
Current Issues and Challenges of Malware Detection
in Memory Forensics

Ricardo J. Rodríguez
« All wrongs reversed – under CC-BY-NC-SA license

rjrodriguez@unizar.es ※ @RicardoJRdez ※ www.ricardojrodriguez.es

Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

March 7, 2020

RootedCON 2020
Madrid, Spain

mailto:rjrodriguez@unizar.es
https://twitter.com/RicardoJRdez
www.ricardojrodriguez.es

$whoami

Assistant Professor at University of Zaragoza

Research lines:
Performance/dependability/security system analysis
Program binary analysis / forensics
RFID/NFC security

Speaker and trainer in several security-related
conferences (NcN, HackLU, RootedCON, STIC
CCN-CERT, HIP, MalCON, HITB. . .)

Research team – we make really good stuff!

Miguel Martín-Pérez Daniel Uroz
PhD. student PhD. student

Memory forensics

Program binary analysis

Exploiting/reversing

Privacy issues (Tor)
We have open positions,
ping me after the talk!

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 2 / 40

$whoami

Assistant Professor at University of Zaragoza

Research lines:
Performance/dependability/security system analysis
Program binary analysis / forensics
RFID/NFC security

Speaker and trainer in several security-related
conferences (NcN, HackLU, RootedCON, STIC
CCN-CERT, HIP, MalCON, HITB. . .)

Research team – we make really good stuff!

Miguel Martín-Pérez Daniel Uroz
PhD. student PhD. student

Memory forensics

Program binary analysis

Exploiting/reversing

Privacy issues (Tor)
We have open positions,
ping me after the talk!

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 2 / 40

Outline

1 Introduction

2 Background

3 Current Issues and Challenges

4 Conclusions

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 3 / 40

Outline

1 Introduction

2 Background

3 Current Issues and Challenges

4 Conclusions

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 4 / 40

Introduction
A little bit of recap...

Preparation

Detect and
Analysis

Detect and
Analysis

Containment,
Eradication,

and Recovery

Post-incident
activity

Incident response as defined by NIST

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 5 / 40

Introduction
A little bit of recap...

Preparation

Detect and
Analysis

Detect and
Analysis

Containment,
Eradication,

and Recovery

Post-incident
activity

Incident response as defined by NIST

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 5 / 40

Introduction

Incident response

Figure out what the heck happened, while preserving data related to the
incident

Ask the well-known 6 W’s (what, who, why, how, when, and where)

Common incident: presence of malicious software (malware)

Different types of analysis to get hints:
Computer forensics: disks + memory
Network forensics

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 6 / 40

Introduction

Disk forensics: analysis of device drives

Memory forensics: analysis of data contained in the memory of the system
under study

Disk vs. memory

Sometimes, access to physical device drives are difficult to achieve

Think about current limits of storage capacity versus memory capacity
Terabytes versus gigabytes
Facilitates the initial triage

Some data only resides into memory

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 7 / 40

Introduction

Disk forensics: analysis of device drives

Memory forensics: analysis of data contained in the memory of the system
under study

Disk vs. memory

Sometimes, access to physical device drives are difficult to achieve

Think about current limits of storage capacity versus memory capacity
Terabytes versus gigabytes
Facilitates the initial triage

Some data only resides into memory

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 7 / 40

Introduction

How is memory forensics carried out?

1 Dump the system’s memory into a data file
It stores the current state of the system
The output file is known as memory dump

2 Take the file offsite

3 Analyze with appropriate tools
For instance, Volatility or Rekall

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 8 / 40

Introduction

What does the memory dump contain?

Full of data to analyze

Every element susceptible to analyze is termed as a memory artifact
Retrieved through appropriate internal OS structures or using a pattern-like search

Snapshot of the running processes, logged users, open files, or open
network connections – everything that was running at acquisition time

It may contain also recent system resources freed
Normally, memory is not zeroed out when freed

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 9 / 40

Introduction

How is the memory dump analyzed?

Common tools: Volatility and Rekall

Volatility

De facto standard for analyzing memory dumps in computer forensics

Released in 2007 at BH USA, Volatools. Open source under GNU GPLv2

Currently maintained by The Volatility Foundation. Implemented in Python

Supports the analysis of memory dumps from Windows, Linux, and
Mac OS, in both 32-bit and 64-bit

Provides a rich, scriptable API to implement your own analysis plugins

Stay tuned for Volatility version 3!

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 10 / 40

Introduction

How is the memory dump analyzed?

