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Abstract

A Gaussian process is a simple, yet powerful, non-parametric Bayesian model. Originally de-
veloped as an stochastic process for time series analysis, it can be also used as a prior distribution
over functions, which can be used for inference. In this laboratory we will learn how it can be
used for simple examples of nonlinear regression, classification, experimental design and Bayesian
optimization.

1 Introduction

During this laboratory we are going to use different toolboxes. All of them are written to work both in
MATLAB and GNU OCTAVE:

GPML The Gaussian process toolbox by Carl Edward Rasmussen and Hannes Nickisch. The toolbox
is based on the methods presented in the book also by Carl Rasmussen. Both the toolbox and the
book [7] are freely available!. Some of the examples that weare going to address here are extracted
directly from the book, so you are encouraged to check it during the lab. There is also a short
manual in [6].

SFO The Submodular function obtimization by Andreas Krause?. It includes different methods and

functions to perform minimization or maximization of submodular functions. We will focus on the
problem of experimental design. There is also a short manual in [4].

DIRECT Originally developed by Jones, Perttunen and Stuckman [3], the DIRECT algorithm is a
efficient global optimization method that relies on Lipschitz optimization. This toolbox has been
written by Dan Finkel®. We will use it also for experimental design and Bayesian optimization.

LHS The latin hypercube sampling is a well known strategy for random sampling with orthogonality
and coverage guarantees. It has been extensively used also in the experimental design literature.
This code has been implemented by Budiman Minasny?.

Important: Before doing anything, run the startup scritp. It will make sure all
the toolboxes, datasets and other files are in MATLAB path.

LGPML: http://www.gaussianprocess.com

2SFO: http://las.ethz.ch/sfo/index.html

3DIRECT: http://www4.ncsu.edu/ ctk/Finkel Direct/

4LHS: http://www.mathworks.com/matlabcentral /fileexchange/4352-1atin-hypercube-sampling



2 Part 3: Active Learning

In this part of the practical sessions we are going to cover the problems of active learning, experimental
design, Bayesian optimization, stochastic bandits... all in a simple and common framework!

Important: If you have not used GPML toolbox and have not attended the first
part of the practical session about Gaussian process, please read Section 1 of that
session handouts and run the code that it is explained there before doing anything
else.

2.1 Optimality and decisions

In the previous part, we have seen how to do inference and prediction. However, as Peter Green explained
during his talk, when we need to take a decision, we need the posterior distribution over our data, plus
a cost or regret function §(f,d) that modulates our decisions d. Therefore, we need to see what is the
regret function of different problem.

Being in a Bayesian setup, we are going to focus on the average cost or regret, which is sometimes
defined as best response case. In this case, our decisions are:

doec = arg mdln/ 6(f7 d)dP(f) (1)
F
where P(f) is a distribution over functions, that is, our Gaussian process.

2.1.1 Global optimization

The objective of a global optimization algorithm is to find the sequence of points
T, € ACR™, n=12,... (2)

which converges to the point z*, which corresponds to the extremum of the target function, when n is
large for all problems from a given family. this search procedure is a sequential decision making problem
where point at step n + 1 is based on decision d,, based on all previous data:

Tp+1 = dn(ajl:nayl:n) (3)
where y; = f(x;). The search method is the sequence of decisions d = dy, ..., dy, which leads to the
final decision xy 41 = n4+1(d). The regret of the search can be expressed as:

6(f,d) = f (wn+41(d) — f(z") (4)

In global optimization there is no convergence guarantees apart from dense sampling, that is, sampling
every point in the search space. In practice, the user defines a stopping criteria, such as a budget, which
corresponds to he maximum number of iterations N.

2.1.2 Stochastic bandits

The problem of stochastic bandits is very similar to global optimization. The main difference is that,
while in the global optimization case, we pay the regret only at the end, in the bandits setting, we pay
regret at every iteration. That is,

on(f,d) = [ (xn(d)) — f(z7) ()

In this setting, it is a standard approach to consider the cumulative and average regret:

N N
om0 =301 (o) = DSl ®
n=1



In practice, global optimization algorithm tends to be anytime algorithms, that is, it always tends
to provide the best possible solution for the current number of iterations. If the number of iterations
increases, the performance of the algorithm will increase. The purpose of this methodology is based on
the assumption that the algorithm does not have a priori knowledge of the available budget.

That means that global optimization algorithms intrinsically are considering the average regret in-
stead of the final regret. For that reason, bandits and global optimization strategies are interchangeable.

2.1.3 Bayesian experimental design

Sequential experimental design and active learning focus on the problem of finding the decisions that
provides more information about the model that we are compute, for example, the Gaussian process.

