
Evasion and Countermeasures Techniques to Detect
Dynamic Binary Instrumentation Frameworks

Ailton Santos Filho†, Ricardo J. Rodríguez‡, Eduardo L. Feitosa†

†Institute of Computing ‡ Dept. of Computer Science and Systems Engineering
Federal University of Amazonas, Brazil University of Zaragoza, Spain

March 10, 2022

RootedCon 2022
Madrid, Spain

doi: 10.1145/3480463

Ailton Santos Ricardo J. Rodríguez Eduardo L. Feitosa

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 2 / 36

http://dx.doi.org/10.1145/3480463
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

$whoami

Associate Professor at the University of Zaragoza

Research lines:
Program binary analysis
Digital forensics
Offensive security
Security and survivability analysis with formal models

Research team – we make really good stuff!

https://reversea.me
https://twitter.com/reverseame/
https://t.me/reverseame

Miguel Martín-Pérez Daniel Uroz Razvan Raducu Pedro Fernández
PhD. student PhD. student PhD. student Technician

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 3 / 36

https://reversea.me
https://twitter.com/reverseame/
https://t.me/reverseame
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

$whoami

Associate Professor at the University of Zaragoza

Research lines:
Program binary analysis
Digital forensics
Offensive security
Security and survivability analysis with formal models

Research team – we make really good stuff!

https://reversea.me
https://twitter.com/reverseame/
https://t.me/reverseame

Miguel Martín-Pérez Daniel Uroz Razvan Raducu Pedro Fernández
PhD. student PhD. student PhD. student Technician

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 3 / 36

https://reversea.me
https://twitter.com/reverseame/
https://t.me/reverseame
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Agenda

1 Introduction

2 Methodology

3 Anti-Instrumentation and Countermeasures Techniques
Towards a New Taxonomy
Anti-Instrumentation Techniques
Countermeasures Techniques

4 Challenges and Open Issues

5 References

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 4 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Outline

1 Introduction

2 Methodology

3 Anti-Instrumentation and Countermeasures Techniques

4 Challenges and Open Issues

5 References

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 5 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Introduction

Malicious software (malware) is still an issue...

360,000 malware samples analyzed per day in 2017 (Kaspersky)

50M malicious samples in the last quarter of 2018 (McAfee Labs)

+294M targeting Windows only in 2019 (Ugarte-Pedrero et al., 2019)

Credits: https://www.av-test.org/en/statistics/malware/

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 6 / 36

https://www.av-test.org/en/statistics/malware/
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Introduction

Malware analysis

Determine what the heck the malware does as harmful activities

Static analysis
Executable files are analyzed without being executed
Shortcomings: binary obfuscation (packing, opaque predicates, etc.)

Dynamic analysis
Executable files are analyzed when run
Shortcomings: very costly (time-consuming)

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 7 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Introduction

Evasive malware

Malware capable of detecting analysis environments
Malware changes its behavior when recognizes it, avoiding any malicious action
The longer the malware goes unnoticed, the more revenue cybercriminals earn

Different terminology (and means) in the literature:
Analysis-aware malware (Balzarotti et al., 2010; Rodríguez et al., 2016)
Evasive malware (Polino et al., 2017; Ekenstein and Norrestam, 2017)

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 8 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Introduction
What is Dynamic Binary Instrumentation?

Technique for the dynamic analysis of programs

Adding arbitrary code when running an application
Addition of arbitrary code: instrumentation
During program execution: dynamic
On the application: binary

Running code

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 9 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Introduction
What is Dynamic Binary Instrumentation?

Technique for the dynamic analysis of programs

Adding arbitrary code when running an application
Addition of arbitrary code: instrumentation
During program execution: dynamic
On the application: binary Running code

Arbitrary

code

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 9 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Introduction
What is Dynamic Binary Instrumentation?

Technique for the dynamic analysis of programs

Adding arbitrary code when running an application
Addition of arbitrary code: instrumentation
During program execution: dynamic
On the application: binary

Running code

Arbitrary

code

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 9 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Introduction
How Dynamic Binary Instrumentation works?

