Buffer Overflows: What They Are, and How to Avoid
Them

Ricardo J. Rodriguez
® All wrongs reversed
rj.rodriguez@unileon.es 3% ORicardoJRdez ¥ www.ricardojrodriguez.es

8

RIASC

Research Institute of Applied Sciences in Cybersecurity
University of Leén, Spain

April 28, 2015

Mundo Hacker Day 2015
Madrid (Espafia)

rj.rodriguez@unileon.es
https://twitter.com/RicardoJRdez
www.ricardojrodriguez.es

$whoami

@ Ph.D. on Comp. Sci. (Univ. of Zaragoza, Spain)
(2013)

@ Senior Researcher at University of Leén (Spain)

ST T

»a 2\
RIASC’

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

$whoami

@ Ph.D. on Comp. Sci. (Univ. of Zaragoza, Spain)
(2013)
@ Senior Researcher at University of Leén (Spain)
@ Performance and safety analysis on critical,
complex systems
@ Model-based security analysis
@ Advanced malware analysis
o NFC security

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 2/19

$whoami

@ Ph.D. on Comp. Sci. (Univ. of Zaragoza, Spain)
(2013)
@ Senior Researcher at University of Leén (Spain)

@ Performance and safety analysis on critical,
complex systems

@ Model-based security analysis

@ Advanced malware analysis

o NFC security

@ Trainer at NcN, RootedCON, HIP

@ Speaker at NcN, HackLU, RootedCON, STIC
CCN-CERT, MalCON, HIP, HITB. ..

V.

Syt
i\a/%
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 2/19

What is a BOF? (1)

void readName ()

{
char username [256];
printf("Username: ");
scanf ("’s", username);

}

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

What is a BOF? (1)

void readName () void copyBuffers (char *org, char *dst)

{
char username [256]; char buffer [5000];
rintf("Username: "); stropy (buffer, org);
s h) 3 // Do some stuff into your buffer
scanf("’s", username); strepy(dst, buffer);

d ¥

Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

What is a BOF? (1)

void readName () void copyBuffers (char *org, char *dst)
{ .

char username [256]; char buffer [5000];

rintf("Username: "); strcpy(butfer, org);

: cername); // Do some stuff into your buffer

> username’s strcpy(dst, buffer);

Buffer Overflow (BOF)

@ Memory zone overflow

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 3/19

What is a BOF? (1)

void readName () void copyBuffers (char *org, char *dst)

{ char buffer [5000];

h 2561 ;
;r:t‘f‘f?ﬁ“a‘fif]H)A strcpy(buffer, org);
sername ; 4
ccanf('/c", username); // Do some stuff into your buffer

3 strcpy(dst, buffer);

Buffer Overflow (BOF)

@ Memory zone overflow

@ It has consequences: Arbitrary code execution
@ Any code can be illegitimately forced to execute by an attacker (!)

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 3/19

What is a BOF? (1)

void readName () void copyBuffers (char *org, char *dst)

{
char username [256];
printf("Username: ");
scanf("%s", username);

¥

char buffer [5000];

strcpy (buffer, org);

// Do some stuff into your buffer
strcpy(dst, buffer);

Buffer Overflow (BOF)

@ Memory zone overflow

@ It has consequences: Arbitrary code execution

@ Any code can be illegitimately forced to execute by an attacker (!)
@ Is it used?

o Common attack vector for malware

)/

_a A3
i\‘ G %
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 3/19

ST T

What is a BOF? (I1)

Anything else?
@ Causes DoS

@ Application ends unexpectedly (it crashes)

e
ﬂl%
RIASC

MHD'15 4 /19

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

What is a BOF? (I1)

@ Causes DoS
@ Application ends unexpectedly (it crashes)
@ Wikipedia definition (overflow):
o “a buffer overflow, or buffer overrun, is an anomaly where a program,

while writing data to a buffer, overruns the buffer's boundary and

overwrites adjacent memory. This is a special case of violation of
memory safety’ '’

@ Problem trending is growing

- 5]

JENC %
i\ ey %
RIASC

MHD'15 4 /19

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

What is a buffer overflow BOF? (111)

Vulnerabilities By Type

21564

14380

9731 9209

(Image source: www.cvedetails.com, date from 1999 to 2015)

5630 6200
3657 3299
28.43 . 213525i’11os117

M Denial of Service 14380

M Execute Code 21564

[overflow 9731

M xss 9209

| Directory Traversal 2843
Bypass Something 3657
Gain Information 5630

¥ Gain Privilege 3299
Sql Injection 6200
File Inclusion 2135

[| Memory Corruption 2577
CSRF 1106

Hittp Response Splitting 117

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

ST T

Nvw
IASC’