This case is more involved, since there is no single criterion for that. A nice review can be found in
[1]. The most extended methods are the A-optimality, the D-optimality and the E-optimality.

A-optimality seeks to minimize average variance of the latent variables of the model. For the Gaussian
case, it is equivalent to minimize the trace of the covariance matrix.

D-optimality seeks to maximize the information gain, or in other words, maximize the KL-divergence
between the prior and posterior distribution. For the Gaussian case, it is equivalent to maximize
the determinant of the inverse of the posterior covariance matrix.

E-optimality works in a minimax fashion, where it seeks to maximize the minimum eigenvalue of the
information matrix. However, this criteria does not seems to corresponds to any utility function.

2.2 Continuous inputs: A simple greedy strategy

In the first case we are going to assume that the set of input points that are available are infinite but
bounded. Typically, we are going to have box bounds over continuous data such that our parameter
space is defined as A = [0, 1]™.

This kind of search is a double exponential. First, it is exponential in the number of dimensions of
our parameter space. Second, it is exponential in the number of points that we want to select. However,
due to the continuity assumption, if a point is found as the optimum for a certain criteria, all the points
in the e-neighborhood of that point are also optima.

For that reason, in the continuous case, we rather take a greedy strategy, where we select a single
point at each step, updating the model after every new data point arrives. As said before, we can apply
this framework for active learning, global optimization and stochastic bandits.

Note that in this greedy setup, the Bayesian experimental design criteria are equivalent to find the
point which has maximum predicted uncertainty.

Thus, depending on the problem we may have different criteria. Jones made a complete review of
different criteria for global optimization [2]. Let be p(y¢|X1.t—1,%1.¢—1,%¢) = N(us,0?2), the predicted
distribution given the data and a new query point x;. Let assume also that ymi, = inf(y1.:—1) and
Ymaz = Sup(y1.t—1). Then, we can base our decision on:

Predicted mean which corresponds to p;. In the bandits and optimization setups, it is sometimes
called pure exploitation strategy. In classification we may want to find the points

T, = arg min ||
x

Can you figure out why?

Predicted variance which corresponds to o;. In the bandits and optimization setups, it is sometimes
called pure exploration strategy.

Predicted mean and variance ratio which for classification is defined as |u¢|/o¢.

Upper or lower bound which are u; & 8;0;. Srinivas et al. [8] found the optimal values of 3; to guar-
antee no regret in the bandits setting. Changing £, with time can be used to vary the exploratory
behavior of the method. This is a standard strategy for optimization and bandits.



Probability of improvement which in the case of seeking the minimum is defined as

t

where ® is the standard Gaussian cumulative density function. In the case of maximimization, the
signs switch and y.,q, Teplaces yYmin.

Expected improvement which was defined by [5] for global optimization. If we define the improve-
ment for minimization as I = max(Ymin — ¥,0), and compute the expected value with respect to
our function distributions:

El(z) =E[(z)] = / max(Ymin — f(x),0) dp(f)

Thus
El(xt) = (ymin - Nt)q)(d) + Ut¢(d)

where, again, ® is the standard Gaussian cumulative density function, ¢ is the standard Gaussian
probability density function and d = (Ymin — i) /0t-

Can you guess which criteria are good for optimization? For bandits? For regression? For classifica-
tion?

3 DIRECT usage

Once we have selected the criterion to be used, we still need to found the optimal value (maximum
or minimum, depending on the application) to select the next point. This requires solving another
non-convex optimization problem on a box bounded domain. For that reason, we are going to use the
DIRECT algorithm, developed by Jones et al [3] and implemented by D. Finkel.

This algorithm is a deterministic sampling algorithm based on the Lipschitz assumption to compute
lower bounds on the function value. All the criteria that we have defined are Lipschitz. The code and
some examples can be found in the gpmi/direct folder.

Important: DIRECT always seeks for the minimum of a function. If you want to maximize your
criterion, just send the negative value to DIRECT.

4 Exercises: Continuous case

During the exercises, we are going to see how we can apply our knowledge of Gaussian processes to com-
pute the expectation of the different criteria based on the distribution over functions that the Gaussian
process provides.

First, we are going to start with a simple regression case act_reg_continous.m. Note that this function
is highly multimodal, which will be interesting when we want to find the global minimum. As we did
before, just fill the gaps on the GP configuration.

The function simple_criterion.m is an example of the interface that the criterion function needs to
satisfy in order to work with DIRECT and the rest of the code. Just edit that file o create a new one
with the same interface to implement the rest of the criteria. Try to find the best criterion for active
learning of the regression function, finding the minimum or minimize the bandits regret.

Second, the file act_class_continous.m provides a similar example but for binary classification. Again,
try to find the best criterion for active classification.
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