampled pdf. This set of sigma-points captures the
moments of underlying pdf up to the third-order for the
Gaussian-case. For efficient computation of the matrix square
root, a Cholesky decomposition P = SST is used. The
parameter λ controls the scaling of the sigma-points.

Let xk−1 be the state vector at time k − 1, and let
{X (0)

k−1, . . . ,X (2N)
k−1 } be the set of sigma-points computed

from its pdf. Also, let the state evolution be characterized
by the non-linear function:

xk = fk(xk−1) (11)

Hence, the set of sigma-points are transformed by 2N + 1
evaluations of the non-linear function at the sigma-points:

X (j)
k = fk(X (j)

k−1), j = 0, . . . , 2N (12)

Then, the first two moments of the density function of xk are
computed by a weighted linear regression of the transformed
sigma-points:

x̂k =
2N∑
j=0

ω(j)
m X (j)

k (13)

Pk =
2N∑
j=0

ω(j)
c (X (j)

k − x̂k)(X (j)
k − x̂k)T (14)

where the weights are given by:

ω
(0)
c = λ

N+λ + (1 − α2 + β)
ω

(0)
m = λ

N+λ

ω
(j)
m = ω

(j)
c = 1

2(N+λ) , j = 1, . . . , 2N

(15)

where λ = α2(N + κ) − N . Note that the weights for the
computation of the mean (m) and the covariance (c) are
different in the 0-th component to compensate for scaling.
For a Gaussian prior N + κ = 3 [12] and therefore, the
numerical behavior of the SUT is the same as the Central
Difference Filter with a step h =

√
3 and the Gauss-Hermite

Filter with 3 points [8]. For a complete explanation of the
parameters of the SUT refer to [20].

V. UNSCENTED SLAM

Let xW
k−1 ∼ N (x̂W

k−1,P
W
k−1) be the stochastic map avail-

able at time k−1. Let xRk−1
Rk

∼ N (x̂Rk−1
Rk

,PRk−1
Rk

) be the ve-
hicle motion from time step k−1 to time step k as estimated
by odometry, and finally let E = {E1, . . . , Em} be the set of
observations gathered by on-board sensors at time k, with
a joint-Gaussian distribution with covariance matrix PRk

Ek
.

Assuming independence between the prior state estimation,
the displacement and the set of available measurements, we
define an augmented stochastic state vector with mean:

x̂W
a,k−1 =




x̂W
Rk−1

x̂W
Fk−1

x̂Rk

Ek

x̂Rk−1
Rk


 (16)

and a block-diagonal covariance matrix:

PW
a,k−1 =




PW
Rk−1

PW
RFk−1

0 0
PW

FRk−1
PW

Fk−1
0 0

0 0 PRk

Ek
0

0 0 0 PRk−1
Rk


 (17)

By using the deterministic sampling algorithm described in
section (IV) we obtain a small-size set of sigma-points which
accurately represents the first two moments of the previous
distribution: {X (0)

a,k−1, . . . ,X (2N)
a,k−1}.

The set of sigma-points at time k−1 is propagated forward
in time through the non-linear state equation:

xW
a,k|k−1 = fk(xW

a,k−1) (18)



with

xW
Rk

= xW
Rk−1

⊕ xRk−1
Rk

xW
Fk

= xW
Fk−1

(19)

xW
E1,k

= xW
Rk−1

⊕ xRk−1
Rk

⊕ xRk

E1,k

...

xW
Em,k

= xW
Rk−1

⊕ xRk−1
Rk

⊕ xRk

Em,k

where ⊕ represents the composition of location vectors [3].
The predicted mean at time k of the augmented state vector
and its estimated error covariance matrix are then computed
from a linear weighted regression of the transformed sigma-
points {X (0)

a,k|k−1, . . . ,X (2N)
a,k|k−1}:

x̂W
a,k|k−1 =

2N∑
j=0

ω(j)
m X (j)

a,k|k−1 (20)

and,

PW
a,k|k−1 =

2N∑
j=0

ω(j)
c (X (j)

a,k|k−1−x̂W
a,k|k−1)(X (j)

a,k|k−1−x̂W
a,k|k−1)

T

(21)
Data association provides the observation zk statistically

compatible and related to the augmented state vector by a
non-linear function hk:

zk = hk(xW
a,k|k−1) (22)

Hence, the update of the estimated mean and estimated error
covariance at time k follows from:

x̂W
a,k = x̂W

a,k|k−1 + PxνS−1
k (zk − ẑk) (23)

PW
a,k = PW

a,k|k−1 − PxνS−1
k Pνx (24)

where

ẑk =
2N∑
j=0

ω(j)
m Z(j)

k (25)

with
Z(j)

k = hk(X (j)
a,k|k−1) (26)

and

Sk =
2N∑
j=0

ω(j)
c (Z(j)

k − ẑk)(Z(j)
k − ẑk)T (27)

Pxν =
2N∑
j=0

ω(j)
c (X (j)

a,k|k−1 − x̂W
a,k|k−1)(Z(j)

k − ẑk)T (28)

As clearly stated in the previous equations, the expectan-
cies of the stochastic vectors involved in the Bayesian solu-
tion to the non-linear SLAM problem, given by equations (3)-
(7) are approximated by weighted evaluations of the model
and measurement function at the deterministically selected
sigma-points.
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Fig. 2. Estimated errors and 2σ bounds for the (x, y, θ) components of the
vehicle estimated location: (a) EKF-based SLAM and (b) Unscented SLAM.
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Fig. 3. Consistency ratio for EKF-based SLAM (dashed) and Unscented
SLAM (solid) for the 120 m simulated loop trajectory.

