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Resumen

A Gaussian process is a simple, yet powerful, non-parametric Bayesian model. Originally develo-
ped as an stochastic process for time series analysis, it can be also used as a prior distribution over
functions, which can be used for inference. In this laboratory we will learn how it can be used for
simple examples of nonlinear regression, classification, experimental design and Bayesian optimiza-
tion.

1. Introduction

During this laboratory we are going to use GPML: The Gaussian process toolbox by Carl Edward
Rasmussen and Hannes Nickisch. The toolbox is based on the methods presented in the book also by Carl
Rasmussen. Both the toolbox and the book [2] are freely available1. Some of the examples that weare
going to address here are extracted directly from the book, so you are encouraged to check it during the
lab. There is also a short manual in [1]. It is written to work both in MATLAB and GNU OCTAVE.

Important: Before doing anything, run the gpml/startup.m scritp. It will make
sure all the toolboxes, datasets and other files are in MATLAB path.

2. Part 1: Regression

2.1. Using the GPML code for regression

In order to get some details about how does the toolbox work, we are going to follow the examples
that appears in the documentation.

We will open the file gpml/doc/index.html and follow the instructions that appear in the Regres-
sion section. The code that corresponds to that instructions is located in gpml/doc/demoRegression.m
instructions.

This toolbox allows to use and combine different mean µ(x) and covariance2 k(x, x′) functions and
inference methods.

z(x) = GP (µ(x),K(x, ·))

The most common approach while working with Gaussian processes is to use a Gaussian likelihood.
Thus, the inference can be computed exactly using simple algebraic operations. If that is the case,
the optimal solution is always provided by the infExact method. However, as we will see during the
lab sessions, the Gaussian likelihood is not always the best option. In that case, we need to rely on
approximate inference methods.

Once we have selected the functions and inference method, we have to set up the corresponding
structure with all the parameters and hyperparameters.

1GPML: http://www.gaussianprocess.com
2During this labs, we will use the word covariance and kernel interchangeably



First of all, lets take a look at the first code snippet from the demo.

Can you figure out how are the samples generated from the GP?

Which terms corresponds to the generative prior?

Which corresponds to the observation noise?

Continue with the Regression section of the documentation.
Once you have finished, you can compare different covariance or mean functions, different parameters,

etc. For example, try to see the behavior of the regression functions for different hyperparameters3.
For simple comparisons, it is better to use the usageRegression.m script that can be found in the

same folder. This file allows us to try different methods in parallel over the same input data and view the
results together. The index variable is used to select among different likelihoods and inference methods.
Modify this file to compare also different covariance functions and hyperparameters.

2.2. Exercise: Step function

As you may have realized, you can control the Gaussian processes smoothness of the regression by
adjusting some of the parameters. Which parameter does control the smoothness directly?

In general, the simplest approach, which typically works for many realistic problems, is to take an
stationary kernel, that is:

k(x, x′) = k(|x− x′|)

Thus, the smoothness of the function will be preserved in all the function domain. This is a desirable
result in many machine learning applications, but sometimes, our function have different frequencies in
different intervals. Thus, we need to use non-stationary kernels, or mixtures of them4.

Check gpml/covFunctions.m for a complete description of the different covariance functions that
are implemented in the toolbox. There are also some meta-covariance functions that can be used to
compound simple ones.

Once you are familiar with the properties of the different covariance function, edit the file gpml/lab/reg step.m.
Since you can compute the actual value of the test samples, you can obtain the likelihood of your model
for this problem. Try to find the GP configuration that gives you the highest likelihood.

Have you seen any other property of the implemented covariance functions? How would you, for
example, create an sparse Gaussian process?

2.3. Exercise: Robot kinematics

In this exercise, we are going to study a classical problem in robotics and machine learning: learning
the direct kinematics of a robot.

For simplicity we take a planar robot with only two degrees of freedom and we want to predict only
the height of the end-effector. This problem can be also solved analytically to test if your solution is
valid or not.