Common tools: Volatility and Rekall

Volatility

De facto standard for analyzing memory dumps in computer forensics

Released in 2007 at BH USA, Volatools. Open source under GNU GPLv2

Currently maintained by The Volatility Foundation. Implemented in Python

Supports the analysis of memory dumps from Windows, Linux, and
Mac OS, in both 32-bit and 64-bit

Provides a rich, scriptable API to implement your own analysis plugins

Stay tuned for Volatility version 3!

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 10 / 40

Introduction
A little more of recap...

Malicious software (malware) analysis

Determine what the heck the malware does as harmful activities

Static analysis (or cold analysis)
Executable files are analyzed without being executed
Every possible execution path is considered. Undecidable problem

Dynamic analysis
Executable files are analyzed when they are executed
Only an execution path is considered – depends on inputs, current environment, etc.

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 11 / 40

Introduction

Talk guided by a demo

Windows 7 x86 machine

Alina malware (slightly modified for local connection) + system files

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 12 / 40

Outline

1 Introduction

2 Background

3 Current Issues and Challenges

4 Conclusions

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 13 / 40

Background
Windows PE file

MS-DOS header

MS-DOS stub

PE signature

PE file header

PE optional header

Section header

Section
(binary opcodes)

MS-DOS
headers

PE/COFF
headers

Section table
(section
headers)

Section
content

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 14 / 40

Background
Creation of a Windows process – by stages

S1. Validate parameters; convert Windows subsystem flags and options to their
native counterparts; parse, validate, and convert the attribute list to its native
counterpart

S2. Open the image file (.exe) to be executed inside the process

S3. Create the Windows executive process object (EPROCESS)

S4. Create the initial thread (stack, context, and Windows executive thread
object ETHREAD)

S5. Perform post-creation, Windows-subsystem-specific process initialization

S6. Start execution of the initial thread (unless the CREATE_SUSPENDED
flag was specified)

S7. In the context of the new process and thread, complete the initialization of
the address space (such as loading of required DLLs) and begin
execution of the program

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 15 / 40

Background
Creation of a Windows process – by stages

Credits: Windows Internals, 6th Ed. (M. Russinovich, D.A. Solomon, A. Ionescu), Microsoft Press, 2012

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 16 / 40

Background
The Windows memory subsystem

Default virtual size of 32-bit Windows processes: 2 GiB (prior to
Windows 8)

Can be extended to 3 GiB (or 4 GiB in 64-bit Windows) if the executable file is marked
specifically as large address space–aware and the system is booted with a special option
On 64-bit Windows 8.1 (and later): 128TB (although the maximum amount of physical
memory currently supported by Windows is less than 24 TB)

Two tasks:
It maps a process virtual address space into physical memory
It manages the memory paging: memory pages are paged to disk when the
demanding memory of running threads exceeds the available physical memory and
brought back into physical memory when needed

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 17 / 40

Background
The Windows memory subsystem
Memory page

Fixed-length contiguous block of virtual memory

Small (4 KiB) and large pages (from 2 MiB [x86 & x64] to 4 MiB [ARM])
Different states

Free: when the page is not accessible to the process but can be reserved, committed, or
simultaneously reserved and committed
Reserved: when the process has reserved pages within its virtual address space for
future use. Not accessible for the process, its range of addresses is unusable by other
memory allocation functions. The page is available to be committed
Committed: when the page has been allocated from the RAM and paging files on disk,
being ready to be used by the process. Also named as private pages, they cannot be
shared with other processes

Fstart R C

VirtualFree,
VirtualFreeEx

VirtualAlloc,
VirtualAllocEx

VirtualAlloc,
VirtualAllocEx

VirtualFree,
VirtualFreeEx

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 18 / 40

Background
The Windows memory subsystem – Page files
Page files – files PageFile.sys

Store modified pages that were written to disk but are still in use

A register value determines the name, minimum size, and maximum size of
each paging file (HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory
Management\PagingFiles)

Up to 16 (on x86 and x64) or up to 2 (on ARM) paging files

Maximum size: 16 TB (on x86 and x64) or 4 GB (on ARM)

Contains process and kernel virtual memory
For security reasons, page contents are cleared at system shutdown (disabled by default)

Swapfile.sys

Page file exclusively for UWP apps. Added with Windows 8.1

Maximum size: min(1.5 · RAM, 10% of system root partition size)

Credits: Windows Internals, 7th Ed. (P. Yosifovich, A. Ionescu, M.E. Russinovich, and D.A. Solomon), Microsoft Press, 2017

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 19 / 40

Outline

1 Introduction

2 Background

3 Current Issues and Challenges

4 Conclusions

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 20 / 40

Current Issues and Challenges
Issue #1

A process file DOES NOT match its executable file counterpart!