Different elements

DBI engine

Dynamic Binary Analysis tool

DBI framework
Just-In-Time (JIT) compiler
Intercepts the execution of the first instructions of the client application
Generates a new assembly code directly from the subsequent instructions at runtime
The resulting code contains the code to redirect the execution to the analysis code
Generally, this code is allocated in a code cache (to eventually reuse it)

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 10 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Introduction
DBI and security

Used in various security solutions
Dynamic taint analysis, malware unpacking, and VM transparency enhancement
Detection of anti-instrumentation techniques in evasive malware

Malware is actually using some sort of anti-instrumentation techniques
(15.6% of 7K samples used at least one; Polino et al., 2017)

Tools to mitigate specific evasive techniques
PinVMShield
Arancino
...

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 11 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Introduction
DBI and security

Are DBI-based tools adequate tools for malware analysis?

Recently questioned by several researchers in the community

Why?

1 DBI-based tools can be detected through specific evasion
2 More attack surface increases the probability of exploitation

Contributions

Review of anti-instrumentation and countermeasures techniques

New taxonomy of evasion techniques

Highlight areas of interest for future work and open issues

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 12 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Introduction
DBI and security

Are DBI-based tools adequate tools for malware analysis?

Recently questioned by several researchers in the community

Why?

1 DBI-based tools can be detected through specific evasion
2 More attack surface increases the probability of exploitation

Contributions

Review of anti-instrumentation and countermeasures techniques

New taxonomy of evasion techniques

Highlight areas of interest for future work and open issues

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 12 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Introduction
DBI and security

Are DBI-based tools adequate tools for malware analysis?

Recently questioned by several researchers in the community

Why?

1 DBI-based tools can be detected through specific evasion
2 More attack surface increases the probability of exploitation

Contributions

Review of anti-instrumentation and countermeasures techniques

New taxonomy of evasion techniques

Highlight areas of interest for future work and open issues

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 12 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Outline

1 Introduction

2 Methodology

3 Anti-Instrumentation and Countermeasures Techniques

4 Challenges and Open Issues

5 References

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 13 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Methodology
Planning step

Research questions

Q1 What are the anti-instrumentation techniques proposed in the literature?

Q2 What are the proposed countermeasures (if any) to mitigate the
anti-instrumentation techniques and thus improve the reliability of DBI
frameworks?

Search strategies
Search for articles in the digital library

ACM Digital Library, Science Direct, SpringerLink, and IEEEXplore Digital Library
Manually scrutinized DBLP of top-notch conferences not indexed in these search
databases (e.g., NDSS and USENIX Security)
Search string terms: DBI, evasion, and malware (+ alternative terms and synonyms)

Availability of the consulted articles

Articles are available in English, in whole or in part

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 14 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Methodology
Planning step

Research questions

Q1 What are the anti-instrumentation techniques proposed in the literature?

Q2 What are the proposed countermeasures (if any) to mitigate the
anti-instrumentation techniques and thus improve the reliability of DBI
frameworks?

Search strategies
Search for articles in the digital library

ACM Digital Library, Science Direct, SpringerLink, and IEEEXplore Digital Library
Manually scrutinized DBLP of top-notch conferences not indexed in these search
databases (e.g., NDSS and USENIX Security)
Search string terms: DBI, evasion, and malware (+ alternative terms and synonyms)

Availability of the consulted articles

Articles are available in English, in whole or in part

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 14 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Methodology
Planning step – inclusion (IC) and exclusion (EC) criteria

Criterion
IC1 Articles that discuss evasive techniques applicable to DBI frameworks, malware embedded

with these techniques, or countermeasures.
IC2 Articles that discuss concepts of dynamic binary instrumentation or characteristics of the

DBI frameworks, related to evasive techniques.
EC1 Articles in which the language is different from English or Spanish cannot be selected.
EC2 Articles that are not available for reading and data collection (articles that are only acces-

sible through pay-walls or are not provided by the search engine) cannot be selected.
EC3 Duplicate articles cannot be selected.
EC4 Publications that do not meet any of the inclusion criteria cannot be selected.

