
Buffer Overflows: What They Are, and How to Avoid
Them

Ricardo J. Rodŕıguez
« All wrongs reversed

rj.rodriguez@unileon.es ※ @RicardoJRdez ※ www.ricardojrodriguez.es

Research Institute of Applied Sciences in Cybersecurity
University of León, Spain

April 28, 2015

Mundo Hacker Day 2015

Madrid (España)

rj.rodriguez@unileon.es
https://twitter.com/RicardoJRdez
www.ricardojrodriguez.es

$whoami

Ph.D. on Comp. Sci. (Univ. of Zaragoza, Spain)
(2013)

Senior Researcher at University of León (Spain)

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 2 / 19

$whoami

Ph.D. on Comp. Sci. (Univ. of Zaragoza, Spain)
(2013)

Senior Researcher at University of León (Spain)

Performance and safety analysis on critical,
complex systems
Model-based security analysis
Advanced malware analysis
NFC security

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 2 / 19

$whoami

Ph.D. on Comp. Sci. (Univ. of Zaragoza, Spain)
(2013)

Senior Researcher at University of León (Spain)

Performance and safety analysis on critical,
complex systems
Model-based security analysis
Advanced malware analysis
NFC security

Trainer at NcN, RootedCON, HIP

Speaker at NcN, HackLU, RootedCON, STIC
CCN-CERT, MalCON, HIP, HITB. . .

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 2 / 19

What is a BOF? (I)

void readName ()

{

char username [256];

printf("Username: ");

scanf("%s", username);

}

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 3 / 19

What is a BOF? (I)

void readName ()

{

char username [256];

printf("Username: ");

scanf("%s", username);

}

void copyBuffers (char *org, char *dst)

{

char buffer [5000];

strcpy(buffer , org);

// Do some stuff into your buffer

strcpy(dst , buffer);

}

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 3 / 19

What is a BOF? (I)

void readName ()

{

char username [256];

printf("Username: ");

scanf("%s", username);

}

void copyBuffers (char *org, char *dst)

{

char buffer [5000];

strcpy(buffer , org);

// Do some stuff into your buffer

strcpy(dst , buffer);

}

Buffer Overflow (BOF)

Memory zone overflow

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 3 / 19

What is a BOF? (I)

void readName ()

{

char username [256];

printf("Username: ");

scanf("%s", username);

}

void copyBuffers (char *org, char *dst)

{

char buffer [5000];

strcpy(buffer , org);

// Do some stuff into your buffer

strcpy(dst , buffer);

}

Buffer Overflow (BOF)

Memory zone overflow

It has consequences: Arbitrary code execution

Any code can be illegitimately forced to execute by an attacker (!)

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 3 / 19

What is a BOF? (I)

void readName ()

{

char username [256];

printf("Username: ");

scanf("%s", username);

}

void copyBuffers (char *org, char *dst)

{

char buffer [5000];

strcpy(buffer , org);

// Do some stuff into your buffer

strcpy(dst , buffer);

}

Buffer Overflow (BOF)

Memory zone overflow

It has consequences: Arbitrary code execution

Any code can be illegitimately forced to execute by an attacker (!)

Is it used?

Common attack vector for malware

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 3 / 19

What is a BOF? (II)

Anything else?

Causes DoS

Application ends unexpectedly (it crashes)

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 4 / 19

What is a BOF? (II)

Anything else?

Causes DoS

Application ends unexpectedly (it crashes)

Wikipedia definition (overflow):

“a buffer overflow, or buffer overrun, is an anomaly where a program,

while writing data to a buffer, overruns the buffer’s boundary and

overwrites adjacent memory. This is a special case of violation of

memory safety’ ’

Problem trending is growing

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 4 / 19

What is a buffer overflow BOF? (III)

(Image source: www.cvedetails.com , date from 1999 to 2015)

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 5 / 19

www.cvedetails.com

What is a BOF? (IV)

(Image source: www.cvedetails.com , date from 1999 to 2015)

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 6 / 19

www.cvedetails.com

What is a BOF? (V)

Overflow types

Stack-based BOF

CPU stack: Local variables storage, procedure parameters. . .
Control-flow execution data

Return addresses

Exception handlers

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 7 / 19

What is a BOF? (V)

Overflow types

Stack-based BOF

CPU stack: Local variables storage, procedure parameters. . .
Control-flow execution data

Return addresses

Exception handlers

Consequences: Control-flow hijacking → an attacker controls what is
going to be executed

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 7 / 19

What is a BOF? (V)

Overflow types

Stack-based BOF

CPU stack: Local variables storage, procedure parameters. . .
Control-flow execution data

Return addresses

Exception handlers

Consequences: Control-flow hijacking → an attacker controls what is
going to be executed

Heap-based BOF

Overwriting of allocated memory (malloc, allocate)

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 7 / 19

What is a BOF? (V)

Overflow types

Stack-based BOF

CPU stack: Local variables storage, procedure parameters. . .
Control-flow execution data

Return addresses

Exception handlers

Consequences: Control-flow hijacking → an attacker controls what is
going to be executed

Heap-based BOF

Overwriting of allocated memory (malloc, allocate)
Consequences: Memory corruption, code execution

. . .