VI. EXPERIMENTAL RESULTS

This section presents both simulation and real experimental
results to demonstrate the applicability of the unscented filter
to the SLAM problem.

A. Simulation Results

A first experiment has been designed to isolate the effects
of linearization errors on the consistency of the SLAM solu-
tion. A vehicle travels along a rectangular-shaped trajectory
of 40 × 20 meters, i.e. a 120 m loop trajectory, moving 1 m
per step. The map of the navigation area is composed of 2-D
point features, with a feature density of about 0.2 feature/m.
The vehicle is equipped with a range-bearing sensor with a
maximum range of 15 meters and a 180 degrees frontal field-
of-view. Gaussian-distributed synthetic errors were generated
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Fig. 4. Consistency ratio for Unscented SLAM in a 400-m long loop. At
the end, the estimator remains consistent, so the loop could be close with
simple data association strategies.

for both the sensor measurements and for the odometry
model of the vehicle. Additionally, known data association
is considered.

The evolution of the errors in the components of the
vehicle estimated location are plotted in figure 2. In general,
the unscented filter provides lower estimated errors than the
EKF-based approach with slightly more tight uncertainty
bounds, which would result in lower ambiguity of data asso-
ciation in a real application. Figure 3 plots the consistency
ratio, 1−NEES/χ2

r,1−α, for both the EKF-based SLAM and
the Unscented SLAM. Clearly, as previously reported in
the literature, the EKF-based approach becomes inconsistent
after only a few update steps. Nevertheless, the Unscented
filter remains consistent (up to 5% statistical error) during the
complete vehicle trajectory. Furthermore, figure 4 illustrates
that even after a 400-m loop trajectory, the Unscented SLAM
remains consistent.

B. Large-Scale Outdoor Navigation

Experimentation with a well-known benchmark dataset
[7] has been done to validate the real-time consistency of
the estimated solution of our implementation of Unscented
SLAM. The vehicle is equipped with a 2D laser rangefinder,
a GPS sensor and a odometry unit (forward velocity and
steering angle). During the experiment, the vehicle moves in
a 3.5 km path along the Victoria Park, in Sydney, Australia.
Then, the laser is used to detect and measure the position of
trees, which are used as natural landmarks. The poor quality
of the odometry and the presence of many spurious make the
SLAM problem very interesting with this dataset.

Figure 5 describes the Unscented SLAM solution, with
the complete vehicle trajectory and the detected environ-
mental features with the estimated location uncertainty. Our
approach keeps a high level of accuracy during all the path
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Fig. 5. Outdoor SLAM: Final 2D-point feature based map and vehicle
estimated trajectory (Observe that the given trajectory has not been corrected
backwards in time).
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Fig. 6. 1σ bound for the estimated heading error of the vehicle along
the trajectory as computed by the Unscented filter. The maximum standard
deviation in the complete trajectory (around 3.5km) is lower than 0.5deg

enough to do the data association using only a simple nearest
neighbor algorithm. For example, the heading of the robot is
bounded by a standard deviation of 0.5 deg during all the
trajectory, except in a reduced number of steps. Furthermore,
the heading deviation is lower than 0.25 deg most of time
(figure 6).

The evolution of the consistency ratio 1−NIS/χ2
r,1−α

along the complete trajectory is presented in figure 7. The
number of inconsistent updates, from the NIS view-point,
is roughly 7%, sufficiently close to the theoretical 5%.
Furthermore, some of these inconsistent steps are produced
by spurious observations. So, we can conclude that the
Unscented SLAM is statistically consistent in a 3.5 km
outdoor trajectory.
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Fig. 7. Consistency ratio of complete evolution of the state vector of the
Unscented SLAM. Only the 7% of the poses are inconsistent which is similar
to the significant level (5%)

VII. CONCLUSIONS

In this work we have presented the Unscented SLAM,
which represents a feasible framework to the solution of the
simultaneous localization and mapping problem. Accuracy
of state estimation has been increased (lower errors, tighter
uncertainty bounds) over the classical EKF-based approach.

The paper has emphasized the improvement in the con-
sistency of the sequential algorithm achieved by avoiding
analytical linearization of the model equations. A normalized
innovation-based consistency checking has been presented
to support the applicability of the approach to a large-scale
outdoor environment mission.

The promising results obtained in this work suggest that
the Unscented SLAM approach could push forward, in both
mission duration and size of the mapped environment, the
consistency horizon of the SLAM problem.

Future work further elaborates on the Bayesian view-
point to the SLAM problem for highly non-linear state
and measurement model. In our opinion, closely related
application domains, e.g. geometric vision, would readily
benefit from the latest results obtained within the SLAM
research community.
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