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Abstract

In this paper, we present a new paradigm
of biomorphic robot which is based on ca-
pabilities of animals such us grasshoppers
or fiddler crabs. Biomorphic robots seem
to be the future in exploration of hazardous
environments. As has been proved in recent
works, multi-robot platforms are the best
solution for exploration of unstructured
environments. In the forthcoming years,
planetary missions must be optimized for
low gravity environments. In this work, we
use hopping robots to minimize energy cost
in exploration of wide areas. Nature also
use good sensors. For example, fiddler crabs
have a pair of retractile onmidirectional eyes.
Considering all these conditions (multi-robot,
hop movement, omnidirectional views), data
fusion is one of the most important aspects
during autonomous navigation. In this paper,
I present a comparative of the behaviour of
most extended techniques of estimation and
data fusion, specially oriented to localization
and mapping.

1 INTRODUCTION

Recent missions to Mars have proved that mo-
bile robots are the best way in low-cost plane-
tary exploration. Spirit, Opportunity and So-
journer [13] are just a few example of this ris-
ing field.

The special capabilities of these robots result
of the adaptation to the terrain that they are
designed to explore. Searching for this ”adap-
tation”, some recent researches are focused on
bio-inspired robots.

Looking into nature gives us the opportu-
nity to discover excellent mechanisms of lo-
comotion, perception and interaction between
organisms [18]. Grasshoppers, crabs, ants
or bees are some examples. In this paper,
we present several new paradigms of biomor-
phic robots which are based on capabilities
of these animals. These robots may be the
future in exploration of hazardous environ-
ments. Several recent works consider multi-
robot platforms a good solution for explo-
ration of unstructured environments consid-
ering three aspects: efficiency, specialization
and redundancy (resistance to local failures).
Normally, those proposals present a combina-
tion of rovers or nanorovers equipped with dif-
ferent kinds of sensors (proximity, cameras, in-
ertial, etc.). However, several bodies in the
Solar System have lower gravity than Earth.
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In fact, Moon and Mars, which are the next
step in Solar System exploration, are in this
group. So, planetary missions during the next
years must be oriented for low gravity envi-
ronments.

In this work, we use hopping robots to min-
imize energy cost during exploration of wide
areas in low gravity. Hoppers have also the
advantage to be able to jump over obstacles
several times higher than the robot. On the
other hand, fiddler crabs are a good example
of sensor efficiency because they have a couple
of 360 degrees FOV eyes, which can be folded
and protected during dangerous manoeuvres.
A colony of robotic crabs would mean a large
amount of pictures, but also requires an accu-
rate knowledge of the localization of the robots
in a vast terrain.

We suppose autonomous navigation, which re-
quires a complex algorithm to process all this
information and give an accurate estimation.
Section 3 presents several algorithms for this
purpose.

2 HOPPING ROBOTS

The main paradigm of mobile robots is the
wheeled vehicle because it is cheap and it is
the most efficient locomotion system in typical
scenarios on Earth. However, the low gravity
of other celestial bodies such as Moon or Mars
requires the development of new concepts of
mobility systems which may seem inefficient
in Earth.

Recent studies in the field of hopping robots
had shown the potentials of this kind of loco-
motion in low gravity environments [20, 12].
Their efficiency comes from two facts: the low
rate of energy cost per meter covered in low
gravity and the capability to cross over high
obstacles, i.e. big rocks, without needing to
go around it.

A comparative between a wheeled nanorover
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Figure 1: Scheme of the hopper with the side
panels opened and closed.

and a hopper is presented in Schell et al [15].
The results show that, in Mars gravity, the en-
ergy for a jump is the same order in both plat-
forms. On the other hand, if the nanorover
needs to avoid some obstacles, the distances
travelled increases. Then, the energy cost in-
creases, too. Furthermore, in a lower grav-
ity environment like Moon, the energy cost
in the hopper decreases linearly since in the
nanorover remains constant.

The design presented in this paper is based on
other hoppers recently developed. A scheme
of the robot can be viewed on figure 1.

