
Malware Detection in Memory Forensics

Ricardo J. Rodríguez
« All wrongs reversed – under CC BY-NC-SA 4.0 license

rjrodriguez@unizar.es ※ @RicardoJRdez ※ www.ricardojrodriguez.es

Dpto. de Informática e Ingeniería de Sistemas
Universidad de Zaragoza, Spain

October 11, 2021

Université Paris-Saclay, CEA LIST
Paris, France

mailto:rjrodriguez@unizar.es
https://twitter.com/RicardoJRdez
www.ricardojrodriguez.es

$whoami

Associate Professor at the University of Zaragoza

Research lines:
Program binary analysis
Digital forensics
Offensive security
Security and survivability analysis with formal models

Research team – we make really good stuff!

https://reversea.me
https://twitter.com/reverseame/
https://t.me/reverseame

Miguel Martín-Pérez Daniel Uroz Razvan Raducu Pedro Fernández
PhD. student PhD. student PhD. student Technician

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 2 / 32

https://reversea.me
https://twitter.com/reverseame/
https://t.me/reverseame

$whoami

Associate Professor at the University of Zaragoza

Research lines:
Program binary analysis
Digital forensics
Offensive security
Security and survivability analysis with formal models

Research team – we make really good stuff!

https://reversea.me
https://twitter.com/reverseame/
https://t.me/reverseame

Miguel Martín-Pérez Daniel Uroz Razvan Raducu Pedro Fernández
PhD. student PhD. student PhD. student Technician

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 2 / 32

https://reversea.me
https://twitter.com/reverseame/
https://t.me/reverseame

Agenda

1 Introduction

2 Current Issues and our Contributions

3 Future Work

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 3 / 32

Introduction
A little recap...

Preparation

Detect and
Analysis

Detect and
Analysis

Containment,
Eradication,

and Recovery

Post-incident
activity

Network forensics

Computer forensics
Disk + memory

Disk vs. memory

Sometimes, access to physical
drives is difficult to achieve

Current limits of storage
capacity vs. memory capacity

Terabytes versus gigabytes
Facilitates initial triage

Some data only resides in memory

Incident response as defined by NIST

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 4 / 32

Introduction
A little recap...

Preparation

Detect and
Analysis

Detect and
Analysis

Containment,
Eradication,

and Recovery

Post-incident
activity

Network forensics

Computer forensics
Disk + memory

Disk vs. memory

Sometimes, access to physical
drives is difficult to achieve

Current limits of storage
capacity vs. memory capacity

Terabytes versus gigabytes
Facilitates initial triage

Some data only resides in memory

Incident response as defined by NIST

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 4 / 32

Introduction
A little recap...

Preparation

Detect and
Analysis

Detect and
Analysis

Containment,
Eradication,

and Recovery

Post-incident
activity

Network forensics

Computer forensics
Disk + memory

Disk vs. memory

Sometimes, access to physical
drives is difficult to achieve

Current limits of storage
capacity vs. memory capacity

Terabytes versus gigabytes
Facilitates initial triage

Some data only resides in memory

Incident response as defined by NIST

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 4 / 32

Introduction
Memory forensics

Memory dump

Full of data to analyze

Each item that can be analyzed is called memory artifact
Retrieved via appropriate internal structures of the OS or using a pattern-like search

Snapshot of running processes, logged in users, open files, or open network
connections – everything that was running at the time of acquisition

May also contain recently freed system resources
Normally, memory is not zeroed when freed

Volatility: de facto standard tool for analyzing memory dumps
Version 2 vs. version 3⇒ Python2 vs. Python3

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 5 / 32

Introduction
A little more of recap...