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 7 / 19

What is a BOF? (VI)

Overflow types
. . .

Off-by-one

A loop takes (n − 1) steps instead of n steps
Consequences: Control-flow register may be rewritten (1 byte)

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 8 / 19

What is a BOF? (VI)

Overflow types
. . .

Off-by-one

A loop takes (n − 1) steps instead of n steps
Consequences: Control-flow register may be rewritten (1 byte)

Buffer Overrun

Bottleneck on memory blocks when using CD/DVD writers
Buffer overflow → data is corrupted → CD/DVD useless

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 8 / 19

What is a BOF? (VI)

Overflow types
. . .

Off-by-one

A loop takes (n − 1) steps instead of n steps
Consequences: Control-flow register may be rewritten (1 byte)

Buffer Overrun

Bottleneck on memory blocks when using CD/DVD writers
Buffer overflow → data is corrupted → CD/DVD useless

Integer OF

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 8 / 19

What is a BOF? (VI)

Overflow types
. . .

Off-by-one

A loop takes (n − 1) steps instead of n steps
Consequences: Control-flow register may be rewritten (1 byte)

Buffer Overrun

Bottleneck on memory blocks when using CD/DVD writers
Buffer overflow → data is corrupted → CD/DVD useless

Integer OF

In this talk, we focus on Stack-based BOF

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 8 / 19

What is a BOF? (VII)

char A[8];

unsigned short B;

Variable A: 8B (1 char → 1B)

Variable B: 2B

No initialized

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 9 / 19

What is a BOF? (VII)

char A[8];

unsigned short B;

Variable A: 8B (1 char → 1B)

Variable B: 2B

No initialized

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 9 / 19

What is a BOF? (VII)

char A[8];

unsigned short B;

Variable A: 8B (1 char → 1B)

Variable B: 2B

No initialized

Let’s copy a string to A. . .

strcpy(A, "cadena");

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 9 / 19

What is a BOF? (VII)

char A[8];

unsigned short B;

Variable A: 8B (1 char → 1B)

Variable B: 2B

No initialized

Let’s copy a string to A. . .

strcpy(A, "cadena");

What is the memory content?

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 9 / 19

What is a BOF? (VII)

char A[8];

unsigned short B;

Variable A: 8B (1 char → 1B)

Variable B: 2B

No initialized

Let’s copy a string to A. . .

strcpy(A, "cadena");

What is the memory content?

What if we copy a longer
string?

strcpy(A, " cadena larga");

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 9 / 19

What is a BOF? (VII)

char A[8];

unsigned short B;

Variable A: 8B (1 char → 1B)

Variable B: 2B

No initialized

Let’s copy a string to A. . .

strcpy(A, "cadena");

What is the memory content?

What if we copy a longer
string?

strcpy(A, " cadena larga");

What is the memory content?

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 9 / 19

What is a BOF? (VII)

char A[8];

unsigned short B;

Variable A: 8B (1 char → 1B)

Variable B: 2B

No initialized

Let’s copy a string to A. . .

strcpy(A, "cadena");

What is the memory content?

What if we copy a longer
string?

strcpy(A, " cadena larga");

What is the memory content?

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 9 / 19

What is a BOF? (VII)

char A[8];

unsigned short B;

Variable A: 8B (1 char → 1B)

Variable B: 2B

No initialized

Let’s copy a string to A. . .

strcpy(A, "cadena");

What is the memory content?

What if we copy a longer
string?

strcpy(A, " cadena larga");

What is the memory content?

Overwriting adjacent memory locations
R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 9 / 19

Stack-based BOFs: From theory to practice (I)

Stack-based BOF

Stack space: Local variables storage

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 10 / 19

Stack-based BOFs: From theory to practice (I)

Stack-based BOF

Stack space: Local variables storage

Data to control execution flow

Return addresses
Exception handlers

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 10 / 19

Stack-based BOFs: From theory to practice (I)

Stack-based BOF

Stack space: Local variables storage

Data to control execution flow

Return addresses
Exception handlers

Consequences: control-flow hijacking → an attacker controls what is
going to be executed

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 10 / 19

Stack-based BOFs: From theory to practice (II)

Return to the classic BOF (CWE-120)

http://cwe.mitre.org/data/definitions/120.html

“the program copies an input buffer to an output buffer without

verifying that the size of the input buffer is less than the size of the

output buffer, leading to a buffer overflow.”

