
Advanced Malware
Analysis Techniques

Ricardo J. Rodríguez
University of Zaragoza

Distributed under CC BY-NC-SA 4.0 license (© R.J. Rodríguez)
https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

Instructor
• Ricardo J. Rodríguez

• PhD on Computer and Systems Engineering
• Associate Professor (public servant) at the University of Zaragoza
• Researcher in cybersecurity issues, especially in:

• Program Binary Analysis
• Digital forensics (in particular, in memory)
• Security in systems based on RFID/NFC

• DisCo research group
• RME-DisCo: https://reversea.me
• Follow us on Twitter and on Telegram! @reverseame

• E-mail: rjrodriguez@unizar.es
• Feel free to contact me if you have questions after the workshop!

• Personal website: http://www.ricardojrodriguez.es

!"#$%&'()*+,-,!".-")-%/+
0-,1)2(-&+2

3-4+%(+&-"($,0-,

https://reversea.me/
mailto:rjrodriguez@unizar.es
http://www.ricardojrodriguez.es/

AGENDA
1. Introduction

What Is Malware?
Malware Analysis Methodology
Tools

2. Previous Concepts
Program Structure (PE Format)
WinAPIs and Malware

AGENDA
3. Program Analysis Techniques: Control-Flow Graph

Control-Flow Analysis
Terminology. Examples

4. Program Analysis Techniques: Symbolic Execution
History. Examples
Terminology
Challenges

5. Program Analysis Techniques:
Dynamic Binary Instrumentation

DBI Advantages and Disadvantages
The Pin Framework
Examples

1. Introduction

1. Introduction

• Malicious software
• Sophisticated piece of software designed to carry out malicious activities

What is malware?

1. Introduction

https://www.fbi.gov/wanted/cyber/
• Some numbers. . .

• ZeuS: over $100M (acknowledged)
• Citadel, Dridex: estimated £20M in the UK, $10M in the US (2015 only)

• Let me do the math for you: £1.66M/month, $833k/month

Main Goal

https://www.fbi.gov/wanted/cyber/

1. Introduction

Credits: Check Point security Report, 2014

1. Introduction

1. Introduction
Estimation of Cybercrime Costs and Benefits (2017)

Credits: https://www.recordedfuture.com/cyber-operations-cost/

https://www.recordedfuture.com/cyber-operations-cost/

1. Introduction
Estimation of Cybercrime Costs and Benefits (2017)

Credits: hRps://www.recordedfuture.com/cyber-operaSons-cost/

https://www.recordedfuture.com/cyber-operations-cost/

1. Introduction

• Lifecycle
1. Initial compromise (social engineering attacks, waterhole, insiders, etc.)
2. Persistence
3. Communication with C&C servers
4. Lateral movement
5. Data exfiltration / malicious activity

Malware

More details: Uroz, D. & Rodríguez, R. J. Characteris/cs and Detectability of Windows Auto-Start Extensibility Points in
Memory Forensics. Digital InvesSgaSon, 2019, 28, S95-S104, Elsevier. hRps://doi.org/10.1016/j.diin.2019.01.026

https://doi.org/10.1016/j.diin.2019.01.026

1. Introduction

• Static program analysis (also called dead code or cold analysis)
• The program does not run
• You should take a look at…

• PE properties
• Import functions (which APIs are used?)
• Hash computation (e.g., MD5, SHA1)
• Retrieve strings from the binary file: strings

• Disadvantage:
• All possible execution paths are explored (state explosion problem)

• You might be analyzing infeasible code

Malware Analysis Methodology

1. Introduction

• Dynamic program analysis (also called live code or hot analysis)
• The program does run
• You should take a look at…

• Interaction with the OS: at the filesystem, process, and Windows Registry levels
• Interaction with the Internet: connections to domain names or IPs, network data transmitted

• Helps find out their (malicious?) behaviour
• Disadvantage:

• Only one of the possible execution paths is explored
• It may depend on the current execution conditions (environment variables, datime, etc.)