Malicious software (malware) analysis

Determine what the heck the malware does as harmful activities

Static analysis
Executable files are analyzed without being executed

Dynamic analysis
Executable files are analyzed when run

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 6 / 32

Introduction
The Windows memory subsystem

Maps a process virtual address space into physical memory

Manages memory paging: memory pages are...
Paged to disk when the demanding memory of running threads exceeds the available
physical memory; and
Returned to physical memory when needed

Memory page

Contiguous fixed-length block of virtual memory

Small (4 KiB) and large pages (2 MiB [x86 & x64] to 4 MiB [ARM])

Different states: free, reserved, and committed

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 7 / 32

Introduction
The Windows memory subsystem

Maps a process virtual address space into physical memory

Manages memory paging: memory pages are...
Paged to disk when the demanding memory of running threads exceeds the available
physical memory; and
Returned to physical memory when needed

Memory page

Contiguous fixed-length block of virtual memory

Small (4 KiB) and large pages (2 MiB [x86 & x64] to 4 MiB [ARM])

Different states: free, reserved, and committed

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 7 / 32

Introduction

Talk guided by a demo

Windows 7 x86 machine

Alina malware (slightly modified for local connection) + system files

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 8 / 32

Agenda

1 Introduction

2 Current Issues and our Contributions

3 Future Work

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 9 / 32

Current Issues and our Contributions
Issue #1: Incompleteness of images

The content of an image is incomplete
(relative to its image file)1

Everything happens for a reason...
Page swapping

The OS stores unused memory pages in a secondary source until those pages are
needed again
Allows us to use more memory than is actually available in RAM

Demand paging (or lazy page loading)
The OS does not bring data from files on disk to memory until it is absolutely necessary
Optimization issue

(remember to show it with the demo)

1Following Windows terminology, an image file means a program file that resides on disk, while an image means the in-memory
representation of an image file. Similarly, an image as well as a process are internally represented by a module

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 10 / 32

Current Issues and our Contributions
Issue #1: Incompleteness of images

Virtual address
space of

Process A

kernel32.dll
system library

Executable code

Physical
memory

kernel32.dll
system library

Process B ex-
ecutable code

Process A ex-
ecutable code

Virtual address
space of

Process B

kernel32.dll
system library

Executable code

Process A page table

kernel32.dll
code page 0

kernel32.dll
code page 4

kernel32.dll
code page 5

kernel32.dll
data page 0

kernel32.dll
data page 1

Physical memory

kernel32.dll
code page 0

kernel32.dll
code page 5

kernel32.dll
code page 4

kernel32.dll
code page 6

kernel32.dll
data page 1

kernel32.dll
data page 0

kernel32.dll
data page
0 (private)

Process B page table

kernel32.dll
code page 0

kernel32.dll
code page 5

kernel32.dll
code page 6

kernel32.dll
data page 0

kernel32.dll
data page 1

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 11 / 32

Current Issues and our Contributions
Issue #1: Incompleteness of images

Virtual address
space of

Process A

kernel32.dll
system library

Executable code

Physical
memory

kernel32.dll
system library

Process B ex-
ecutable code

Process A ex-
ecutable code

Virtual address
space of

Process B

kernel32.dll
system library

Executable code

Process A page table

kernel32.dll
code page 0

kernel32.dll
code page 4

kernel32.dll
code page 5

kernel32.dll
data page 0

kernel32.dll
data page 1

Physical memory

kernel32.dll
code page 0

kernel32.dll
code page 5

kernel32.dll
code page 4

kernel32.dll
code page 6

kernel32.dll
data page 1

kernel32.dll
data page 0

kernel32.dll
data page
0 (private)

Process B page table

kernel32.dll
code page 0

kernel32.dll
code page 5

kernel32.dll
code page 6

kernel32.dll
data page 0

kernel32.dll
data page 1

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 11 / 32

Current Issues and our Contributions
Issue #1: Incompleteness of images

Evaluation of memory paging in Windows 10 [MR-ICDF2C-21]

Paging issues in user-space modules on a Windows 10 64-bit system
(build 19041) with 4GiB and 8GiB RAM memory

Different memory workloads: 25%, 50%, 75%, 100%, 125%, and 150%
We developed a naif tool that allocates memory and writes a random byte every 4KiB

System memory acquired at various runtimes for each memory workload
First observation moment: every 15 seconds for the first minute, every minute for 4 more
minutes, while allocating memory
Second observation moment: same pattern, after stopping the memory allocator tool