The main parts of the robot are:

Omnidirectional camera: using a simple
camera pointing to a parabolic mirror we



Non navigational sensors: underground sonar,
microscopic camera, spectrometer, chemical sensors

Small tools for mining, ground prospecting
and micro-manipulation

High performance CPUs for high level computing,
real-time map building and data distribution

Table 1: Possible sensors and science instru-
ments

can take omnidirectional images.

Side panels: they have a triple function.
When closed, they are used as a shield
for impacts and dust. When opened, they
became solar panels for recharging the
batteries. Finally, when opening, they are
used as a self–righting system.

Hop mechanism: based on the hopper pre-
sented on [15]. It is formed on a plat-
form, a spring, a little motor, a gear-box
and, optionally, wheels for smooth dis-
placements. Schell et al. [15] have consid-
ered also the possibility of using the foot
as a scoop for collecting terrain samples.
This can be useful for example, if we in-
stall a little spectrometer or analyzer in-
side the hopper .

Colored mast: it is used to sustain the cam-
era and other sensors, but also to identify
the hopper by other robots. Like fiddler
crabs, this mast (and the camera also) is
protected in hazardous situations by the
side panels.

Electronics and Batteries: this is the
brain of the robot, with the control,
communications and processing unit.

Additional sensor and science instruments:
it depends on the global mission and the
role of the robot. Some examples are
presented on table 1.

The robot can get three basic configurations
depending on the position of the lateral pan-

els: ready and shell with the panels closed and
deployed with the panels opened. The ready
position is the previous phase to the jump.
The foot has achieved the take-off angle and
the spring has been loaded according to the
estimate distance of the jump. The shell posi-
tion is used to protect the electronics, camera
and solar panels at the landing. In addition,
this configuration can be used during night
to avoid dust to break or cover the camera,
mirror or solar panels, leaving the robot in a
sleeping state. Finally, the deployed position
is used as a self–righting mechanism. But also,
in this position, the camera can take images
and the solar panels can recharge batteries.

Considering the weight and capabilities of
other prototypes, the estimated weight of this
hopper would be 2–3 kg. Which means that
the hopper would achieve jumps about 30 cm.
high and 60 cm. long in 1g.

3 MEASURING LOCAL-
IZATION

The first step in robotic navigation, specially
in multi–robot environments, is to get an ac-
curate localization of each robot. On the other
hand, the bad resolution in the distance of the
hops, requires sophisticated systems of estima-
tion and filtering to increase the accuracy of
the measures. This is the focus of the second
part of the paper. Our approach is based on a
computation of the position and the heading
in two different ways.

3.1 Measuring heading

The difference between the hoppers and other
robots is the discontinuity of the movement.
For example, knowing the initial orientation
it is impossible to estimate his final heading
of the hopper, because it can fall on a rock or
slope and roll over.
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Figure 2: Typical landscape of Mars taken by
Mars Pathfinder [9].

The solution is to estimate the orientation us-
ing an absolute reference invariant with big
translations. In projective geometry, this fea-
tures are the infinity points; in this case we
will use the horizon line, which is a special
case of infinity points.

The typical landscape in a planetary mission
(like Moon or Mars) can be seen in figure 2.
It is a flat surface, with a light slope and high
density of small rocks with some big rocks.
Normally, the horizon is a smooth curve of far
away peaks and hills.

Thanks to the high contrast in the horizon it
is easy to extract this curve with a simple edge
detector. From this point we can match the
whole horizon curve captured by the omnidi-
rectional camera with previous curves. There
are several algorithms developed for this pro-
pose, even if there is a projective transforma-
tion or partial occlusion [14]. Then we can
compute the deviation between the curves and
so, the relative orientation. In fact, a partial
occlusion in the horizon means that there is
an possible obstacle in this way.

Then, we can compute the heading of the
robot directly as the displacement between the
horizon lines as can be seen in figure 3. If

Angle diference 

Figure 3: Heading computation using horizon
lines. As panoramic views, we suppose that
the whole line is equivalent to 360◦

we suppose that the horizon line is at infini-
tum, then the heading computed is absolute
and precise.

3.2 Measuring positioning

The problem of computing localization and
mapping using a single camera is that this can
be extracted directly in one step, as the result
of a bearing-only measure. However, several
algorithms have been developed to deal with
this fact [1, 3, 4]. Basically, the solution is to
delay the computation to next steps.