-y

www.cvedetails.com

What is a BOF? (1V)

Of Vulns

o
1989 2000 2001 2002 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Years

(Image source: www.cvedetails.com, date from 1999 to 2015)

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

www.cvedetails.com

What is a BOF? (V)

Overflow types

@ Stack-based BOF

@ CPU stack: Local variables storage, procedure parameters. . .
o Control-flow execution data

@ Return addresses

@ Exception handlers

v
8
i\‘ V(%
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 7/19

What is a BOF? (V)

Overflow types

@ Stack-based BOF

@ CPU stack: Local variables storage, procedure parameters. . .
o Control-flow execution data
@ Return addresses
@ Exception handlers
o Consequences: Control-flow hijacking — an attacker controls what is
going to be executed

v
8
i\‘ V(%
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 7/19

What is a BOF? (V)

Overflow types

@ Stack-based BOF

@ CPU stack: Local variables storage, procedure parameters. . .
o Control-flow execution data

@ Return addresses
@ Exception handlers

o Consequences: Control-flow hijacking — an attacker controls what is
going to be executed

@ Heap-based BOF

o Overwriting of allocated memory (malloc, allocate)

v
8
i\‘ V(%
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 7/19

What is a BOF? (V)

Overflow types

@ Stack-based BOF

@ CPU stack: Local variables storage, procedure parameters. . .
o Control-flow execution data
@ Return addresses
@ Exception handlers
o Consequences: Control-flow hijacking — an attacker controls what is
going to be executed

@ Heap-based BOF

o Overwriting of allocated memory (malloc, allocate)
o Consequences: Memory corruption, code execution

v
8
i\‘ V(%
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 7/19

What is a BOF? (VI)

Overflow types
o

o Off-by-one

@ A loop takes (n — 1) steps instead of n steps
o Consequences: Control-flow register may be rewritten (1 byte)

- 5]

AN %
i\ ey %
RIASC

MHD'15 8 /19

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

What is a BOF? (VI)

Overflow types

° ...
o Off-by-one

@ A loop takes (n — 1) steps instead of n steps

o Consequences: Control-flow register may be rewritten (1 byte)
@ Buffer Overrun

o Bottleneck on memory blocks when using CD/DVD writers
o Buffer overflow — data is corrupted — CD/DVD useless

VN $
E 2 7%
Newd

RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 8 /19

What is a BOF? (VI)

Overflow types

° ...
@ Off-by-one

@ A loop takes (n — 1) steps instead of n steps

o Consequences: Control-flow register may be rewritten (1 byte)
o Buffer Overrun

o Bottleneck on memory blocks when using CD/DVD writers

o Buffer overflow — data is corrupted — CD/DVD useless

® Integer OF

VN $
E 2 7%
Newd

RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 8 /19

What is a BOF? (VI)

Overflow types

° ...
@ Off-by-one

@ A loop takes (n — 1) steps instead of n steps

o Consequences: Control-flow register may be rewritten (1 byte)
@ Buffer Overrun

o Bottleneck on memory blocks when using CD/DVD writers
o Buffer overflow — data is corrupted — CD/DVD useless

® Integer OF

In this talk, we focus on Stack-based BOF

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 8 /19

What is a BOF? (VII)

char A[8];
unsigned short Bj;

@ Variable A: 8B (1 char — 1B)
@ Variable B: 2B

@ No initialized

Syt
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

What is a BOF? (VII)

char A[8];
unsigned short B;

@ Variable A: 8B (1 char — 1B)
@ Variable B: 2B

@ No initialized

A B
[2T2T2TTT2T2T2T2T"2]

Byt

Syt
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

What is a BOF? (VII)

char A[8];
unsigned short B;

@ Variable A: 8B (1 char — 1B)
@ Variable B: 2B

@ No initialized

A B
[T TTTT T T T2T"]
oy
@ Let's copy a string to A. .. J

strcpy (A, "cadena');

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

What is a BOF? (VII)

@ What is the memory content? J
char A[8];

unsigned short B;

A B

@ Variable A: 8B (1 char — 1B) L]B_J slelelw]afole[2T2]
@ Variable B: 2B

@ No initialized

A B
[T TTTT T T T2T"]
Byte
@ Let's copy a string to A. .. J
strcpy (A, "cadena');

S

RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

What is a BOF? (VII)