A process is a memory representation of an executable file

Let me recap you some terminology here: executable file means the binary file as
resides in disk

Why is it possible?
Windows PE loader pays his debts. IAT resolved, PE sections removed when mapped
into memory (e.g., .reloc or Authenticode signatures)
Pagination issues (pages are 4K-byte length, by default)

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 21 / 40

Current Issues and Challenges
Issue #1

A process file DOES NOT match its executable file counterpart!

A process is a memory representation of an executable file

Let me recap you some terminology here: executable file means the binary file as
resides in disk

Why is it possible?
Windows PE loader pays his debts. IAT resolved, PE sections removed when mapped
into memory (e.g., .reloc or Authenticode signatures)
Pagination issues (pages are 4K-byte length, by default)

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 21 / 40

Current Issues and Challenges
Issue #1
Windows PE file vs. Windows process

MS-DOS header

MS-DOS stub

PE signature

PE file header

PE optional header

Section header

Section
(binary opcodes)

MS-DOS +
PE/COFF +

Section headers

Relocated
section (part #1)

...

Relocated
section (part #N)

(mapped to memory)

4 KiB

(more pages)

4 KiB

4 KiB

MS-DOS
headers

PE/COFF
headers

Section table
(section
headers)

Section
content

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 22 / 40

Current Issues and Challenges
Issue #1

Executable file
PE headers
Section .text

Section .rdata
Section .data

DLL file
DLL

reallocation done by
Windows PE loader

Process
PE headers

Section .text

Section .rdata
Section .data

DLL

heap

stack

Our solutions so far

Plugin ProcessFuzzyHash: rely on approximation matching algorithms
(instead of cryptographic hashes) [RMA18]

Plugin pefile (Python) adapted for undoing the work done by
Windows PE loader (will be released soon!)

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 23 / 40

Current Issues and Challenges
Issue #1

Executable file
PE headers
Section .text

Section .rdata
Section .data

DLL file
DLL

reallocation done by
Windows PE loader

Process
PE headers

Section .text

Section .rdata
Section .data

DLL

heap

stack

Our solutions so far

Plugin ProcessFuzzyHash: rely on approximation matching algorithms
(instead of cryptographic hashes) [RMA18]

Plugin pefile (Python) adapted for undoing the work done by
Windows PE loader (will be released soon!)

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 23 / 40

Current Issues and Challenges
Issue #1

Introducing Approximation Matching Algorithms

Identify similarities between different digital artifacts

Level of granularity:
Bytewise: Rely on byte stream
Syntactic: Rely on internal structure
Semantic: Use contextual attributes to interpret the artifact

Type of similarity:
Containment: Identify an object inside an artifact
Resemblance: Similarity of similar size objects

Similarity measure: m ∈ [0, 1] (m ∈ R)
Versus m ∈ {0, 1} (m ∈ Z), from cryptographic hashes

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 24 / 40

Current Issues and Challenges
Issue #1
Plugin ProcessFuzzyHash [RMA18]

Integrates 4 different algorithms for approximate matching hash computation

Bytewise granularity and resemblance
dcfldd, ssdeep, SDhash, and TLSH

Allows (easy) extension to support other algorithms

Included in the official Volatility Framework (under GNU GPLv3 license)

011111...
00111...

011111...
000001...

..

Approximation matching
algorithms

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 25 / 40

Current Issues and Challenges
Issue #1

Plugin ProcessFuzzyHash hashing example

$ python vol.py --plugins=ProcessFuzzyHash/ -f Win7.elf \
> --profile=Win7SP1x86 processfuzzyhash -A ssdeep,SDHash \
> -S pe,.text -N winlogon ,services

Volatility Foundation Volatility Framework 2.6
Name PID Create Time Sec Algori Hash
winlogon.exe 500 131483892000 pe ssdeep 6144:pzP/qv...
winlogon.exe 500 131483892000 .text ssdeep 768:U+ucmmy...
winlogon.exe 500 131483892000 pe SDHash sdbf:03:0::...
winlogon.exe 500 131483892000 .text SDHash sdbf:03:0::...
services.exe 544 131483892003 pe ssdeep 6144:Q/6kXE...
services.exe 544 131483892003 .text ssdeep 1536:9RbbyD...
services.exe 544 131483892003 pe SDHash sdbf:03:0::...
services.exe 544 131483892003 .text SDHash sdbf:03:0::...