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 15 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Methodology
Conducting step

Preliminary search: 483 articles
391 from ACM, 91 from Science Direct, 6 from SpringerLink, and only 1 from IEEEXplore

IC & EC criteria: 57 articles

Full-text reading: 7 articles

Snowball search on these articles: 10 more artifacts
5 articles
4 gray research papers
1 tool

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 16 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Outline

1 Introduction

2 Methodology

3 Anti-Instrumentation and Countermeasures Techniques
Towards a New Taxonomy
Anti-Instrumentation Techniques
Countermeasures Techniques

4 Challenges and Open Issues

5 References

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 17 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Towards a new taxonomy

6 articles propose taxonomies for DBI evasive techniques
Rodríguez et al. (2016), Sun et al. (2016), Polino et al. (2017), Kirsch et al. (2018),
Zhechev (2018), D’Elia et al. (2019)

They describe similar concepts

Some taxonomy focuses exclusively on Pin, others focus on Pin and
DynamoRIO, and others are more general classifications

New taxonomy

More general, independent of the DBI framework

Direct and indirect nature of anti-instrumentation techniques
Direct: the evasion technique does incorporate code artifacts to detect DBI frameworks
Indirect: the evasion technique does not incorporate any code artifacts

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 18 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Towards a new taxonomy

6 articles propose taxonomies for DBI evasive techniques
Rodríguez et al. (2016), Sun et al. (2016), Polino et al. (2017), Kirsch et al. (2018),
Zhechev (2018), D’Elia et al. (2019)

They describe similar concepts

Some taxonomy focuses exclusively on Pin, others focus on Pin and
DynamoRIO, and others are more general classifications

New taxonomy

More general, independent of the DBI framework

Direct and indirect nature of anti-instrumentation techniques
Direct: the evasion technique does incorporate code artifacts to detect DBI frameworks
Indirect: the evasion technique does not incorporate any code artifacts

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 18 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Anti-instrumentation techniques

Indirect
Evasion Techniques

Resource
Limitation Memory Exhaustion

Stalling Code

Functional
Limitation Unsupported Behaviors

Unsupported Assembly
Instructions

Functional limitation

Behavioral inconsistencies between bare-metal systems and analysis
systems due to lack of handling or implementation of certain behaviors

Examples: retf, enter, using the heap as the stack, multi-threading

Resource limitation

Analysis environments have limited processing resources

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 19 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Anti-instrumentation techniques

Indirect
Evasion Techniques

Resource
Limitation Memory Exhaustion

Stalling Code

Functional
Limitation Unsupported Behaviors

Unsupported Assembly
Instructions

Functional limitation

Behavioral inconsistencies between bare-metal systems and analysis
systems due to lack of handling or implementation of certain behaviors

Examples: retf, enter, using the heap as the stack, multi-threading

Resource limitation

Analysis environments have limited processing resources

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 19 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Anti-instrumentation techniques

Indirect
Evasion Techniques

Resource
Limitation Memory Exhaustion

Stalling Code

Functional
Limitation Unsupported Behaviors

Unsupported Assembly
Instructions

Functional limitation

Behavioral inconsistencies between bare-metal systems and analysis
systems due to lack of handling or implementation of certain behaviors

Examples: retf, enter, using the heap as the stack, multi-threading

Resource limitation

Analysis environments have limited processing resources

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 19 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Anti-instrumentation techniques – direct evasion techniques

Direct
Evasion Techniques

Code Cache
Artifact Detection

Memory Region
Permission Mismatches

Unexpected Context

Incorrect Handling of
Self-Modifying Code

Instruction Pointer in
Unexpected Memory Regions

Code Cache Fingerprints

Code cache artifact detection

Particular artifacts and behaviors that DBI frameworks use in code caches

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 20 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Anti-instrumentation techniques – direct evasion techniques

Direct
Evasion Techniques

Environment
Artifact Detection

Environment Variables

Thread Local
Storage Presence

Fingerprints of
DBI-related Binary Programs

Signal Masks

Shared Section Handles

Event Handles

File Handles

Process Handles

Command-Line Arguments

Incorrect Emulation of
Supported Assembly
Instructions

Xmode Code

Process Hierarchy

Environment artifact detection
Environmental artifacts introduced by the DBI framework on the process of
the client application