Malware Analysis Methodology

1. Introduction

• Isolated or virtualized environments
• Helps analyze malware samples without worrying about malicious ac6vity

affec6ng the system or network
• Virtual machine (guest) and host machine

• Different tools are necessary
• Depends on the purpose of the analysis to be performed

Analysis Environment

1. Introduction
Attack patterns

• Downloaders
• It is usually the first stage of a successful infec7on
• It can install registry keys to automa7cally run on next reboot/login! (persistence via ASEPs)

• Information retrievals
• Iterate through files looking for/mask/extensions/specific files...

• Process memory explorers
• Read the memory of other processes and extract informa7on of interest

• Ransomware
• Iterate through directories and files, open, read and write them

1. Introduction
Attack patterns

• Keyloggers
• Set a hook function, either thread-specific or global
• Remember that Windows is built on the event-driven paradigm

• WH_CALLWNDPROC, WH_CBT, WH_DEBUG, WH_GETMESSAGE, WH_KEYBOARD, WH_MOUSE, WH_MSGFILTER

• Code injection
• Inject code into the memory of another process and execute it
• Three methods: remote DLL loading, hook function, raw code

• Connection to C&C
• Winsocks (similar to psockets, but require calling WSAStartup first)
• Wininet: HTTP and FTP session management made easy for developers

2. Previous Concepts

2. Previous Concepts

• Since Windows NT 3.1
• PE: Portable Executable

• Data structure defined in WinNT.h (Microsoft Windows SDK)
• Three parts: MS-DOS headers, PE/COFF headers, Section headers
• https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

• MS-DOS headers
• First 64 bytes
• e_magic: MZ (Mark Zbikowski)
• e_lfanew: offset to PE/COFF headers

Program Structure

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

2. Previous Concepts

• PE/COFF headers
• PE signature (“PE\0\0”)
• PE file header

• Define target machine, number of sections, characteristics, etc.
• PE optional header

• Optional for some object files
• Fields of interest: ImageBase, BaseOfCode, AddressOfEntryPoint
• DataDirectory: Directory table. Each entry has a meaning

• Section headers
• IMAGE_SECTION_HEADER structure
• Common sections: .text/.code, .rdata/.rodata, .data, .reloc, …

Program Structure

2. Previous Concepts
Use of WinAPIs

• Static import
• Windows APIs invoked by the binary
• They are present in the DataDirectory section, visible with any PE viewing tool
• Function identified by string name or ordinal position (in EAT)

• Dynamic import
• Windows API is resolved on execution
• Different ways to dynamically import a function

• Usually, LoadLibrary (loads a DLL) + GetProcAddress (gets the address of the function)
• Can also be dynamically resolved by ordinal position (in EAT) instead of function name

2. Previous Concepts
Brief Summary of WinAPIs Used by Malware

• Processes and IPCs (kernel32.dll)
• CreateProcessA, OpenProcess, CreateThread, CreatePipe, CreateNamedPipe, CreateMutex,

OpenMutex, CreateToolhelp32Snapshot, CreateRemoteThread, ...
• Files (kernel32.dll)

• CreateFile, WriteFile, ReadFile, CopyFile, ...
• Registry (advap32i.dll)

• RegOpenKey, RegEnumKey, RegEnumValue, RegDeleteKey, RegQueryInfoKey, …
• Network (ws2_32.dll) – Winsocks

• WSAStartup, WSASocket, socket, connect, accept, bind, recv, send, htons, …
• urlmon.dll: URLDownloadToFile, …

2. Previous Concepts

LAB SESSION 1
• Additional files for Lab session 1

• https://webdiis.unizar.es/~ricardo/sbc-2022/advanced-malware-
analysis/laboratories/additional_files/lab1_malware_files.7z

