
Unrelocating Windows modules in memory dumps

Miguel Martín-Pérez, Ricardo J. Rodríguez, Davide Balzarotti
« All wrongs reversed – under CC-BY-NC-SA 4.0 license

rjrodriguez@unizar.es ※ @RicardoJRdez ※ www.ricardojrodriguez.es

Dpto. de Informática e Ingeniería de Sistemas
Universidad de Zaragoza, Spain

December 19, 2020

NoConName 2020
The Internet

mailto:rjrodriguez@unizar.es
https://twitter.com/RicardoJRdez
www.ricardojrodriguez.es

$whoami

Assistant Professor at the University of Zaragoza

Research lines:
Program binary analysis
Digital forensics
Security and performance system analysis

Speaker and trainer in various infosec conferences
(NcN, HackLU, RootedCON, STIC CCN-CERT, HIP,
MalCON, HITB. . .)

Research team – we make really good stuff!

https://reversea.me / https://t.me/reverseame

Miguel Martín-Pérez Daniel Uroz Razvan Raducu
PhD. student PhD. student PhD. student

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 2 / 35

https://reversea.me
https://t.me/reverseame

$whoami

Assistant Professor at the University of Zaragoza

Research lines:
Program binary analysis
Digital forensics
Security and performance system analysis

Speaker and trainer in various infosec conferences
(NcN, HackLU, RootedCON, STIC CCN-CERT, HIP,
MalCON, HITB. . .)

Research team – we make really good stuff!

https://reversea.me / https://t.me/reverseame

Miguel Martín-Pérez Daniel Uroz Razvan Raducu
PhD. student PhD. student PhD. student

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 2 / 35

https://reversea.me
https://t.me/reverseame

Credits: https://steemit.com/

This work is the result of a research done in collaboration with Miguel Martín-Pérez (PhD. student in

University of Zaragoza) and Davide Balzarotti (Professor at EURECOM):

Pre-processing Memory Dumps to Improve Similarity Score of Windows Modules. Miguel

Martín-Pérez, Ricardo J. Rodríguez, Davide Balzarotti, Computers & Security, vol. 101, pp. 102119,

2021. doi: 10.1016/j.cose.2020.102119 (publicly available here)

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 3 / 35

https://steemit.com/spanish/@ernysanor/dar-al-cesar-lo-que-es-del-cesar-y-las-criptomonedas
https://dx.doi.org/10.1016/j.cose.2020.102119
http://webdiis.unizar.es/~ricardo/files/papers/MRB-COSE-21.pdf

Agenda

1 Introduction

2 Background

3 Pre-Processing Methods
Guided De-Relocation
Linear Sweep De-Relocation

4 Evaluation and Tool Support
Experiments
Tool Support

5 Related Work

6 Conclusions and Future Work

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 4 / 35

Agenda

1 Introduction

2 Background

3 Pre-Processing Methods

4 Evaluation and Tool Support

5 Related Work

6 Conclusions and Future Work

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 5 / 35

Introduction
A little bit of recap...

Preparation

Detect and
Analysis

Containment,
Eradication,

and Recovery

Post-incident
activity

Incident response as defined by NIST

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 6 / 35

Introduction

Incident response

Figure out what the heck happened, while preserving data related to the
incident

Ask the well-known 6 W’s (what, who, why, how, when, and where)

Common incident: presence of malicious software (malware)

Different types of analysis to get hints:
Computer forensics: disks + memory
Network forensics

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 7 / 35

Introduction

Disk forensics: analysis of device drives

Memory forensics: analysis of the data contained in the memory of the
system under study

Disk vs. memory

Sometimes, access to physical device drives are difficult to achieve

Think about current limits of storage capacity versus memory capacity
Terabytes versus gigabytes
Facilitates the initial triage

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 8 / 35

Introduction

Disk forensics: analysis of device drives

Memory forensics: analysis of the data contained in the memory of the
system under study

Disk vs. memory

Sometimes, access to physical device drives are difficult to achieve

Think about current limits of storage capacity versus memory capacity
Terabytes versus gigabytes
Facilitates the initial triage

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 8 / 35

Introduction

OK. Can I use memory forensics for triaging the running processes?