Side product of our research: residentmem
Volatility2 plugin, GNU/GPLv3. https://github.com/reverseame/residentmem
Extracts the number of resident pages (that is, in memory) of each image and each
process within a memory dump
Provides forensic analysts with information on the amount of binary data that cannot be
analyzed correctly

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 12 / 32

https://github.com/reverseame/residentmem

Current Issues and our Contributions
Issue #1: Incompleteness of images

Evaluation of memory paging in Windows 10 [MR-ICDF2C-21]

Paging issues in user-space modules on a Windows 10 64-bit system
(build 19041) with 4GiB and 8GiB RAM memory

Different memory workloads: 25%, 50%, 75%, 100%, 125%, and 150%
We developed a naif tool that allocates memory and writes a random byte every 4KiB

System memory acquired at various runtimes for each memory workload
First observation moment: every 15 seconds for the first minute, every minute for 4 more
minutes, while allocating memory
Second observation moment: same pattern, after stopping the memory allocator tool

Side product of our research: residentmem
Volatility2 plugin, GNU/GPLv3. https://github.com/reverseame/residentmem
Extracts the number of resident pages (that is, in memory) of each image and each
process within a memory dump
Provides forensic analysts with information on the amount of binary data that cannot be
analyzed correctly

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 12 / 32

https://github.com/reverseame/residentmem

Current Issues and our Contributions
Issue #1: Incompleteness of images

Evaluation of memory paging in Windows 10 [MR-ICDF2C-21]

Paging issues in user-space modules on a Windows 10 64-bit system
(build 19041) with 4GiB and 8GiB RAM memory

Different memory workloads: 25%, 50%, 75%, 100%, 125%, and 150%
We developed a naif tool that allocates memory and writes a random byte every 4KiB

System memory acquired at various runtimes for each memory workload
First observation moment: every 15 seconds for the first minute, every minute for 4 more
minutes, while allocating memory
Second observation moment: same pattern, after stopping the memory allocator tool

Side product of our research: residentmem
Volatility2 plugin, GNU/GPLv3. https://github.com/reverseame/residentmem
Extracts the number of resident pages (that is, in memory) of each image and each
process within a memory dump
Provides forensic analysts with information on the amount of binary data that cannot be
analyzed correctly

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 12 / 32

https://github.com/reverseame/residentmem

Current Issues and our Contributions
Issue #1 – discussion of results
On executable modules

Almost 80% of the executable module pages are resident in memory
With 100% and 125%, in 0.5 minutes:

Most modules are expelled
The number of resident pages for retrievable modules is drastically reduced

Modules progressively come back to memory, after memory exhaustion
Ratio of resident pages for retrievable modules ≤ 25%
Significant increases in 0.5 minutes and in 3 minutes are observed

On shared library modules

Modules only have 20% of their pages resident, with a maximum
percentage observed of 75%
With 100% and 125%, in 0.5 minutes the system starts expelling them

Distribution shape is similar in both memory configurations
Aggressive expelling of modules is observed in 8GiB

Most modules have only less than 5% of their pages resident, after
memory exhaustion

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 13 / 32

Current Issues and our Contributions
Issue #1 – discussion of results
On executable modules

Almost 80% of the executable module pages are resident in memory
With 100% and 125%, in 0.5 minutes:

Most modules are expelled
The number of resident pages for retrievable modules is drastically reduced

Modules progressively come back to memory, after memory exhaustion
Ratio of resident pages for retrievable modules ≤ 25%
Significant increases in 0.5 minutes and in 3 minutes are observed

On shared library modules

Modules only have 20% of their pages resident, with a maximum
percentage observed of 75%
With 100% and 125%, in 0.5 minutes the system starts expelling them

Distribution shape is similar in both memory configurations
Aggressive expelling of modules is observed in 8GiB

Most modules have only less than 5% of their pages resident, after
memory exhaustion

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 13 / 32

Current Issues and our Contributions
Issue #2: Inaccuracy of the content of memory artifacts

The content of an image is inaccurate
(relative to its image file)

Everything happens for a reason...
Paging effect

Image file mapped into 4KiB aligned memory regions (assuming small pages)
As a consequence, a zero padding may appear

Relocation
Addresses of external functions resolved (e.g., IAT functions)
PE sections removed (e.g., .reloc or Authenticode signatures)

(remember to show it with the demo)

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 14 / 32

Current Issues and Contributions
Issue #2: Inaccuracy of the content of memory artifacts
Windows PE file vs. Windows process

MS-DOS header

MS-DOS stub

PE signature

PE file header

PE optional header

Section header

Section
(binary opcodes)

MS-DOS +
PE/COFF +

Section headers

Relocated
section (part #1)

...