Then we can get range information using basic
triangulation or trilateration [1]. In this case,
we need need to cope with symmetries, which
complexity is increased in 3D.

If we are using a camera, we can also apply
structure from motion [3, 4], which is a classi-
cal reference in computer vision. It uses prop-
erties from the projective geometry. In the
3D case, it has the advantage to use directly
the information of both angles (azimuth and
heading).

Finally, we can use optimization techniques
like Bundle Adjustment [4] that uses directly
the bearing measures.



4 COMPUTING LOCAL-
IZATION

Once the position and heading is measured
with the methods presented in the previous
section, we need to compute the final local-
ization. A filtering process is needed to cope
with noise in sensors and data fusion.

On the other hand, since we are exploring the
environment, a typical approach is to build a
map (localize the environment features) as the
same time we localize the robots. This is ad-
dressed in the literature as Simultaneous Lo-
calization and Map-Building (SLAM) or Con-
current Mapping and Localization (CML).

However, when we have multiple robot we can
use other approaches based on cooperative lo-
calization without references of the environ-
ment. Then we do not have complete informa-
tion of the environment, but we still have par-
tial information direct from the current obser-
vation which is enough for autonomous navi-
gation.

4.1 Simultaneous Localization
and Map-Building

There is a lot of literature about SLAM. Since
the problem was first addressed by Smith
and Cheeseman [16], most solutions have been
based on recursive bayesian algorithms, espe-
cially those based on Kalman Filters [5, 12].

However, Kalman Filter is the optimal estima-
tor only in the linear-gaussian case and SLAM
is a non-linear system due to the bearing com-
ponent in the process and in the measures.
Extended Kalman Filters solve the non-linear
case in a suboptimal way. But, recent re-
searches have proved this algorithms became
inconsistent in large loops [10, 2].

Sequential Monte-Carlo algorithms (fre-
quently called Particle Filters) also solve the
non-linear and non-gaussian case, but with

a higher computational cost which made it
unfeasible in real-time for high-dimension
systems like SLAM. Nevertheless, a raoblack-
wellised solution have been presented where
the trajectory of the robot is computed
using a particle filter and the environment
features are processed with local EKFs [19].
This allows to build larger loops, but it is
also suboptimal, inconsistent and it lose the
information about uncertainty of the robot.

Finally, there is another approaches based on
local maps [17, 6] which allows larger loops
in a consistent way. The trick is to minimize
local errors to linearize in a better point. This
solution is faster than others but, again, it is
suboptimal and with very large loops, it fails.

4.2 Cooperative Localization

As we have seen before, the best results are
given in the Sequential Monte-Carlo tech-
niques. However, as we have a system with an
increasing number of dimensions, the problem
becomes unfeasible.

On the other hand, multi-robot platforms al-
low to localize each robot in a way relative to
the other robots. So, in this case, the state
vector has a number of dimensions propor-
tional to the number of robots, which is con-
stant in time.

In this methods, the navigation is computed
according to local maps based on current
robot’s observations. Then, each robot tries
to localize and identify other robots in their
local frame thanks to the colored mast [7, 8].
Finally, we can apply algorithms to combine
information such as map merging [11].

Colored mast has a revolution symmetry that
prevents to compute heading. However, since
we are using an absolute common reference
(the horizon line), we can compute relative
headings in a separate way.

Furthermore, the methods commented



here has been tested on wheeled vehicles.
But,hoppers, thanks to their locomotion
system, remains static most of the time (the
time flying only takes a few seconds every
step). So, the estimation becomes much
more easy when only a robot moves between
observations.

5 Conclusion

We have present a new robotic system for
planetary exploration in low gravity environ-
ments. We have consider bio-inspired archi-
tectures based on the principles of efficiency
and redundancy to guarantee the state of the
mission. The result is a prototype of hopper
equipped with an omnidirectional camera for
navigation tasks.

In addition, we have review the state of the art
of multi-robot navigation adequate for such
conditions. We have dedicate especial interest
to localization because hopping is a very noise
way of travelling and it is easy to get lost. Rel-
ative localization between robots using Parti-
cle Filters seems the most efficient way.
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