You need to identify processes somehow

Techniques as cryptohashing (used in disk forensics) are unsuitable
Examples: MD5, SHA-1, SHA-256...
Avalanche effect: inputs with slight variations produce radically different outputs

Process , executable file (on disk)

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 9 / 35

Introduction

OK. Can I use memory forensics for triaging the running processes?

You need to identify processes somehow

Techniques as cryptohashing (used in disk forensics) are unsuitable
Examples: MD5, SHA-1, SHA-256...
Avalanche effect: inputs with slight variations produce radically different outputs

Process , executable file (on disk)

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 9 / 35

Introduction
Process , executable file

Relocation process: ASLR, PIE

Memory mapping
Memory page granularity (normally, 4KiB)

Page smearing

Demand paging

MS-DOS header

MS-DOS stub

PE signature

PE file header

PE optional header

Section header

Section
(binary opcodes)

MS-DOS +
PE/COFF +

Section headers

Relocated
section (part #1)

...

Relocated
section (part #N)

(mapped to memory)

4 KiB

(more pages)

4 KiB

4 KiB

MS-DOS
headers

PE/COFF
headers

Section table
(section
headers)

Section
content

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 10 / 35

Introduction

Similarity digest algorithms

Identify similarities between two digital artifacts

Similarity score ranges in [0, 100], instead of a binary score (yes/no)

Useful to find out whether artifacts resemble each other or whether an
artifact is contained in another artifact

Research question:
How do the effects of pagination and relocation affect to similarity
score computation?

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 11 / 35

Introduction

Similarity digest algorithms

Identify similarities between two digital artifacts

Similarity score ranges in [0, 100], instead of a binary score (yes/no)

Useful to find out whether artifacts resemble each other or whether an
artifact is contained in another artifact

Research question:
How do the effects of pagination and relocation affect to similarity
score computation?

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 11 / 35

Agenda

1 Introduction

2 Background

3 Pre-Processing Methods

4 Evaluation and Tool Support

5 Related Work

6 Conclusions and Future Work

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 12 / 35

Background
Windows PE file

MS-DOS header

MS-DOS stub

PE signature

PE file header

PE optional header

Section header

Section
(binary opcodes)

MS-DOS
headers

PE/COFF
headers

Section table
(section
headers)

Section
content

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 13 / 35

Background
The Windows memory subsystem

Virtual size of 32-bit Windows processes: 2 GiB (prior to Windows 8)

Two tasks:
Maps a process virtual address space into physical memory
Manages the memory paging

Memory page

Fixed-length contiguous block of virtual memory

Small (4 KiB) and large pages (from 2 MiB [x86 & x64] to 4 MiB [ARM])

Different states: free, reserved, commited

Fstart R C

VirtualFree,
VirtualFreeEx

VirtualAlloc,
VirtualAllocEx

VirtualAlloc,
VirtualAllocEx

VirtualFree,
VirtualFreeEx

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 14 / 35

Background
The Windows memory subsystem

Virtual size of 32-bit Windows processes: 2 GiB (prior to Windows 8)

Two tasks:
Maps a process virtual address space into physical memory
Manages the memory paging

Memory page

Fixed-length contiguous block of virtual memory

Small (4 KiB) and large pages (from 2 MiB [x86 & x64] to 4 MiB [ARM])

Different states: free, reserved, commited

Fstart R C

VirtualFree,
VirtualFreeEx

VirtualAlloc,
VirtualAllocEx

VirtualAlloc,
VirtualAllocEx

VirtualFree,
VirtualFreeEx

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 14 / 35

Background
Similarity digest algorithms

Categories: bytewise, syntactic, semantic

Types of bytewise algorithms:
Block Based Hashing

Split data into blocks and concatenate the cryptohash of every block
Example: dcfldd

Context Trigger Piecewise Hashing
Parts of the input drive the splitting procedure
Example: ssdeep

Statistically Improbable Features
Most relevant (statistically speaking) blocks are selected
Example: sdhash

Locality Sensitive Hashing
Cluster equivalent elements into buckets, and compare the number of elements in
every bucket
Example: TLSH