@ What is the memory content? J
char A[8];

unsigned short B;

A B

@ Variable A: 8B (1 char — 1B) L]B_J slelelw]afole[2T2]
@ Variable B: 2B

@ No initialized

A 8 string?
[2T2T2TTT2T2T2T2T"2]

Byt

@ What if we copy a longer J

strepy (A, "cadena larga');

@ Let's copy a string to A. ..)

strcpy (A, "cadena');

ST T

,‘Ei 2\
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 9/19

What is a BOF? (VII)

@ What is the memory content? J
char A[8];

unsigned short B;

@ Variable A: 8B (1 char — 1B) Lm,' slelelw]afole[2T2]
@ Variable B: 2B
@ No initialized

@ What if we copy a longer J

A 8 string?
[N N N N N N B B B
Tose” strcpy(A, "cadena larga');
o Let's copy a string to A. .. J @ What is the memory content? J

strcpy (A, "cadena');

‘_a. 3
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 9/19

ST T

What is a BOF? (VII)

char A[8];
unsigned short B;

@ What is the memory content? J

@ Variable A: 8B (1 char — 1B) Lm,' slelelw]afole[2T2]
@ Variable B: 2B
@ No initialized

@ What if we copy a longer J

A 8 string?
[T TTTT T T T2T"]
Byte strepy(A, "cadena larga");
o Let's copy a string to A. .. J @ What is the memory content?)
strcpy (A, "cadena'); A B
[e[wlele [w]a] [[a][%].

Pa—y
IByte

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 9/19

What is a BOF? (VII)

@ What is the memory content? J
char A[8];

unsigned short B;

A B

@ Variable A: 8B (1 char — 1B) Lm,' slelelw]afole[2T2]
@ Variable B: 2B
@ No initialized

@ What if we copy a longer J

A 8 string?
[T T2 1T T 2T 20112121
Byte strcpy(A, "cadena larga');
o Let's copy a string to A. . . | @ What is the memory content? J
strepy (A, "cadena’); A B
N P S T A

Pa—y
IByte

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 9/19

Stack-based BOFs: From theory to practice (1)

Stack-based BOF

@ Stack space: Local variables storage

e
i\a/%
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 10 / 19

Stack-based BOFs: From theory to practice (1)

Stack-based BOF

@ Stack space: Local variables storage
@ Data to control execution flow

o Return addresses
@ Exception handlers

e
i\a/%
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 10 / 19

Stack-based BOFs: From theory to practice (1)

Stack-based BOF

@ Stack space: Local variables storage
@ Data to control execution flow
@ Return addresses
o Exception handlers
@ Consequences: control-flow hijacking — an attacker controls what is
going to be executed

e
ﬂl%
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 10 / 19

Stack-based BOFs: From theory to practice (I1)

Return to the classic BOF (CWE-120)
® http://cwe.mitre.org/data/definitions/120.html

@ ‘the program copies an input buffer to an output buffer without
verifying that the size of the input buffer is less than the size of the
output buffer, leading to a buffer overflow.”

8
i\‘ V(%
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 11 /19

Stack-based BOFs: From theory to practice (I1)

Return to the classic BOF (CWE-120)
® http://cwe.mitre.org/data/definitions/120.html

@ ‘the program copies an input buffer to an output buffer without
verifying that the size of the input buffer is less than the size of the
output buffer, leading to a buffer overflow.”

@ Common exploitable functions (C language)

strcpy), strcat ()
scanf (), gets ()
printf () family: sprintf(), vsprintf (), ...

https://security.web.cern.ch/security/recommendations/en/codetools/c.shtml

¢ ¢ ¢ ¢

8
i\‘ V(%
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 11 /19

void readCredentials ()

/% Create an array for storing
some dummy data */
char username[16];
printf("Enter your username for login, and
then press <Enter>: ");
scanf ("/s", username);
printf ("Hi %s, welcome back!
Well coding!\n", username);
return;

ez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

LCO: .ascii "Enter your username for login, and ... \O"
LC1: .ascii "%s\O"
LC2: .ascii "Hi %s, welcome back! Well coding!\12\0"

.text
d dentials :
void readCredentials () -readCredentials
push ebp
bp ,
/% Create an array for storing :3; :Sg Zzp
nar usz:::m:?ng_d“t“ 4 mov DWORD PTR [esp], OFFSET FLAT:LCO
printf("Enter your username for login, and ;all _pnn;fb 241
then press <Enter>: "); ea eax, Lebp
scanf("%s", username); mov DWORD PTR [esp+4], eax
printf(;Hl’Vs HSNS N mov DWORD PTR [esp], OFFSET FLAT:LC1
e : call scanf
W \n" . -
— ell coding!\n", username); Ton cax, [ebp-24]
3 ’ mov DWORD PTR [esp+4], eax
mov DWORD PTR [esp], OFFSET FLAT:LC2
call _printf
leave
ret