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 26 / 40

Current Issues and Challenges
Issue #1

Plugin ProcessFuzzyHash comparison example

$ python vol.py --plugins=ProcessFuzzyHash/ -f Win7.elf \
>--profile=Win7SP1x86 processfuzzyhash -A ssdeep -S .text\
> -N svchost -c ’768:9n3SsSfvrOtOHW4CO5LTiMRMxVKPhPDjRWWm\
> :d3BGrOtO2NO5LTiqUVKP5/zm’

Volatility Foundation Volatility Framework 2.6
Hash A Hash B Algorithm Score
768:9n3Ss...P5/zm 768:9n3SsS...P5/0m ssdeep 94
768:9n3Ss...P5/zm 768:9n3SsS...P5/0m ssdeep 94
768:9n3Ss...P5/zm 768:9n3SsS...P5/zm ssdeep 100
768:9n3Ss...P5/zm 768:9n3SsS...P5/zm ssdeep 97
768:9n3Ss...P5/zm 768:9n3SsS...P5/zm ssdeep 100
768:9n3Ss...P5/zm 768:9n3SsS...P5/zm ssdeep 97
768:9n3Ss...P5/zm 768:9n3SsS...P5/zm ssdeep 97
768:9n3Ss...P5/zm 768:9n3SsS...P5/zm ssdeep 97

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 27 / 40

Current Issues and Challenges
Issue #2

My process file is missing some pages!
Page swapping

The OS stores unused memory pages in a secondary source until those pages are
needed again
Allows us to use more memory than the actually available in RAM

Demand paging (or lazy page loading)
The OS does not bring data from files on disk into memory until they are absolutely
needed
Optimization issue

Our solutions so far

We have some ideas, but it’s still an ongoing work

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 28 / 40

Current Issues and Challenges
Issue #2

My process file is missing some pages!
Page swapping

The OS stores unused memory pages in a secondary source until those pages are
needed again
Allows us to use more memory than the actually available in RAM

Demand paging (or lazy page loading)
The OS does not bring data from files on disk into memory until they are absolutely
needed
Optimization issue

Our solutions so far

We have some ideas, but it’s still an ongoing work

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 28 / 40

Current Issues and Challenges
Issue #3

Is the extracted data from a dump accurate enough?
Page smearing

Memory inconsistency due to the acquired page tables referencing physical pages
whose contents changed during the acquisition process
Commonly found on systems with +8GB of RAM or under heavy load
Of course, it only occurs in acquisitions done in live systems

Solutions (we are not facing with this at the moment)

Freeze the memory

Provoke a crash dump

Check the temporal consistency of data acquired: temporal forensics!

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 29 / 40

Current Issues and Challenges
Issue #3

Introducing Temporal forensics
Idea from by Pagani et al. [PFB19]

“we argue that memory forensics should also consider the time in which each piece of
data was acquired. This new temporal dimension provides a preliminary way to assess
the reliability of a given result and opens the door to new research directions that can
minimize the effect of the acquisition time or detect inconsistencies”

Volatility is modified to precisely record time data in a memory dump

Currently submitted to Volatility Plugin Contest’19
Publicly available at https://github.com/pagabuc/atomicity_tops

Output example (extracted from [PFB19])
$./vol.py -f dump.raw --profile=... --pagetime pslist
<original pslist output>
Accessed physical pages: 171
Acquisition time window: 72s
[XX-------------XxX---xXXX--xX-xX---Xxx-xx-X-XxxX-XXX]

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 30 / 40

https://github.com/pagabuc/atomicity_tops

Current Issues and Challenges
Issue #4

Persistence by means of registry-based Windows

Windows Registry contains volatile hives

Furthermore, not all registry keys are in memory [D08]
Do you remember demand paging?
Some on-disk hives are mapped into the memory during Windows start-up

Our solution so far

Plugin winesap: detection of Windows registry keys commonly used by
malware for persistence [UR19]

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 31 / 40

Current Issues and Challenges
Issue #4

Plugin winesap
Available under GNU GPLv3

https://gitlab.unizar.es/rrodrigu/winesap

Marks suspicious activity depending on Windows registry value:
REG_BINARY or REG_NONE when contains a PE header
REG_SZ, REG_EXPAND_SZ, or REG_LINK when contains:

Suspicious paths
Well-known shell commands that indirectly launch programs (e.g: rundll32.exe
shell32.dll,ShellExecute_RunDLL <filepath>)