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 15 / 35

Agenda

1 Introduction

2 Background

3 Pre-Processing Methods
Guided De-Relocation
Linear Sweep De-Relocation

4 Evaluation and Tool Support

5 Related Work

6 Conclusions and Future Work

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 16 / 35

Pre-Processing Methods

D1

. . .
DN

Memory dumps

Pre-processing
method mi,1

. . .
mi,N′

Unrelocated modules of Di
Compute

similarity score of
(mi,j ,mi,k)

for each Di

for every pair
(mi,j ,mi,k), j ,
k , 1 ≤ j ≤ N′,
1 ≤ k ≤ N′

Development and evaluation of two pre-processing methods to undo
the work performed by the Windows relocation process

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 17 / 35

Pre-Processing Methods
Guided De-Relocation

Identifies and changes every byte affected by the relocation process,
relying on the section .reloc of a Windows PE

Data is divided into blocks. Every block tells the adjustments for a 4KiB memory
page
IMAGE_BASE_RELOCATION structure: contains 2-byte entries indicating what base
relocation type is applied (first 4 bits) + the address offset (12 bits)
Further reading: http://research32.blogspot.com/2015/01/base-relocation-table.html

typedef struct _IMAGE_BASE_RELOCATION {
DWORD VirtualAddress;
DWORD SizeOfBlock;

// WORD TypeOffset[1];
} IMAGE_BASE_RELOCATION;

Problem ahead
this section is stripped off from the image file once it is relocated

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 18 / 35

http://research32.blogspot.com/2015/01/base-relocation-table.html

Pre-Processing Methods
Guided De-Relocation – File Objects

...
DeviceObject

...
SectionObjectPointer

...
FileName

...

DataSectionObject
SharedCacheMap

ImageSectionObject

Executable file as con-
tained in disk device

(it may contain
end padding)

Image file (after relocation
done by the loader)

(it may contain
end padding)

FILE_OBJECT structure

SECTION_OBJECT_POINTERS structure

Logical interface between kernel and user-mode processes and the
corresponding file data stored in the physical disk
Stores a pointer to a SECTION_OBJECT_POINTERS structure

Stores file-mapping and cache-related information for a file stream
Three opaque pointers: DataSectionObject, SharedCacheMap, and
ImageSectionObject
DataSectionObject and ImageSectionObject may point to a memory zone where the
program binary was mapped either as a data file or as an image file, both containing
.reloc section

Note: not all processes have a corresponding File Object representation in memory...

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 19 / 35

Pre-Processing Methods
Guided De-Relocation

Input: A memory dumpM
Output: Set of unrelocated modulesU

1 U = ∅
2 Get list of file objects F fromM
3 foreach module m inM do
4 Let A be the range of virtual memory addresses of m
5 Walk through every field p of the PE header and data directories of m. If p ∈ A,

de-relocate p
6 if ∃f ∈ F such that f corresponds to m and f has .reloc section then
7 Create m′ as a copy of m
8 foreach block b in .reloc section of f do
9 Get the RVA of the page am from the the block b

10 foreach entry e in the block b do
11 Get the offset o from the the entry block e
12 De-relocate [am + o] in m′

13 end
14 end
15 U = U

⋃
{m′}

16 end
17 end

De-relocation process : the two-less significant bytes of an address are left unmodified, while

zeroing the others (we assume that the relocation always takes place with 64KiB alignment, as ASLR

does)

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 20 / 35

Pre-Processing Methods
Linear Sweep De-Relocation

Input: A memory dumpM
Output: Set of unrelocated modulesU

1 U = ∅
2 foreach module m inM do
3 Identify empty 4KB-length memory pages, tagging every byte as visited
4 Let A be the range of virtual memory addresses of m

/* Process the structured information */
5 Walk through every field f of the PE header and data directories of m, tagging as

visited bytes. In addition, if f is a virtual memory address, de-relocate f
/* Process the unstructured information */

6 Retrieve the memory space S ⊂ A of the code section of m
/* Tag lookup tables */

7 Identify lookup tables in S and de-relocate the entries of lookup tables that target
to A

8 if m is a 32-bit image file then
/* Tag strings */

9 Identify UNICODE and ASCII strings in S, as well as padding bytes, tagging
as visited bytes
/* Tag lookup tables */

10 Identify lookup tables in S, tagging as visited bytes, and de-relocate the
entries of lookup tables that target to A
/* Tag byte patterns */