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 21 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Anti-instrumentation techniques – direct evasion techniques

Direct
Evasion Techniques

Runtime Overhead
Detection Performance Degradation

Peak Memory Usage

Just-in-Time Com-
piler Detection

Common API Calls

Excessive Number of
Full Access Memory Pages

System Library Hooks

JIT compiler detection

Constantly used by the DBI framework

Lot of activity (for instance, when allocating code generated to a code cache)

Runtime overhead detection
Take measurements at runtime and then compare them with a baseline

Note that false positives may arise

DBI parses the code: takes (a lot of) time!

Not only on execution time, also in the amount of memory used

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 22 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Anti-instrumentation techniques – direct evasion techniques

Direct
Evasion Techniques

Runtime Overhead
Detection Performance Degradation

Peak Memory Usage

Just-in-Time Com-
piler Detection

Common API Calls

Excessive Number of
Full Access Memory Pages

System Library Hooks

JIT compiler detection

Constantly used by the DBI framework

Lot of activity (for instance, when allocating code generated to a code cache)

Runtime overhead detection
Take measurements at runtime and then compare them with a baseline

Note that false positives may arise

DBI parses the code: takes (a lot of) time!

Not only on execution time, also in the amount of memory used

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 22 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Anti-instrumentation techniques – direct evasion techniques

Articles and works
Evasive Techniques

[1] [2] [3] [4] [5] [6] [7, 8] [9] (this
work)

PoC Classification†

Unsupported Assembly Instructions l l 7

Unsupported Behaviors l l l 7
FL

Stalling Code l l 7

Memory Exhaustion l 7
RL

Code Cache Fingerprints l l l l l 3

Instruction Pointer in Unexpected Memory Regions l l l l l l l 3

Incorrect Handling of Self-Modifying Code l l l l l 3

Unexpected Context l l 7

Memory Region Permission Mismatches l l l 3

CCAD

Process Hierarchy l l l l l l 3

Xmode Code l l l 7

Incorrect Emulation of Supported Assembly Instruc-
tions

l l l 3

Command-Line Arguments l l l 7

Process Handles l l l l 7

File Handles l l l 7

Event Handles l l l l 7

Shared Section Handles l l l l 7

Signal Masks l l 7

Fingerprints of DBI-related Binary Programs l l l l l 7

Thread Local Storage Presence l l l 7

Environment Variables l l 7

EAD

System Library Hooks l l l l l 3

Excessive Number of Full Access Memory Pages l l l l l l 3

Common API Calls l l l 7

JCD

Peak Memory Usage l l 7

Performance Degradation l l l l l l l 3
ROD

†FL: Functional Limitation; RL: Resource Limitation; CCAD: Code Cache Artifact Detection; EAD: Environment Artifact Detection; JCD:
JIT Compiler Detection; ROD: Runtime Overhead Detection

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 23 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Anti-instrumentation techniques – discussion of results

Small number of proof of concepts (PoCs)
Only 9 PoCs are provided in the literature
4 papers have made PoC tools available (eXait, PwIN, and two unnamed tools)

Transparency property of DBI tools
All techniques look for artifacts in memory and in the system to detect their presence
We need perfect transparency to get unnoticed

Isolation property of DBI tools
All the highlighted techniques interact with resources strictly associated with DBI
frameworks (such as code caches and TLS) as a form of detection

False positives can occur when using these detection techniques

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 24 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Anti-instrumentation techniques – discussion of results

Small number of proof of concepts (PoCs)
Only 9 PoCs are provided in the literature
4 papers have made PoC tools available (eXait, PwIN, and two unnamed tools)

Transparency property of DBI tools
All techniques look for artifacts in memory and in the system to detect their presence
We need perfect transparency to get unnoticed

Isolation property of DBI tools
All the highlighted techniques interact with resources strictly associated with DBI
frameworks (such as code caches and TLS) as a form of detection

False positives can occur when using these detection techniques

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 24 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Anti-instrumentation techniques – discussion of results