Output example
WARNING:
Suspicious path file
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\firefox.exe
Debugger: REG_SZ: C:\Users\me\AppData\Roaming\Yztrpxpt\cmd.exe

WARNING:
Suspicious path file
HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Windows
AppInit_DLLs: REG_SZ: C:\Users\me\AppData\Roaming\Uxkgoeaoqbf\autoplay.dll

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 32 / 40

https://gitlab.unizar.es/rrodrigu/winesap

Current Issues and Challenges
Plugin winesap – taxonomy of ASEPs [UR19]

Characteristics
Windows Write Execution Tracked down in Freshness of Execution Configuration

Auto-Start Extensibility Points permissions privileges memory forensics† system scope scope
System persistence mechanisms

Run keys (HKLM root key) yes user yes user session application system
Run keys (HKCU root key) no user yes user session application user
Startup folder (%ALLUSERSPROFILE%) yes user no user session application system
Startup folder (%APPDATA%) no user no user session application user
Scheduled tasks yes any no not needed‡ application system
Services yes system yes not needed‡ application system

Program loader abuse
Image File Execution Options yes user yes not needed application system
Extension hijacking (HKLM root key) yes user yes not needed application system
Extension hijacking (HKCU root key) no user yes not needed application user
Shortcut manipulation no user no not needed application user
COM hijacking (HKLM root key) yes any yes not needed system system
COM hijacking (HKCU root key) no user yes not needed system user
Shim databases yes any yes not needed application system

Application abuse
Trojanized system binaries yes any no not needed system system
Office add-ins yes user yes not needed application user
Browser helper objects yes user yes not needed application system

System behavior abuse
Winlogon yes user yes user session application system
DLL hijacking yes any no not needed system system
AppInit DLLs yes any yes not needed system system
Active setup (HKML root key) yes user yes user session application system
Active setup (HKCU root key) no user yes user session application application

†If the memory is paging to disk, it would be not possible to track down these ASEPs in memory forensics.
‡Depends on the trigger conditions defined to launch the program.

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 33 / 40

Current Issues and Challenges
Issue #5

Initial triage for malware detection

Help to separate the sheep from the goats

Provide hits for malware analysts
Binary analysis is a really tedious and time-consuming task

Common signature methods can be applied

What if the malware code is injected in a process? And if the memory page
containing such a code was swapped out of memory?

Our solution so far

Plugin malscan: warns about suspicious parts of processes, relying on
Virtual Address Descriptors (VADs) [D07]

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 34 / 40

Current Issues and Challenges
Issue #5

Initial triage for malware detection

Help to separate the sheep from the goats

Provide hits for malware analysts
Binary analysis is a really tedious and time-consuming task

Common signature methods can be applied

What if the malware code is injected in a process? And if the memory page
containing such a code was swapped out of memory?

Our solution so far

Plugin malscan: warns about suspicious parts of processes, relying on
Virtual Address Descriptors (VADs) [D07]

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 34 / 40

Current Issues and Challenges
Issue #5

Plugin malscan
Integrated with clamav-daemon

Limitation: only works for Linux

Two working modes:
Normal mode: it analyzes every memory region with W+X permission, every executable
module (to detect process hollowing), and private memory regions of type VadS
Full-scan mode: it analyzes every memory region with +X permission

Additional detection mechanisms:
When a VAD exists without an associated executable module
Common function prologues (e.g., push ebp;mov ebp, esp)
Empty page followed by a function prologue (e.g., a process which has intentionally
stripped its header)

Let’s see an example in a demo...

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 35 / 40

Current Issues and Challenges
Issue #5

Plugin malscan
Integrated with clamav-daemon

Limitation: only works for Linux

Two working modes:
Normal mode: it analyzes every memory region with W+X permission, every executable
module (to detect process hollowing), and private memory regions of type VadS
Full-scan mode: it analyzes every memory region with +X permission

Additional detection mechanisms:
When a VAD exists without an associated executable module
Common function prologues (e.g., push ebp;mov ebp, esp)
Empty page followed by a function prologue (e.g., a process which has intentionally
stripped its header)

Let’s see an example in a demo...

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 35 / 40

Current Issues and Challenges
Issue #5

Plugin malscan
Integrated with clamav-daemon

Limitation: only works for Linux

Two working modes:
Normal mode: it analyzes every memory region with W+X permission, every executable
module (to detect process hollowing), and private memory regions of type VadS
Full-scan mode: it analyzes every memory region with +X permission

Additional detection mechanisms:
When a VAD exists without an associated executable module
Common function prologues (e.g., push ebp;mov ebp, esp)
Empty page followed by a function prologue (e.g., a process which has intentionally
stripped its header)

Let’s see an example in a demo...