11 Identify common byte patterns in S, and if subsequent bytes to a pattern p
conform a memory address am and am ∈ A, tag p and the subsequent bytes
as visited bytes and de-relocate am

/* Process the rest of bytes in S */
12 foreach byte b ∈ S such that b is not tagged as visited do
13 Get the sequences of valid assembly instructions, considering as first

byte of each sequence bi , 0 ≤ i ≤ 14, b0 = b
14 Select the longest sequence (in bytes) of valid assembly instructions I
15 Identify each assembly instruction in I, and if the instruction contains a

memory operand which targets to A, de-relocate the operand
16 Tag all bytes of the sequence of instructions I as visited bytes
17 end
18 end
19 U = U

⋃
{m}

20 end

Works in all bytes in two phases:
Structured information
Unstructured information

The longest sequence of valid
assembly instructions is chosen,
considering a maximum of
14-byte length instructions

Slices of 15 bytes
We rely on the Capstone engine

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 21 / 35

Pre-Processing Methods
Linear Sweep De-Relocation – example

(consider this slice begins at 0x1000, for simplicity)
FC CLD
FEFF ???
FFFF ???
E8 39000000 CALL 0x1043
8B45 08 MOV EAX,DWORD PTR SS:[EBP+0x8]
E8 A487FFFF CALL KernelBa.752917F0
C2 0C00 RETN 0xC
90 NOP
FE ???
FFFF ???
FF00 INC DWORD PTR DS:[EAX]
0000 ADD BYTE PTR DS:[EAX],AL
00CC ADD AH,CL
FFFF ???

0x1000: cld

address 0 1 2 3 4 5 6 7 8 9 a b c d e
slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 22 / 35

Pre-Processing Methods
Linear Sweep De-Relocation – example

(consider this slice begins at 0x1000, for simplicity)
FC CLD
FEFF ???
FFFF ???
E8 39000000 CALL 0x1043
8B45 08 MOV EAX,DWORD PTR SS:[EBP+0x8]
E8 A487FFFF CALL KernelBa.752917F0
C2 0C00 RETN 0xC
90 NOP
FE ???
FFFF ???
FF00 INC DWORD PTR DS:[EAX]
0000 ADD BYTE PTR DS:[EAX],AL
00CC ADD AH,CL
FFFF ???

0x1001: ????

address 0 1 2 3 4 5 6 7 8 9 a b c d e
slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 22 / 35

Pre-Processing Methods
Linear Sweep De-Relocation – example

(consider this slice begins at 0x1000, for simplicity)
FC CLD
FEFF ???
FFFF ???
E8 39000000 CALL 0x1043
8B45 08 MOV EAX,DWORD PTR SS:[EBP+0x8]
E8 A487FFFF CALL KernelBa.752917F0
C2 0C00 RETN 0xC
90 NOP
FE ???
FFFF ???
FF00 INC DWORD PTR DS:[EAX]
0000 ADD BYTE PTR DS:[EAX],AL
00CC ADD AH,CL
FFFF ???

0x1004: ????

address 0 1 2 3 4 5 6 7 8 9 a b c d e
slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 22 / 35

Pre-Processing Methods
Linear Sweep De-Relocation – example

(consider this slice begins at 0x1000, for simplicity)
FC CLD
FEFF ???
FFFF ???
E8 39000000 CALL 0x1043
8B45 08 MOV EAX,DWORD PTR SS:[EBP+0x8]
E8 A487FFFF CALL KernelBa.752917F0
C2 0C00 RETN 0xC
90 NOP
FE ???
FFFF ???
FF00 INC DWORD PTR DS:[EAX]
0000 ADD BYTE PTR DS:[EAX],AL
00CC ADD AH,CL
FFFF ???