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 11 / 19

Stack-based BOFs: From theory to practice (II)

Return to the classic BOF (CWE-120)

http://cwe.mitre.org/data/definitions/120.html

“the program copies an input buffer to an output buffer without

verifying that the size of the input buffer is less than the size of the

output buffer, leading to a buffer overflow.”

Common exploitable functions (C language)

strcpy(), strcat()
scanf(), gets()
printf() family: sprintf(), vsprintf(), . . .
https://security.web.cern.ch/security/recommendations/en/codetools/c.shtml

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 11 / 19

void readCredentials ()

{

/* Create an array for storing

some dummy data */

char username [16];

printf("Enter your username for login , and

then press <Enter >: ");

scanf("%s", username);

printf("Hi %s, welcome back!

Well coding!\n", username);

return;

}

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 12 / 19

void readCredentials ()

{

/* Create an array for storing

some dummy data */

char username [16];

printf("Enter your username for login , and

then press <Enter >: ");

scanf("%s", username);

printf("Hi %s, welcome back!

Well coding!\n", username);

return;

}

LC0 : .ascii "Enter your username for login , and ... \0"

LC1 : .ascii "%s\0"

LC2 : .ascii "Hi %s, welcome back! Well coding !\12\0"

.text

_readCredentials :

push ebp

mov ebp, esp

sub esp, 40

mov DWORD PTR [esp], OFFSET FLAT:LC0

call _printf

lea eax, [ebp -24]

mov DWORD PTR [esp +4], eax

mov DWORD PTR [esp], OFFSET FLAT:LC1

call _scanf

lea eax, [ebp -24]

mov DWORD PTR [esp +4], eax

mov DWORD PTR [esp], OFFSET FLAT:LC2

call _printf

leave

ret

L1:

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 12 / 19

void readCredentials ()

{

/* Create an array for storing

some dummy data */

char username [16];

printf("Enter your username for login , and

then press <Enter >: ");

scanf("%s", username);

printf("Hi %s, welcome back!

Well coding!\n", username);

return;

}

LC0 : .ascii "Enter your username for login , and ... \0"

LC1 : .ascii "%s\0"

LC2 : .ascii "Hi %s, welcome back! Well coding !\12\0"

.text

_readCredentials :

push ebp

mov ebp, esp

sub esp, 40

mov DWORD PTR [esp], OFFSET FLAT:LC0

call _printf

lea eax, [ebp -24]

mov DWORD PTR [esp +4], eax

mov DWORD PTR [esp], OFFSET FLAT:LC1

call _scanf

lea eax, [ebp -24]

mov DWORD PTR [esp +4], eax

mov DWORD PTR [esp], OFFSET FLAT:LC2

call _printf

leave

ret

L1:

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 12 / 19

void readCredentials ()

{

/* Create an array for storing

some dummy data */

char username [16];

printf("Enter your username for login , and

then press <Enter >: ");

scanf("%s", username);

printf("Hi %s, welcome back!

Well coding!\n", username);

return;

}

LC0 : .ascii "Enter your username for login , and ... \0"

LC1 : .ascii "%s\0"

LC2 : .ascii "Hi %s, welcome back! Well coding !\12\0"

.text

_readCredentials :

push ebp

mov ebp, esp

sub esp, 40

mov DWORD PTR [esp], OFFSET FLAT:LC0

call _printf

lea eax, [ebp -24]

mov DWORD PTR [esp +4], eax

mov DWORD PTR [esp], OFFSET FLAT:LC1

call _scanf

lea eax, [ebp -24]

mov DWORD PTR [esp +4], eax

mov DWORD PTR [esp], OFFSET FLAT:LC2

call _printf

leave

ret

L1:

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 12 / 19

void readCredentials ()

{

/* Create an array for storing

some dummy data */

char username [16];

printf("Enter your username for login , and

then press <Enter >: ");

scanf("%s", username);

printf("Hi %s, welcome back!

Well coding!\n", username);

return;

}

LC0 : .ascii "Enter your username for login , and ... \0"

LC1 : .ascii "%s\0"

LC2 : .ascii "Hi %s, welcome back! Well coding !\12\0"

.text

_readCredentials :

push ebp

mov ebp, esp

sub esp, 40

mov DWORD PTR [esp], OFFSET FLAT:LC0

call _printf

lea eax, [ebp -24]

mov DWORD PTR [esp +4], eax

mov DWORD PTR [esp], OFFSET FLAT:LC1

call _scanf

lea eax, [ebp -24]

mov DWORD PTR [esp +4], eax

mov DWORD PTR [esp], OFFSET FLAT:LC2

call _printf

leave

ret

L1:

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 12 / 19

void readCredentials ()

{

/* Create an array for storing

some dummy data */

char username [16];

printf("Enter your username for login , and

then press <Enter >: ");

scanf("%s", username);

printf("Hi %s, welcome back!