Small number of proof of concepts (PoCs)
Only 9 PoCs are provided in the literature
4 papers have made PoC tools available (eXait, PwIN, and two unnamed tools)

Transparency property of DBI tools
All techniques look for artifacts in memory and in the system to detect their presence
We need perfect transparency to get unnoticed

Isolation property of DBI tools
All the highlighted techniques interact with resources strictly associated with DBI
frameworks (such as code caches and TLS) as a form of detection

False positives can occur when using these detection techniques

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 24 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Anti-instrumentation techniques – discussion of results

Conclusions

1 Significant advances have been made to reduce the attack surface

2 DBI are suitable for certain types of security analysis (taint analysis,
symbolic execution, or cryptoanalysis, to name a few)...
but they are unsuitable for others (e.g., sophisticated malware or
advanced threats analysis)

More efforts are needed
to achieve complete isolation and transparency

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 25 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Anti-instrumentation techniques – discussion of results

Conclusions

1 Significant advances have been made to reduce the attack surface

2 DBI are suitable for certain types of security analysis (taint analysis,
symbolic execution, or cryptoanalysis, to name a few)...
but they are unsuitable for others (e.g., sophisticated malware or
advanced threats analysis)

More efforts are needed
to achieve complete isolation and transparency

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 25 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Countermeasures techniques

Anti-instrumentation tools
PinVMShield (Rodríguez et al., 2016)

GNU/GPL version 3 license
Source code available (https://bitbucket.org/rjrodriguez/pinvmshield/)
Pin + Windows
Extended in (A. Santos et al., 2020)

Arancino (Polino et al., 2017)
Unspecified license
Source code available (https://github.com/necst/arancino)
Pin + Windows

Unnamed library (D’Elia et al., 2019)
Unspecified license
Source code available (https://github.com/season-lab/sok-dbi-security/)
Pin + Windows
Extended in (D’Elia et al., 2020)

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 26 / 36

https://bitbucket.org/rjrodriguez/pinvmshield/
https://github.com/necst/arancino
https://github.com/season-lab/sok-dbi-security/
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Countermeasures techniques

Articles and works
Evasive Techniques

[5] [6] [9] [10] [11]
Classification†

Code Cache Fingerprinting l l l l

Instruction Pointer in Unexpected Memory Regions l l l

Incorrect Handling of Self-Modifying Code l

Unexpected Context l

Memory Region Permission Mismatches l l l

CCAD

Process Hierarchy l l

Fingerprints of DBI-related Binary Programs l

Thread Local Storage Presence l

EAD

System Library Hooks l

Excessive Number of Full Access Memory Pages l l

Common API Calls l

JCD

Performance Degradation l l ROD
†CCAD: Code Cache Artifact Detection; EAD: Environment Artifact Detection; JCD: JIT Compiler Detection;
ROD: Runtime Overhead Detection

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 27 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Countermeasures techniques – discussion of results

Only 12 countermeasures are proposed (out of 26)

Mitigation techniques mainly based on the monitoring of system calls
Main disadvantage: large number of system calls to be monitored
Example: Windows API (Ex family + internal Nt calls)

Incomplete solutions
Not all the evasion cases are considered by the current countermeasures

Large overhead
The lower the level of instrumentation granularity, the greater the overhead
Relevant metric in determining whether a countermeasure is usable in the real-world
Not studied in all the works

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 28 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Countermeasures techniques – discussion of results
Conclusions

1 Some evasion techniques are not mitigated (at the time of writing)
Indirect evasion techniques remain unmitigated
Some of the direct evasion techniques remain unmitigated too

Based on environment artifacts
Based on runtime overhead detection (in particular, Peak Memory Usage)

2 Recall rootkit paradox: whenever code wants to run on a system, it must
be visible to the system in some way

Therefore, all evasion techniques can be detected in some way
Although avoiding indirect evasion techniques can be difficult (e.g., mitigation of
Unsupported Assembly Instruction or Unsupported Behaviors)

Fine-grained instrumentation has a large impact on performance, making it
impractical for real-world scenarios
What are the behaviors/assembly instructions not currently supported by DBI
frameworks?