Li:

Overflows: What They Are, and How to Avoid Th

LCO: .ascii "Enter your username for login, and ... \O"
LC1: .ascii "%s\O"
LC2: .ascii "Hi %s, welcome back! Well coding!\12\0"

.text
d dentials :
void readCredentials () -readCredentials
push ebp
bp ,
/% Create an array for storing :3; :Sg Zzp
nar usz:::m:?ng_d“t“ 4 mov DWORD PTR [esp], OFFSET FLAT:LCO
printf("Enter your username for login, and ;all _pnn;fb 241
then press <Enter>: "); ea eax, Lebp
scanf("%s", username); mov DWORD PTR [esp+4], eax
printf(;Hl’Vs HSNS N mov DWORD PTR [esp], OFFSET FLAT:LC1
e : call scanf
W \n" . -
— ell coding!\n", username); Ton cax, [ebp-24]
3 ’ mov DWORD PTR [esp+4], eax
mov DWORD PTR [esp], OFFSET FLAT:LC2
call _printf
leave
ret

Li:

Overflows: What They Are, and How to Avoid Th

void readCredentials ()

/% Create an array for storing
some dummy data */
char username[16];
printf("Enter your username for login, and
then press <Enter>: ");
scanf ("/s", username);
printf ("Hi s, lcome back!
Well coding!\n",

username) ;

return;
¥
esp —p @L1
+4
+8
+12
+16

R.J. Rodriguez (ULE)

LCO:
LC1:
LC2:

.ascii "Enter your username for login, and ... \0"

.ascii "%s\0"

.ascii "Hi %s, welcome back! Well coding!\12\0"
.text

_readCredentials:

push ebp
mov ebp, esp
sub esp, 40
mov DWORD PTR [esp], OFFSET FLAT:LCO
call _printf
lea eax, [ebp-24]
mov DWORD PTR [esp+4], eax
mov DWORD PTR [espl, OFFSET FLAT:LC1
call _scanf
lea eax, [ebp-24]
mov DWORD PTR [esp+4], eax
mov DWORD PTR [esp], OFFSET FLAT:LC2
call _printf
leave
ret

L1:

Buffer Overflows: What They Are, and How to Avoid Them

MHD'15

LCO: .ascii "Enter your username for login, and \o"
LC1: .ascii "%s\0"
LC2: .ascii "Hi %s, welcome back! Well coding!\12\0"
.text
void readCredentials () -readCredentials :
push ebp
/* Create an array for storing :3: :zg’ Z:p
some dummy date */ mov DWORD PTR [esp], OFFSET FLAT:LCO
char username [16]; .
printf ("Enter your rname for login, and call -printf
then press <Enter>: "); lea eax, [ebp-24]
scanf("%s", username); mov DWORD PTR [esp+4], eax
) ’ > mov DWORD PTR [esp], OFFSET FLAT:LC1
printf ("Hi % v ome back!
Well coding!\n", username); call -scanf
return: g lea eax, [ebp-24]
3 ’ mov DWORD PTR [esp+4], eax
mov DWORD PTR [esp], OFFSET FLAT:LC2
call _printf
leave
ret
L1:
€8]
esp —» @Ll P —> ebp
+4 @L1
+4
+8
+8
+12
+
12 +16
+16 e

R.J. Rodriguez (ULE)

Buffer Overflows: What They Are, and How to Avoid Them

MHD'15 12 /19

{

LCO: .ascii "Enter your username for login, and
LC1: .ascii "%s\0"
LC2: .ascii "Hi %s, welcome back! Well coding!\12\0"
.text
void readCredentials () -readCredentials :
push ebp
/% Create an array for storing mov ebp, esp
some dummy dota */ sub esp, 40
¥ mov DWORD PTR [esp], OFFSET FLAT:LCO
char username [16]; .
: .) call _printf
printf("Enter your username for login, and
then press <Enter>: "); lea eax, [ebp-24]
scant ("o, use pa“’e”)" arerse s mov DWORD PTR [esp+4], eax
antl he o, usernamel; mov DWORD PTR [esp], OFFSET FLAT:LC1
printf ("Hi s, come back!
Well coding!\n", username); call -scanf
return: g ’ ’ lea eax, [ebp-24]
; mov DWORD PTR [esp+4], eax
mov DWORD PTR [esp], OFFSET FLAT:LC2
call _printf
leave
ret
Li:
esp —|
+4
+8
) 03] |-24
esp ebp usernamel(
CSp —| @L1 @i username(4..7] | -20
+4 —
14 usermamel[8..11] | -16
+8 username[12..15] |-12
+8
+12
+12
+16 e =
@L1
R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15

\or

It's demo time!