• Follow the laboratory workbook provided on the workshop's website:
https://webdiis.unizar.es/~ricardo/sbc-2022/advanced-malware-
analysis/laboratories/lab1_intro_malware_analysis.pdf

Basic Malware Analysis

https://webdiis.unizar.es/~ricardo/sbc-2022/advanced-malware-analysis/laboratories/additional_files/lab1_malware_files.7z
https://webdiis.unizar.es/~ricardo/sbc-2022/advanced-malware-analysis/laboratories/lab1_intro_malware_analysis.pdf

3. Program Analysis Techniques:
Control-Flow Graph

3. Program Analysis: Control-Flow Graph
Control-Flow Analysis

• Static program analysis technique
• Goal: determine the order of execution of the program statements
• Allows us to understand the structure of the Control-Flow Graph (CFG)

• Low-level representation of control flow
• CFG: directed graph

• Nodes: statements (or instructions)
• Edges: control flow

A CFG specifies ALL possible paths of execution of a program

3. Program Analysis: Control-Flow Graph

• American computer scientist
• Pioneer in the field of compiler optimization
• Fundamental work on compilers, code

optimization, and parallelization
• First female IBM fellow in 1989
• First female Turing Award in 2006

• Her 1970 papers, “Control Flow Analysis” and “A Basis for
Program Optimization” established “intervals” as the context
for efficient and effective data flow analysis and optimization

History of Control-Flow Analysis

Frances Elizabeth Allen
(1932-2020)

3. Program Analysis: Control-Flow Graph
Terminology

• Basic block:
• (Linear) sequence of consecutive program instructions that have an entry point (first instruction

executed) and an exit point (last instruction executed)
• Control enters only at the beginning of the sequence
• Control leaves only at the end of the sequence
• No branching in or out in the middle of the basic blocks

• Path:
• Sequence of nodes (static view), including an entry node and an exit node
• Path sequence: subsequence of nodes along the path

• Trace:
• Sequence of instructions executed during program execution (dynamic view)

3. Program Analysis: Control-Flow Graph
Examples

3. Program Analysis: Control-Flow Graph
Types of basic blocks

• Entry node
• Exit node
• Decision node: contains a conditional statement

• Creates at least two branches
• Merge node:

• Optional node
• Point where multiple control branches merge

• Statement node: sequence of statements

3. Program Analysis: Control-Flow Graph

3. Program Analysis: Control-Flow Graph

3. Program Analysis: Control-Flow Graph
Efficient CFG

3. Program Analysis: Control-Flow Graph
Another example

3. Program Analysis: Control-Flow Graph
Another example

3. Program Analysis: Control-Flow Graph
Another example

3. Program Analysis Techniques:
Symbolic Execution

3. Program Analysis: Symbolic Execution

• Static program analysis technique

• Goal: test all possible program execution paths instead of a single execution path
• Concrete execution vs. Symbolic execution

• Symbolic execu7on generalizes tests
• Allows unknown symbolic variables in the evalua7on
• Check the feasibility of the program paths

3. Program Analysis: Symbolic Execution
History

• 1976
• L. A. Clarke, A System to Generate Test Data and Symbolically Execute Programs, in IEEE

Transactions on Software Engineering, vol. SE-2, no. 3, pp. 215-222, Sept. 1976.
https://doi.org/10.1109/TSE.1976.233817

• James C. King, Symbolic execution and program testing, Commun. ACM vol. 19, no. 7, pp.
385-394, Jul. 1976. https://doi.org/10.1145/360248.360252

• Problems:
• Not scalable: the program state has many bits, there are many program paths
• Cannot make loops or library calls
• Constraint solver is slow and not capable to handle advanced constraints

https://doi.org/10.1109/TSE.1976.233817
https://doi.org/10.1145/360248.360252

3. Program Analysis: Symbolic Execution
History

• 2005-2006:
• DART project (Godefroid and Sen, PLDI 2005)

• Dynamic information for symbolic execution
• EXE (Cadar, Ganesh, Pawlowski, Dill, and Engler, CCS 2006)

• Powerful constraint solver that handles arrays
• Nowadays, we have:

• More powerful computers and clusters
• Mixing techniques of concrete and symbolic executions
• Powerful constraint solvers

3. Program Analysis: Symbolic Execution
Example

3. Program Analysis: Symbolic Execution
Example: bug finding

Division by zero creates problems…
• False branch is always safe

• What about the true branch?