We need instruction-level instrumentation with semantic analysis

3 Source code of the tools available to the public
Facilitates their study, use, and improvement

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 29 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Anti-Instrumentation and Countermeasures Techniques
Countermeasures techniques – discussion of results
Conclusions

1 Some evasion techniques are not mitigated (at the time of writing)
Indirect evasion techniques remain unmitigated
Some of the direct evasion techniques remain unmitigated too

Based on environment artifacts
Based on runtime overhead detection (in particular, Peak Memory Usage)

2 Recall rootkit paradox: whenever code wants to run on a system, it must
be visible to the system in some way

Therefore, all evasion techniques can be detected in some way
Although avoiding indirect evasion techniques can be difficult (e.g., mitigation of
Unsupported Assembly Instruction or Unsupported Behaviors)

Fine-grained instrumentation has a large impact on performance, making it
impractical for real-world scenarios
What are the behaviors/assembly instructions not currently supported by DBI
frameworks?

We need instruction-level instrumentation with semantic analysis

3 Source code of the tools available to the public
Facilitates their study, use, and improvement

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 29 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Outline

1 Introduction

2 Methodology

3 Anti-Instrumentation and Countermeasures Techniques

4 Challenges and Open Issues

5 References

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 30 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Challenges and Open Issues

More efforts are needed

Better DBI frameworks: complete isolation and full transparency

Requirements needed when analyzing an application

Gaps found – students interested in this topic, email me

Lack of countermeasures (only 12 out of 26)

Lack of experimentation in real-world scenarios

Lack of evaluation on the impact of countermeasures

Lack of comparison between countermeasures

Lack of proofs of concept

Keep working, folks!
(and please, make your research and tools available to the public r)

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 31 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Challenges and Open Issues

More efforts are needed

Better DBI frameworks: complete isolation and full transparency

Requirements needed when analyzing an application

Gaps found – students interested in this topic, email me

Lack of countermeasures (only 12 out of 26)

Lack of experimentation in real-world scenarios

Lack of evaluation on the impact of countermeasures

Lack of comparison between countermeasures

Lack of proofs of concept

Keep working, folks!
(and please, make your research and tools available to the public r)

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 31 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Challenges and Open Issues

More efforts are needed

Better DBI frameworks: complete isolation and full transparency

Requirements needed when analyzing an application

Gaps found – students interested in this topic, email me

Lack of countermeasures (only 12 out of 26)

Lack of experimentation in real-world scenarios

Lack of evaluation on the impact of countermeasures

Lack of comparison between countermeasures

Lack of proofs of concept

Keep working, folks!
(and please, make your research and tools available to the public r)

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 31 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Special Thanks
10 years ago... and presenting works in 7 editions of RootedCON...

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 32 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Special Thanks
10 years ago... and presenting works in 7 editions of RootedCON...

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 32 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Outline

1 Introduction

2 Methodology

3 Anti-Instrumentation and Countermeasures Techniques

4 Challenges and Open Issues

5 References

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 33 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

References
Balzarotti et al., 2010 Davide Balzarotti, Marco Cova, Christoph Karlberger, Engin Kirda, Christopher Kruegel, and

Giovanni Vigna. 2010. Efficient detection of split personalities in malware. In Proceedings of
the Network and Distributed System Security Symposium. The Internet Society, 16 pages.

Falcón & Riva, 2012 [4] Francisco Falcón and Nahuel Riva. 2012. Dynamic Binary Instrumentation Frameworks: I
know you’re there spying on me. Retrieved November 14, 2020 from
https://www.coresecurity.com/corelabs-research/open-source-tools/exait.

Li & Li, 2014 [2] Xiaoning Li and Kang Li. 2014. Defeating the transparency features of dynamic binary
instrumentation. In Proceedings of the BlackHat USA.

Hron & Jermář, 2014 [3] Martin Hron and Jakub Jermář. 2014. SafeMachine malware needs love, too. Retrieved
November 14, 2020 from https://www.virusbulletin.com/uploads/pdf/conference_
slides/2014/sponsorAVAST-VB2014.pdf.

