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What you will see here:
@ Gaussian process hyperparameters
@ Regression
@ Binary classification
@ Active learning and experimental design
@ Submodularity
@ Bayesian optimization
@ Stochastic bandits



Discrete experimental design

@ Now we assume that we can only access a set of points V

e Image and sound processing
o Sensor placement
e Robot planning
e Processing biological samples
@ Pool-based active learning
o It reduces the active learning bias
@ We can compute non-greedy strategies

e Although the complexity is NP-hard.
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Non-greedy predictions

@ We are going to generalize our prediction model to multiple outputs.

e Previous inputs — set A.
o Design inputs — set B.

VB|x8, %A, ya = K(x8,%a)(K(xa,%a) +021) tya

Y g|xg,xa, ya = K(xg, x8) — K(x,xa)(K(xa,xa) + 021) K (x4, xB)

@ Now yp is a vector and L g is a matrix
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Including hyperparameters

@ If we add some extra parameters to the model such as
Z: 1 2 | K(xs,xg) K(xs,xa)
[ Z } N([ 1 } s [ K(xa,xg) K(xa,xa)+onl
o where 1 ~ N(0,6%02) and 02 ~ IG(a/2, b/2)
@ Then we can compute the predictions

9814 = i+ KeaKaa,(va — 170)

OéTOé

TR+

ZB\A = U KBB - (KBAKAA,,KAB)

@ where
Kaan=Kaa+ 0l a=1-1TK,; Kag
~ lTKA_jnyA A2 b + yA KAAnyA B (]'TKA_jnl + 6_2)[12

= o. =
Pk 1402 % n+a+?2
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Bayesian experimental design recap

Let assume that {\;}, are the eigenvalues of Y BlA

Bayesian A-optimality (expected mean squared error)

N
EMSEg|a = trace(Xpja) = Z)\,-
i=1

Bayesian D-optimality (entropy)

N

1 N
Hpja = 5 log |~ g|a| + > log Te o Iogl—{A;
=

Bayesian E-optimality (maximum predictive variance)
MPVB‘A = max )\,’
1

@ None of them depends on the outputs yg|4!
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Submodular functions

Definition

A set function f : 2Y — R is called submodular if is satisfies

FX)+F(Y)> F(XUY)+FA(XNY) V¥ X,YCV

But this definition can be expressed in a more interesting way:

Definition

A set function f : 2Y — R is called submodular if is satisfies

FX+e)—F(X)>Ff(Y+e)—f(Y) VY XCYCY+eCV
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Submodular optimization

Theorem (Nemhauser et al., 1978)

Let F be a monotone submodular set function over a finite ground set V/
with F(0) = 0. Let Ag be the set of the first k elements chosen by the
greedy algorithm, and let OPT = maxacy =« F(A). Then

F(Ag) > OPT(1—1/e)OPT

@ Example: Sensor localization using Mutual Information
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