3. Program Analysis: Symbolic Execution
Terminology
• Path: a path in the program’s (interprocedural) CFG
• Feasible path: if there is an entry to the program that covers the path
• Infeasible path

• If there is no entry to the program that covers the path
• Infeasible path does NOT imply dead code. However, dead code implies an infeasible path
• In real software, a large part of the paths are infeasible

• Escalation problem when it is necessary to cover a large number of infeasible paths

• Path condition:
• Quantifier-free formula on symbolic inputs that encodes all branch decisions made so far

• Execution tree: shows all the feasible and infeasible paths in the program

3. Program Analysis: Symbolic Execution
Another example

3. Program Analysis: Symbolic Execution
Terminology
• State of a symbolic execution engine: (stmt; 𝝈; 𝝅)
• stmt: next statement to evaluate
• 𝝈 : symbolic store

• Associates program variables with expressions of concrete values or symbolic values

• 𝝅: path constraint
• Set of assumptions about the symbols due to the branches taken at execution to reach stmt
• At the beginning, 𝜋 = true

• At any point, the symbolic state is described as the conjunction of these formulas
• No need to keep track of infesiable paths during symbolic execution

3. Program Analysis: Symbolic Execution

Which values of a and b make the assert fail?

3. Program Analysis: Symbolic Execution
Challenges
• Path explosion:

• State space explosion

• Modeling statements and environments:
• Interac7ons in the soeware stack
• Handling of pointers, arrays, and other complex objects

• Constraint solving:
• Complex combina7ons of constraints
• Non-linear arithme7c

3. Program Analysis: Symbolic Execution

LAB SESSION 2
• Additional files for Lab session 2

• https://webdiis.unizar.es/~ricardo/sbc-2022/advanced-malware-
analysis/laboratories/additional_files/lab2_malware_files.7z

• Follow the laboratory workbook provided on the workshop's website:
https://webdiis.unizar.es/~ricardo/sbc-2022/advanced-malware-
analysis/laboratories/lab2_cfg_symexec_analysis.pdf

CFG + Symbolic Execution

https://webdiis.unizar.es/~ricardo/sbc-2022/advanced-malware-analysis/laboratories/additional_files/lab2_malware_files.7z
https://webdiis.unizar.es/~ricardo/sbc-2022/advanced-malware-analysis/laboratories/lab2_cfg_symexec_analysis.pdf

3. Program Analysis Techniques:
Dynamic Binary Instrumentation

3. Program Analysis: Dynamic Binary Instrumentation

• Dynamic program analysis technique

• Goal: add arbitrary code during the execution of a program
• Instrumentation function: what to do
• Instrumentation places: where to do it

• Different Dynamic Binary Instrumentation (DBI) engines
• Pin, Valgrind, DynamoRIO, etc…

3. Program Analysis: Dynamic Binary Instrumentation
DBI advantages and disadvantages

• Advantages of binary instrumentation
• Programming language (totally) independent
• Machine-mode vision
• We can instrument proprietary software

• Advantages of dynamic instrumentation
• No need to recompile/relink every time
• Allow to find on-the-fly code
• Dynamically generated code
• Allow to instrument a process already running (attach)

• Disadvantages:
• Large overhead (by instrumentation during execution)

3. Program Analysis: Dynamic Binary Instrumentation
The Pin Framework

• Developed by Intel, announced in 2005
• Supports Linux and Windows on 32-bit and 64-bit architectures
• Allows to insert arbitrary C/C++ code in arbitrary places
• Components:

• Pin: instrumentaGon engine
• Pintool: instrumentaGon tool

• Uses the instrumentaRon engine to build something useful
• WriSen in C/C++
• Many examples shipped with Pin

3. Program Analysis: Dynamic Binary Instrumentation
The Pin Framework: Types of APIs

• Basic APIs: independent of the architecture
• Common functions (control-flow changes or memory accesses)

• Architecture-specific API: opcodes and operands
• Call-based APIs:

• Instrumentation routines: defines WHERE the instrumentation is inserted
• Only called on the first time

• Analysis routines: defines WHAT to do when instrumentation is activated
• Called every time the object is reached

• Callbacks routines: called every time a certain event happens

3. Program Analysis: Dynamic Binary Instrumentation

• JIT mode
• Pin creates a modified copy of the application on-the-fly
• Original code never executes

• Probe mode
• Pin modifies the original application instructions
• Inserts jumps to instrumentation code (trampolines)
• Lower overhead, but less flexible approach

The Pin Framework

3. Program Analysis: Dynamic Binary Instrumentation
The Pin Framework

3. Program Analysis: Dynamic Binary Instrumentation
The Pin Framework: Granularity

• Low-level view
• Instruction (INS)
• Basic block (BBL)
• Trace (TRACE; also called Super basic block): single entry point, multiple exit points

• Program-level view
• Routine (RTN)
• Section (SEC)
• Image (IMG)

• System-level view
• Process
• Thread
• Exception
• Syscalls

3. Program Analysis: Dynamic Binary Instrumentation
The Pin Framework: Instrumentation Points

• IPOINT_BEFORE
• Insert a call before an instruction or routine

• IPOINT_AFTER
• Insert a call on the fall through path of an instruction or return path of a routine

• IPOINT_ANYWHERE
• Insert a call anywhere inside a trace or a BBL

• IPOINT_TAKEN_BRANCH
• Insert a call on the edge taken of a branch, the side effects of the branch are visible

https://software.intel.com/sites/landingpage/pintool/docs/98484/Pin/html/group__INST__ARGS.html#ga707ea08e31f44f4a81e2a7766123bad7

https://software.intel.com/sites/landingpage/pintool/docs/98484/Pin/html/group__INST__ARGS.html

3. Program Analysis: Dynamic Binary Instrumentation
The Pin Framework: Analysis Arguments

• IARG_INST_PTR: instruction pointer (program counter) value
• IARG_UINT32 <value>: an integer value
• IARG_REG_VALUE <register name>: value of the specified register
• IARG_BRANCH_TARGET_ADDR: target address of the instrumented branch
• IARG_MEMORY_READ_EA: effective address of a memory read
• These are just a few examples, check the manual for all the possibilities!

https://software.intel.com/sites/landingpage/pintool/docs/98484/Pin/html/group__INST__ARGS.html#ga089c27ca15e9ff139dd3a3f8a6f8451d

https://software.intel.com/sites/landingpage/pintool/docs/98484/Pin/html/group__INST__ARGS.html

3. Program Analysis: Dynamic Binary Instrumentation
The Pin Framework: Examples

3. Program Analysis: Dynamic Binary Instrumentation

LAB SESSION 3
• Additional files for Lab session 3

• https://webdiis.unizar.es/~ricardo/sbc-2022/advanced-malware-
analysis/laboratories/additional_files/lab3_malware_files.7z

• Follow the laboratory workbook provided on the workshop's website:
https://webdiis.unizar.es/~ricardo/sbc-2022/advanced-malware-
analysis/laboratories/lab3_dbi_analysis.pdf

https://webdiis.unizar.es/~ricardo/sbc-2022/advanced-malware-analysis/laboratories/additional_files/lab3_malware_files.7z
https://webdiis.unizar.es/~ricardo/sbc-2022/advanced-malware-analysis/laboratories/lab3_dbi_analysis.pdf