Relocated
section (part #N)

(mapped to memory)

4 KiB

(more pages)

4 KiB

4 KiB

MS-DOS
headers

PE/COFF
headers

Section table
(section
headers)

Section
content

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 15 / 32

Memory Issues and Contributions
Issue #2: Inaccuracy of the content of memory artifacts

Executable file
PE headers
Section .text

Section .rdata
Section .data

DLL file
DLL

reallocation done by the
Windows PE loader

Process
PE headers

Section .text

Section .rdata
Section .data

DLL

heap

stack

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 16 / 32

Memory Issues and Contributions
Issue #2: Inaccuracy of the content of memory artifacts
Similarity Digest Algorithms (SDAs)

Identify similarities between different digital artifacts using an intermediate
representation (i.e., a digest/fingerprint)

Bytewise granularity level: based on byte stream

Similarity measure: typically, m ∈ [0, 1] (m ∈ R)
In cryptographic hashes we have m ∈ {0, 1} (m ∈ Z)

Classification of SDAs [MRB-FSIDI-21]

Two working stages:
Artifact processing and digest generation phases (feature generation, feature processing,
feature selection phase, features deduplication, and digest generation phase)
Digest comparison phase

Different dimensions and characteristics in each phase

Attacks and desirable properties of a SDA to be robust against attacks

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 17 / 32

Memory Issues and Contributions
Issue #2: Inaccuracy of the content of memory artifacts
Similarity Digest Algorithms (SDAs)

Identify similarities between different digital artifacts using an intermediate
representation (i.e., a digest/fingerprint)

Bytewise granularity level: based on byte stream

Similarity measure: typically, m ∈ [0, 1] (m ∈ R)
In cryptographic hashes we have m ∈ {0, 1} (m ∈ Z)

Classification of SDAs [MRB-FSIDI-21]

Two working stages:
Artifact processing and digest generation phases (feature generation, feature processing,
feature selection phase, features deduplication, and digest generation phase)
Digest comparison phase

Different dimensions and characteristics in each phase

Attacks and desirable properties of a SDA to be robust against attacks

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 17 / 32

Memory Issues and Contributions
Issue #2: Inaccuracy of the content of memory artifacts

Plugin ProcessFuzzyHash [RMA-ISDFS-18]

Integrates 4 different algorithms for similarity digest calculation

Bytewise granularity and resemblance (similarity of objects of similar size)
dcfldd, ssdeep, SDhash, and TLSH

Allows an (easy) extension to support other algorithms

Included in the official Volatility2 Framework (under GNU/GPLv3 license)

011111...
00111...

011111...
000001...

..

Approximation matching
algorithms

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 18 / 32

Memory Issues and Contributions
Issue #2: Inaccuracy of the content of memory artifacts

D1

. . .
DN

Memory dumps

Pre-processing
method mi,1

. . .
mi,N′

Unrelocated modules of Di
Compute

similarity score of
(mi,j ,mi,k)

for each Di

for every pair
(mi,j ,mi,k), j ,
k , 1 ≤ j ≤ N′,
1 ≤ k ≤ N′

Pre-processing methods [MRB-COSE-21]

New plugin: Similarity Unrelocated Module

Volatility2 plugin, GNU/GPLv3. https://github.com/reverseame/similarity-unrelocated-module

Unrelocates modules from a given memory dump. Two algorithms:
Guided de-relocation (based on .reloc sections)
Linear sweep de-relocation (decompiles binary code in sliding windows and undo the
relocation of instructions with memory addresses)