New
RIASC’
R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

Mechanisms to Avoid Stack-based BOFs: Brief Summary

@ Stack Cookies (aka Stack Canaries)
o Compiler flag (/GSswitch)

Syt
i\a/%
RIASC

MHD'15 14 /19

Sl

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

Mechanisms to Avoid Stack-based BOFs: Brief Summary

@ Stack Cookies (aka Stack Canaries)
o Compiler flag (/GSswitch)

@ SafeSEH / SEHOP (Structured Exception Handler Overwrite
Protection)

o Compiler flag (/safeSEH) (out of scope in this talk!)

e
i\a/%
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 14 /19

Mechanisms to Avoid Stack-based BOFs: Brief Summary

@ Stack Cookies (aka Stack Canaries)
o Compiler flag (/GSswitch)

@ SafeSEH / SEHOP (Structured Exception Handler Overwrite
Protection)

o Compiler flag (/safeSEH) (out of scope in this talk!)

@ Data Execution Prevention (DEP) (aka Write or eXecute only mode,
W& X)
@ Operating System / Architecture supported
@ Address Space Layout Randomization (ASLR)
o Operating System / Compiler flag /DYNAMICBASE

e
i\a/%
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 14 /19

Conclusions (1)

@ Programming bugs may lead in exploitable BOFs
@ Several protection mechanisms exist:
o Compiler flags (/GS, /SafeSEH, /NXCOMPAT, /DYNAMICBASE)
o Operating System/Architecture (SEHOP, Hardware-DEP, ASLR)
o Commercial /Free third-party libraries
(http://en.wikipedia.org/wiki/Buffer_overflow_protection)
@ Evasion techniques for these protections are well-known

o Isolated: Makes the exploit process more difficult to achieve
o Combined: Better protection is guaranteed

e
i\a/%
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 15 /19

Conclusiones (I1)
TAKE-HOME MESSAGE

Code (and compile) safely!

Syt
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

Conclusiones (I1)
TAKE-HOME MESSAGE

Code (and compile) safely!

Final recommendations

@ Make use of safe functions
o Compile with all available protection flags activated

@ In all files!

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 16 / 19

Further Readings

o Corelan EVVT, https://www.corelan.be/index.php/category/security/exploit-writing-tutorials/
(*] Wlklpedla, http://en.wikipedia.org/wiki/Buffer_overflow

(*] CVE detaI|S, http://www.cvedetails.com

@ Practical Malware Analysis, M. Sikorski, A. Honig, NoStarch, 2012

@ Malware Analyst's Cookbook, M.H. Ligh, S. Adair, B. Hartstein, M.
Richard, Wiley, 2011

o A Guide to Kernel Exploitation: Attacking the Core, E. Perla, M.
Oldani, Elsevier, 2011

@ Software Security: Building Security In, G. McGraw, Addison Wesley,
2006

@ Reversing: Secrets of Reverse Engineering, E. Eilam, Wiley, 2005

@ The Art of Computer Virus Research and Defense, P. Szor, Addison
Wesley, 2005

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them MHD'15 17 / 19

Agenda

@ What is a buffer overflow (BOF)?

@ Stack-based BOFs: From theory to practice
© Mechanisms to Avoid Stack-based BOFs
@ Conclusions

© Further Readings

I

_g 3
RIASC

R.J. Rodriguez (ULE) Buffer Overflows: What They Are, and How to Avoid Them

Buffer Overflows: What They Are, and How to Avoid
Them

Ricardo J. Rodriguez
® All wrongs reversed
rj.rodriguez@unileon.es 3% ORicardoJRdez ¥ www.ricardojrodriguez.es

8

RIASC

Research Institute of Applied Sciences in Cybersecurity
University of Leén, Spain

April 28, 2015

Mundo Hacker Day 2015
Madrid (Espafia)

	What is a buffer overflow (BOF)?
	Stack-based BOFs: From theory to practice
	Mechanisms to Avoid Stack-based BOFs
	Conclusions
	Further Readings