Well coding!\n", username);

return;

}

LC0 : .ascii "Enter your username for login , and ... \0"

LC1 : .ascii "%s\0"

LC2 : .ascii "Hi %s, welcome back! Well coding !\12\0"

.text

_readCredentials :

push ebp

mov ebp, esp

sub esp, 40

mov DWORD PTR [esp], OFFSET FLAT:LC0

call _printf

lea eax, [ebp -24]

mov DWORD PTR [esp +4], eax

mov DWORD PTR [esp], OFFSET FLAT:LC1

call _scanf

lea eax, [ebp -24]

mov DWORD PTR [esp +4], eax

mov DWORD PTR [esp], OFFSET FLAT:LC2

call _printf

leave

ret

L1:

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 12 / 19

It’s demo time!

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 13 / 19

Mechanisms to Avoid Stack-based BOFs: Brief Summary

Stack Cookies (aka Stack Canaries)

Compiler flag (/GSswitch)

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 14 / 19

Mechanisms to Avoid Stack-based BOFs: Brief Summary

Stack Cookies (aka Stack Canaries)

Compiler flag (/GSswitch)

SafeSEH / SEHOP (Structured Exception Handler Overwrite
Protection)

Compiler flag (/safeSEH) (out of scope in this talk!)

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 14 / 19

Mechanisms to Avoid Stack-based BOFs: Brief Summary

Stack Cookies (aka Stack Canaries)

Compiler flag (/GSswitch)

SafeSEH / SEHOP (Structured Exception Handler Overwrite
Protection)

Compiler flag (/safeSEH) (out of scope in this talk!)

Data Execution Prevention (DEP) (aka Write or eXecute only mode,
W ⊕ X)

Operating System / Architecture supported

Address Space Layout Randomization (ASLR)

Operating System / Compiler flag /DYNAMICBASE

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 14 / 19

Conclusions (I)

Programming bugs may lead in exploitable BOFs

Several protection mechanisms exist:

Compiler flags (/GS, /SafeSEH, /NXCOMPAT, /DYNAMICBASE)
Operating System/Architecture (SEHOP, Hardware-DEP, ASLR)
Commercial/Free third-party libraries
(http://en.wikipedia.org/wiki/Buffer_overflow_protection)

Evasion techniques for these protections are well-known

Isolated: Makes the exploit process more difficult to achieve
Combined: Better protection is guaranteed

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 15 / 19

Conclusiones (II)
Take-Home Message

Code (and compile) safely!

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 16 / 19

Conclusiones (II)
Take-Home Message

Code (and compile) safely!

Final recommendations

Make use of safe functions

Compile with all available protection flags activated

In all files!

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 16 / 19

Further Readings

Corelan EWT, https://www.corelan.be/index.php/category/security/exploit-writing-tutorials/

Wikipedia, http://en.wikipedia.org/wiki/Buffer_overflow

CVE details, http://www.cvedetails.com

Practical Malware Analysis, M. Sikorski, A. Honig, NoStarch, 2012

Malware Analyst’s Cookbook, M.H. Ligh, S. Adair, B. Hartstein, M.
Richard, Wiley, 2011

A Guide to Kernel Exploitation: Attacking the Core, E. Perla, M.
Oldani, Elsevier, 2011

Software Security: Building Security In, G. McGraw, Addison Wesley,
2006

Reversing: Secrets of Reverse Engineering, E. Eilam, Wiley, 2005

The Art of Computer Virus Research and Defense, P. Szor, Addison
Wesley, 2005

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 17 / 19

Agenda

1 What is a buffer overflow (BOF)?

2 Stack-based BOFs: From theory to practice

3 Mechanisms to Avoid Stack-based BOFs

4 Conclusions

5 Further Readings

R.J. Rodŕıguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD’15 18 / 19

Buffer Overflows: What They Are, and How to Avoid
Them

Ricardo J. Rodŕıguez
« All wrongs reversed

rj.rodriguez@unileon.es ※ @RicardoJRdez ※ www.ricardojrodriguez.es

Research Institute of Applied Sciences in Cybersecurity
University of León, Spain

April 28, 2015

Mundo Hacker Day 2015

Madrid (España)

	What is a buffer overflow (BOF)?
	Stack-based BOFs: From theory to practice
	Mechanisms to Avoid Stack-based BOFs
	Conclusions
	Further Readings