The real complexity of this example is that, although there are only two degrees of freedom in the
robot, the input data for our Gaussian process is 6D. In fact, only two dimensions are the actual motor
commands, two are a linear combination of the motor commands and the last two are just white Gaussian
noise (non-informative).

Can you figure out how can you do feature selection using Gaussian processes?

In previous examples we have been used what we called an isotropic kernel, that is, a kernel that
have a single set of parameters for every dimension. One simple way to do feature selection is by using
a non-isotropic kernel, with Automatic Relevance Determination.

3Remember not to use the minimize function while setting the hyperparamenters by hand. Directly use the prediction
function.

4See Bernard Schölkopf’s talk about how to combine kernels.
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3. Part 2: Classification

During this laboratory, we are going to focus on binary classification. However, Gaussian processes can
solve multi-class classification. In you are interested in GP multi-class classification, you are encouraged
read chapter 3 of Rasmussen and Williams book [2] and the references therein.

3.1. Introduction

There is no much difference between a regression and a classification problem. Basically, a classification
problem has discrete outputs, while a regression problem typically deals with continuous outcomes. As
we have seen before, Gaussian processes are intended for continuous outcomes, but we can use a simple
trick to deal with that in a Bayesian way. The main idea is to consider the regression function as the
likelihood of every one of the discrete outcomes (labels). There are some functions that can help us to
find those probabilities. The most common functions are the logit and the probit functions.

The logit or logistic function is sigmoid function that takes the form of:

f(x) =
1

1− ex

The probit function is the cumulative density function (CDF) of the standard normal distribution:

f(x) = Φ(x) =
1

2

[
1 + erf

(
x√
2

)]
The Bayesian approach for classification using logistic regression or probit regression is to use those

functions to represent the likelihood of the classification. That is, the likelihood of observing a label C1

for an element x is:
p(C1|x) = f(xTw)

If you have not seen those functions before, you can easily implement and plot those functions in
MATLAB/OCTAVE.

3.2. Binary Classification with GPML

Let us go back to the tutorial about GPML and continue with the Classification section.
Note how we will use the likelihood functions that we have described (logit and probit). As we have

seen in the regression part, only the Gaussian likelihood allows for a closed form of the posterior distri-
bution. Thus, classification problems with GPs always require some approximate inference algorithms.
The table of inference methods allows us to check which inference method is valid for which likelihood.

3.3. Handwritten digits recognition

Handwritten character recognition is a well-known problem in machine learning. For this part of the
laboratory we are going to use a standard dataset: the MNIST database by Yann LeCun and Corinna
Cortes. It has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a
larger set available from NIST, collected among Census Bureau employees and high-school students. The
digits have been size-normalized and centered in a 28x28 pixels image.

For simplicity, we are going to use the Matlab version made by Sam Roweis5, that is already sorted
for processing. The train or test sets for each digit are stacked in the form of matrices (test0, train3).
Each matrix contains one row per digit. In case we want to plot the digits, we can use the plot digit
function.

Since we want to focus on binary classification, we are going to work with one class as positive results
(e.g.: number 0 ⇒ +1) and the rest as negative (e.g.: numbers 1 − 9 ⇒ −1). You can try different
combinations. Also, remember Robert Shapire’s talk and how to combine several binary classifiers to get
a multi-class classification.

Another problem is the high dimensionality of the feature space, because we use directly the pixels of
every image as inputs. However, we know that the actual dimensionality of the problem is much lower. In

5http://cs.nyu.edu/ roweis/data.html
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this case, we can use a simple PCA projection. You can use the functions reduceusingpca and project2pca,
for that. The first one will compute the principal components based on the training data. The second
one is to project the test data to the lower dimensional space.

Try different subsets of data and different dimension sizes. Do you think you can use all data?

Compare logit and probit regression.

Compare different inference methods.
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