Evaluation of the accuracy of the similarity score in modules
It improves when using any of the pre-processing methods
Smart arbitrary byte modifications can drastically affect it, for some of these algorithms
(e.g., ssdeep)

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 19 / 32

https://github.com/reverseame/similarity-unrelocated-module

Memory Issues and Contributions
Issue #2: Inaccuracy of the content of memory artifacts

Yet another problem related to inaccuracy...
Page smearing

Memory inconsistency due to acquired page tables referencing physical pages whose
contents changed during the acquisition process
Commonly found on systems with +8GB of RAM or under heavy load
Of course, only occurs in acquisitions done in live systems

Solutions (we are not dealing with this at this time)

Freeze memory

Cause a crash dump

Check the temporal consistency of acquired data: temporal forensics!

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 20 / 32

Memory Issues and Contributions
Issue #2: Inaccuracy of the content of memory artifacts

Introducing Temporal forensics

Idea from by Pagani et al.2

“we argue that memory forensics should also consider the time in which each piece of
data was acquired. This new temporal dimension provides a preliminary way to assess
the reliability of a given result and opens the door to new research directions that can
minimize the effect of the acquisition time or detect inconsistencies”

Volatility is modified to accurately record time data in a memory dump
Publicly available at https://github.com/pagabuc/atomicity_tops

Output example (extracted from [PFB19])
$./vol.py -f dump.raw --profile=... --pagetime pslist
<original pslist output>
Accessed physical pages: 171
Acquisition time window: 72s
[XX-------------XxX---xXXX--xX-xX---Xxx-xx-X-XxxX-XXX]

2[PFB19] Pagani, F.; Fedorov, O. & Balzarotti, D. Introducing the Temporal Dimension to Memory
Forensics. ACM Trans. Priv. Secur., ACM, 2019, 22 , 9:1-9:21
Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 21 / 32

https://github.com/pagabuc/atomicity_tops

Current Issues and our Contributions
Issue #3: Initial triage for malware detection

Detection of persistence points is difficult

As a consequence of previous issues...

Windows Registry contains volatile hives

Furthermore, not all registry keys are in memory3

Affected by demand paging and page swapping
Some on-disk hives are mapped to memory during Windows start-up, but not all content
is in memory

3Dolan-Gavitt, B. Forensic analysis of the Windows registry in memory. Digital Investigation, 2008,
5, S26-S32
Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 22 / 32

Current Issues and our Contributions
Issue #3: Initial triage for malware detection

Detection of suspicious Auto-Start Extensibility Points [UR-DIIN-19]

Volatility2 plugin winesap, GNU/AGPLv3.
https://github.com/reverseame/winesap

Flags suspicious activity based on the Windows registry value:
REG_BINARY or REG_NONE, when contains a PE header
REG_SZ, REG_EXPAND_SZ, or REG_LINK, when contain suspicious paths or well-known
shell commands that indirectly run programs (e.g., rundll32.exe
shell32.dll,ShellExecute_RunDLL <filepath>)

Output example
WARNING:
Suspicious path file
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\firefox.exe
Debugger: REG_SZ: C:\Users\me\AppData\Roaming\Yztrpxpt\cmd.exe

WARNING:
Suspicious path file
HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Windows
AppInit_DLLs: REG_SZ: C:\Users\me\AppData\Roaming\Uxkgoeaoqbf\autoplay.dll

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 23 / 32

https://github.com/reverseame/winesap

Current Issues and our Contributions
Issue #3: Initial triage for malware detection – taxonomy of ASEPs
[UR-DIIN-19]

Characteristics
Windows Write Execution Tracked down in Freshness of Execution Configuration

Auto-Start Extensibility Points permissions privileges memory forensics† system scope scope
System persistence mechanisms

Run keys (HKLM root key) yes user yes user session application system
Run keys (HKCU root key) no user yes user session application user
Startup folder (%ALLUSERSPROFILE%) yes user no user session application system
Startup folder (%APPDATA%) no user no user session application user
Scheduled tasks yes any no not needed‡ application system
Services yes system yes not needed‡ application system

