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Outline

What you will see here:

Gaussian process hyperparameters

Regression

Binary classification

Active learning and experimental design

Submodularity

Bayesian optimization

Stochastic bandits
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A dream about flying

Leonardo Henry Kremer Paul MacCready

1959 Kremer had Leonardo’s dream

He offered $100 000 for the 1st human powered flight
During 18 years, many of the best teams tried to win it.

1976 MacCready finds out about Kremers prize.

Motivation: He had a debt of exactly $100 000
His team had no experience on building planes
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Six months later...
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How did they do it?

They build a lightweight model that was easy to repear.

Other teams were using 1 year to build and test a model.
MacCready’s team was able to do that in days or even hours.
It is all about data gathering.

Their inexperience was a plus

Other teams were always refining their best design, doing small
changes.
MacCready decided to forget everything he knew about aeronautics.
Explore your parameter space. Do not get stuck in local minima.
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Supervised learning

We have inputs and labels
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Unsupervised learning

We have inputs and structure.
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Semisupervised learning

We have inputs, some labels and structure.
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Active learning

We have inputs, some labels, structure and we can ask.
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Optimality

When we need to take a decision, we need a cost, loss or regret
function δ(f , d) that modulates our decisions d .

Average case analysis:

dac = arg min
d

∫
F
δ(f , d)dP(f )

We have already seen this.

Label assignment in classification.

Gaussian processes are an easy way to solve the integral.
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Some loss examples

Global (non-convex) optimization with budget N.

δGO(f , d) = f (xN(d))− f (x∗)

Stochastic bandits with budget N.

δSB(f , d) =

∑N
n=1 f (xn(d))− f (x∗)

N

A-optimality (error minimization)

δAO(f , d) = (f − f̂ )TΣ(f − f̂ )

D-optimality (entropy minimization)

δAO(f , d) = H(f |xn)
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Transforming losses to criteria

Let be p(yt |x1:t−1, y1:t−1, xt) = N (µt , σ
2
t ) and ymin = inf(y1:t−1)

Predicted mean µt

Predicted mean and variance ratio |µt |/σt .
Predicted variance σt

Margin distance |µt |
Upper or lower bounds µt ± βtσt
Probability of improvement

p(yt ≤ ymin) = Φ

(
ymin − µt

σt

)

Expected improvement

EI (x) = E[I (x)] =

∫
max(ymin − f (x), 0) dp(f )

EI (xt) = (ymin − µt)Φ

(
ymin − µt

σt

)
+ σtφ

(
ymin − µt

σt

)
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How to optimize the criteria

DIRECT: DIvide RECTangles ⇒ Lipschitz optimization
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