Sun et al., 2016 [1] Ke Sun, Xiaoning Li, and Ya Ou. 2016. Break out of the truman show: Active detection
and escape of dynamic binary instrumentation, 2016. In Proceedings of the Black Hat Asia.

Rodríguez et al., 2016 [5] Ricardo J. Rodríguez, Inaki Rodriguez Gaston, and Javier Alonso. 2016. Towards the
detection of isolation-aware malware. IEEE Latin America Transactions 14, 2 (2016),
1024–1036.

Polino et al., 2017 [6] Mario Polino, Andrea Continella, Sebastiano Mariani, Stefano D’Alessio, Lorenzo
Fontana, Fabio Gritti, and Stefano Zanero. 2017. Measuring and defeating
anti-instrumentation-equipped malware. In Proceedings of the Detection of Intrusions and
Malware, and Vulnerability Assessment. Michalis Polychronakis and Michael Meier (Eds.).
Springer International Publishing, Cham, 73–96.

Ekenstein & Norrestam, 2017 Gustaf Ekenstein and David Norrestam. 2017. Classifying Evasive Malware. Master’s thesis.
Lund University.

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 34 / 36

https://www.coresecurity.com/corelabs-research/open-source-tools/exait
https://www. virusbulletin.com/uploads/pdf/conference_slides/2014/sponsorAVAST-VB2014.pdf
https://www. virusbulletin.com/uploads/pdf/conference_slides/2014/sponsorAVAST-VB2014.pdf
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

References

Kirsch et al., 2018 [7] Julian Kirsch, Zhechko Zhechev, Bruno Bierbaumer, and Thomas Kittel. 2018. PwIN –
pwning intel piN: Why DBI is unsuitable for security applications. In Proceedings of the 23rd
European Symposium on Research in Computer Security. Javier Lopez, Jianying Zhou, and
Miguel Soriano (Eds.), Lecture Notes in Computer Science. Springer International
Publishing, Cham, 363–382.

Zhechev, 2018 [8] Zhechko Zhechev. 2018. Security Evaluation of Dynamic Binary Instrumentation Engines.
Master’s thesis. Department of Informatics, Technical Universtity of Munich.

D’Elia et al., 2019 [9] Daniele Cono D’Elia, Emilio Coppa, Simone Nicchi, Federico Palmaro, and Lorenzo
Cavallaro. 2019. SoK: Using dynamic binary instrumentation for security (and how you may
get caught red handed). In Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security. ACM, New York, NY, 15–27.

Ugarte-Pedrero et al., 2019 Xabier Ugarte-Pedrero, Mariano Graziano, and Davide Balzarotti. 2019. A close look at a
daily dataset of malware samples. ACM Transactions on Privacy Security 22, 1 (Jan. 2019),
Article 6, 30 pages

D’Elia et al., 2020 [10] Daniele Cono D’Elia, Emilio Coppa, Federico Palmaro, and Lorenzo Cavallaro. 2020.
On the dissection of evasive malware. IEEE Transactions on Information Forensics and
Security 15 (2020), 2750–2765.

Santos et al., 2020 [11] Ailton Santos Filho, Ricardo J. Rodríguez, and Eduardo L. Feitosa. 2020. Reducing the
attack surface of dynamic binary instrumentation frameworks. In Proceedings of the
Developments and Advances in Defense and Security, Vol. 152. Springer, 3–13.

Evasion and Countermeasures to Detect DBI Frameworks [CC BY-NC-SA 4.0 © R. J. Rodríguez] 10/03/2022 35 / 36

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

Evasion and Countermeasures Techniques to Detect
Dynamic Binary Instrumentation Frameworks

Ailton Santos Filho†, Ricardo J. Rodríguez‡, Eduardo L. Feitosa†

†Institute of Computing ‡ Dept. of Computer Science and Systems Engineering
Federal University of Amazonas, Brazil University of Zaragoza, Spain

March 10, 2022

RootedCon 2022
Madrid, Spain

	$whoami
	Introduction
	Methodology
	Anti-Instrumentation and Countermeasures Techniques
	Towards a New Taxonomy
	Anti-Instrumentation Techniques
	Countermeasures Techniques

	Challenges and Open Issues
	References
	