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 35 / 40

Current Issues and Challenges
More issues ahead

Our problems have not finished yet... [CR17]

Window hibernation file analysis

Windows 10: compressed page files, Device Guard, Powershell

Definition of profiles for memory acquisition in Linux and Android

iOS, Chromebooks, IoT devices ¿?

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 36 / 40

Current Issues and Challenges
More issues ahead

Our problems have not finished yet... [CR17]

Window hibernation file analysis

Windows 10: compressed page files, Device Guard, Powershell

Definition of profiles for memory acquisition in Linux and Android

iOS, Chromebooks, IoT devices ¿?

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 36 / 40

Outline

1 Introduction

2 Background

3 Current Issues and Challenges

4 Conclusions

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 37 / 40

Conclusions

Memory forensics brings several issues
Mismatch between executable files in-disk and in-memory
Incompleteness (page swapping and demand paging)
Inaccurate data on dumps from live systems (page smearing)
Windows Registry contains volatile data
Lot of memory artifacts to consider
And other that are unknown to us at the moment...

We can face these challenges: time and human resources
We have open positions. If you want to research on this area, ping me!

Develop your own plugins to overcome these issues (or at least to
mitigate their effect)

ProcessFuzzyHash, winesap, malscan, ...
Temporal forensics
(and many other works from many people working in this area, providing good tools and
ideas – big kudos!)

IMPORTANT: share with the community! r

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 38 / 40

Conclusions

Memory forensics brings several issues
Mismatch between executable files in-disk and in-memory
Incompleteness (page swapping and demand paging)
Inaccurate data on dumps from live systems (page smearing)
Windows Registry contains volatile data
Lot of memory artifacts to consider
And other that are unknown to us at the moment...

We can face these challenges: time and human resources
We have open positions. If you want to research on this area, ping me!

Develop your own plugins to overcome these issues (or at least to
mitigate their effect)

ProcessFuzzyHash, winesap, malscan, ...
Temporal forensics
(and many other works from many people working in this area, providing good tools and
ideas – big kudos!)

IMPORTANT: share with the community! r

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 38 / 40

Conclusions

Memory forensics brings several issues
Mismatch between executable files in-disk and in-memory
Incompleteness (page swapping and demand paging)
Inaccurate data on dumps from live systems (page smearing)
Windows Registry contains volatile data
Lot of memory artifacts to consider
And other that are unknown to us at the moment...

We can face these challenges: time and human resources
We have open positions. If you want to research on this area, ping me!

Develop your own plugins to overcome these issues (or at least to
mitigate their effect)

ProcessFuzzyHash, winesap, malscan, ...
Temporal forensics
(and many other works from many people working in this area, providing good tools and
ideas – big kudos!)

IMPORTANT: share with the community! r

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 38 / 40

Conclusions
Some useful references

D07 Dolan-Gavitt, B. The VAD tree: A process-eye view of physical memory. Digital

Investigation, 2007, 4, 62-64

D08 Dolan-Gavitt, B.Forensic analysis of the Windows registry in memory. Digital

Investigation, 2008, 5, S26-S32

CR17 Case, A. & Richard, G. G. Memory forensics: The path forward. Digital

Investigation, 2017, 20, 23-33

RMA18 Rodríguez, R. J.; Martín-Pérez, M. & Abadía, I. A Tool to Compute Approximation

Matching between Windows Processes. Proceedings of the 2018 6th International

Symposium on Digital Forensic and Security (ISDFS), 2018, 313-318

PFB19 Pagani, F.; Fedorov, O. & Balzarotti, D. Introducing the Temporal Dimension to

Memory Forensics. ACM Trans. Priv. Secur., ACM, 2019, 22 , 9:1-9:21

UR19 Uroz, D. & Rodríguez, R. J. Characteristics and Detectability of Windows Auto-Start

Extensibility Points in Memory Forensics. Digital Investigation, 2019, 28, S95-S104

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 39 / 40

“The key to life is accepting challenges. Once someone stops
doing this, he’s dead.” – Bette Davis

Issues and Challenges of Malware Detection in Memory Forensics (© CC-BY-NC-SA, R. J. Rodríguez) RootedCON 2020 40 / 40

	$whoami
	Introduction
	Background
	Current Issues and Challenges
	Conclusions
	