Program loader abuse
Image File Execution Options yes user yes not needed application system
Extension hijacking (HKLM root key) yes user yes not needed application system
Extension hijacking (HKCU root key) no user yes not needed application user
Shortcut manipulation no user no not needed application user
COM hijacking (HKLM root key) yes any yes not needed system system
COM hijacking (HKCU root key) no user yes not needed system user
Shim databases yes any yes not needed application system

Application abuse
Trojanized system binaries yes any no not needed system system
Office add-ins yes user yes not needed application user
Browser helper objects yes user yes not needed application system

System behavior abuse
Winlogon yes user yes user session application system
DLL hijacking yes any no not needed system system
AppInit DLLs yes any yes not needed system system
Active setup (HKML root key) yes user yes user session application system
Active setup (HKCU root key) no user yes user session application application

†If the memory is paging to disk, it would be not possible to track down these ASEPs in memory forensics.
‡Depends on the trigger conditions defined to launch the program.

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 24 / 32

Current Issues and our Contributions
Issue #3: Initial triage for malware detection

Prioritize modules to analyze considering digital signatures

Digital signature verification of retrievable modules [UR-FSIDI-20]

Volatility2 plugin sigcheck, GPLv3. https://github.com/reverseame/sigcheck
Calculates digital signatures of retrievable modules (if feasible)

In particular, it calculates the Microsoft Authenticode signature
Stored in the image file (as a PE section) or in a catalog file

Relies on FILE_OBJECT structures
Represent memory mapped files in kernel memory
Logical interface between kernel and user-mode processes and the corresponding file
data stored in the physical disk

...
DeviceObject

...
SectionObjectPointer

...
FileName

...

DataSectionObject
SharedCacheMap

ImageSectionObject

Executable file as it exists on disk device
(may contain trailing padding)

Image file (after relocation
by the PE loader). Authenti-

code signature data is removed
(may contain trailing padding)

FILE_OBJECT structure

SECTION_OBJECT_POINTERS structure

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 25 / 32

https://github.com/reverseame/sigcheck

Current Issues and our Contributions
Issue #3: Initial triage for malware detection

Prioritize modules to analyze considering digital signatures

Digital signature verification of retrievable modules [UR-FSIDI-20]

Volatility2 plugin sigcheck, GPLv3. https://github.com/reverseame/sigcheck
Calculates digital signatures of retrievable modules (if feasible)

In particular, it calculates the Microsoft Authenticode signature
Stored in the image file (as a PE section) or in a catalog file

Relies on FILE_OBJECT structures
Represent memory mapped files in kernel memory
Logical interface between kernel and user-mode processes and the corresponding file
data stored in the physical disk

...
DeviceObject

...
SectionObjectPointer

...
FileName

...

DataSectionObject
SharedCacheMap

ImageSectionObject

Executable file as it exists on disk device
(may contain trailing padding)

Image file (after relocation
by the PE loader). Authenti-

code signature data is removed
(may contain trailing padding)

FILE_OBJECT structure

SECTION_OBJECT_POINTERS structure

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 25 / 32

https://github.com/reverseame/sigcheck

Current Issues and our Contributions
Issue #3: Initial triage for malware detection – digital signatures

Evaluation

32-bit and 64-bit Windows 7, plus additional signed software

Memory acquired in four moments: at startup and after 10, 20, and 30 min
of user activity

Best number of retrievable file objects with full data at startup
None of the retrieved file objects contained the Authenticode signature as full content
Some 32-bit DLLs only contained the certificate header

Limitations:
Data incompleteness and data changes caused by PE relocation: affect calculation of
Authenticode signature
Catalog-signed files
Process hollowing is undetected

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 26 / 32

Current Issues and our Contributions
Issue #3: Initial triage for malware detection

Malicious injected code detection can be tricky

Malicious code in memory regions with execute permissions

Volatility2 plugin malscan, AGPLv3. https://github.com/reverseame/malscan

Integrated with clamav-daemon. Limitation: only works for Linux

Two working modes:
Normal mode: scans each memory region with W+X permission, each executable
module (to detect process hollowing), and private memory regions of type VadS
Full-scan mode: scans each memory region with +X permission

Additional detection mechanisms:
When a VAD exists without an associated image file
Common function prologues (e.g., push ebp;mov ebp, esp)
Empty page followed by a function prologue (e.g., a process which has intentionally
removed its header)

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 27 / 32

https://github.com/reverseame/malscan

Current Issues and our Contributions
Issue #3: Initial triage for malware detection

Malicious injected code detection can be tricky

Malicious code in memory regions with execute permissions

Volatility2 plugin malscan, AGPLv3. https://github.com/reverseame/malscan

Integrated with clamav-daemon. Limitation: only works for Linux

Two working modes:
Normal mode: scans each memory region with W+X permission, each executable
module (to detect process hollowing), and private memory regions of type VadS
Full-scan mode: scans each memory region with +X permission

Additional detection mechanisms:
When a VAD exists without an associated image file
Common function prologues (e.g., push ebp;mov ebp, esp)
Empty page followed by a function prologue (e.g., a process which has intentionally
removed its header)

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 27 / 32

https://github.com/reverseame/malscan

Agenda

1 Introduction

2 Current Issues and our Contributions

3 Future Work

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 28 / 32

Future Work

In memory forensics

Improvement of completeness
Content enrichment of dumped modules

Improvement of accuracy
Robust similarity digest algorithm against attacks
New pre-processing methods, with better coverage and results

Improvement of initial triage for malware detection
Ways to detect code injection techniques

Explore the same issues on other desktop and mobile platforms

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 29 / 32

Future Work

In other areas of research

Offensive security: rop3 + ROPLang

Vulnerability scan: race conditions and heap overflow

Network protocol RE

Evasive malware

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 30 / 32

References

MRB-COSE-21 Martín-Pérez, M. ; Rodríguez, R. J. & Balzarotti, D. Pre-processing Memory Dumps to Improve Simi-

larity Score of Windows Modules. Computers & Security, 2021, vol. 101, p. 102119, Elsevier.

MRB-FSIDI-21 Martín-Pérez, M. ; Rodríguez, R. J. & Breitinger, F. Bringing Order to Approximate Matching: Classifica-

tion and Attacks on Similarity Digest Algorithms. Forensic Science International: Digital Investigation,

2021, 36, 301120

MR-ICDF2C-21 Martín-Pérez, M. & Rodríguez, R.J. Quantifying Paging on Recoverable Data from Windows User-

Space Modules. Proceedings of the 12th EAI International Conference on Digital Forensics & Cyber

Crime, Springer. To appear.

RMA-ISDFS-18 Rodríguez, R. J.; Martín-Pérez, M. & Abadía, I. A Tool to Compute Approximation Matching between

Windows Processes. Proceedings of the 2018 6th International Symposium on Digital Forensic and

Security (ISDFS), 2018, 313-318

UR-DIIN-19 Uroz, D. & Rodríguez, R. J. Characteristics and Detectability of Windows Auto-Start Extensibility Points

in Memory Forensics. Digital Investigation, 2019, 28, S95-S104

UR-FSIDI-20 Uroz, D. & Rodríguez, R. J. On Challenges in Verifying Trusted Executable Files in Memory Forensics.

Forensic Science International: Digital Investigation, 2020, 32, 300917

Malware Detection in Memory Forensics [CC BY-NC-SA 4.0 © R. J. Rodríguez] 11/10/21 31 / 32

Malware Detection in Memory Forensics

Ricardo J. Rodríguez
« All wrongs reversed – under CC BY-NC-SA 4.0 license

rjrodriguez@unizar.es ※ @RicardoJRdez ※ www.ricardojrodriguez.es

Dpto. de Informática e Ingeniería de Sistemas
Universidad de Zaragoza, Spain

October 11, 2021

Université Paris-Saclay, CEA LIST
Paris, France

mailto:rjrodriguez@unizar.es
https://twitter.com/RicardoJRdez
www.ricardojrodriguez.es

	$whoami
	Introduction
	Current Issues and our Contributions
	Future Work
	References
	