0x1005: call 0x1043
0x100a: mov eax, dword ptr [rbp + 8]
0x100d: call 0xffffffffffff97b1
0x1012: ret 0xc
0x1015: nop

Instructions out of the window are not
considered

address 0 1 2 3 4 5 6 7 8 9 a b c d e
slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 -1 -1 -1 17 0 0 0 0 -1 0 0 -1 0

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 22 / 35

Pre-Processing Methods
Linear Sweep De-Relocation – example

(consider this slice begins at 0x1000, for simplicity)
FC CLD
FEFF ???
FFFF ???
E8 39000000 CALL 0x1043
8B45 08 MOV EAX,DWORD PTR SS:[EBP+0x8]
E8 A487FFFF CALL KernelBa.752917F0
C2 0C00 RETN 0xC
90 NOP
FE ???
FFFF ???
FF00 INC DWORD PTR DS:[EAX]
0000 ADD BYTE PTR DS:[EAX],AL
00CC ADD AH,CL
FFFF ???

0x1006: cmp dword ptr [rax], eax
0x1008: add byte ptr [rax], al
0x100a: mov eax, dword ptr [rbp + 8]
0x100d: call 0xffffffffffff97b0
0x1012: ret 0xc
0x1015: nop

As the instruction starting at 0x100a was
already considered in a previous sequence,
the processing of this sequence is
skipped

−1 value is set in the length vector,
instead of the current sequence length

address 0 1 2 3 4 5 6 7 8 9 a b c d e
slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 -1 -1 -1 17 -1 0 -1 0 -1 0 0 -1 0

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 22 / 35

Pre-Processing Methods
Linear Sweep De-Relocation – example

(consider this slice begins at 0x1000, for simplicity)
FC CLD
FEFF ???
FFFF ???
E8 39000000 CALL 0x1043
8B45 08 MOV EAX,DWORD PTR SS:[EBP+0x8]
E8 A487FFFF CALL KernelBa.752917F0
C2 0C00 RETN 0xC
90 NOP
FE ???
FFFF ???
FF00 INC DWORD PTR DS:[EAX]
0000 ADD BYTE PTR DS:[EAX],AL
00CC ADD AH,CL
FFFF ???

0x1007: add byte ptr [rax], al
0x1009: add byte ptr [rbx - 0x5b17f7bb], cl
0x100f: xchg edi, edi
0x1011: inc edx
0x1013: or al, 0
0x1015: nop

address 0 1 2 3 4 5 6 7 8 9 a b c d e
slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 -1 -1 -1 17 -1 -1 -1 -1 -1 0 0 -1 0

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 22 / 35

Pre-Processing Methods
Linear Sweep De-Relocation – example

(consider this slice begins at 0x1000, for simplicity)
FC CLD
FEFF ???
FFFF ???
E8 39000000 CALL 0x1043
8B45 08 MOV EAX,DWORD PTR SS:[EBP+0x8]
E8 A487FFFF CALL KernelBa.752917F0
C2 0C00 RETN 0xC
90 NOP
FE ???
FFFF ???
FF00 INC DWORD PTR DS:[EAX]
0000 ADD BYTE PTR DS:[EAX],AL
00CC ADD AH,CL
FFFF ???

0x100b: inc ebp
0x100c: or r8b, r13b
0x100e: movsb byte ptr [rdi], byte ptr [rsi]
0x100f: xchg edi, edi
0x1011: inc edx
0x1013: or al, 0
0x1015: nop

address 0 1 2 3 4 5 6 7 8 9 a b c d e
slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 -1 -1 -1 17 -1 -1 -1 -1 -1 -1 -1 -1 -1

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 22 / 35

Pre-Processing Methods
Linear Sweep De-Relocation – example

(consider this slice begins at 0x1000, for simplicity)
FC CLD
FEFF ???
FFFF ???
E8 39000000 CALL 0x1043
8B45 08 MOV EAX,DWORD PTR SS:[EBP+0x8]
E8 A487FFFF CALL KernelBa.752917F0
C2 0C00 RETN 0xC
90 NOP
FE ???
FFFF ???
FF00 INC DWORD PTR DS:[EAX]
0000 ADD BYTE PTR DS:[EAX],AL
00CC ADD AH,CL
FFFF ???

Longest sequence found:
0x1005: call 0x1043
0x100a: mov eax, dword ptr [rbp + 8]
0x100d: call 0xffffffffffff97b1
0x1012: ret 0xc
0x1015: nop

Bytes in the slice are marked as visited

Bytes of the sequence starting at byte
E8 are also marked as visited

If any instruction has a memory operand
targeting the virtual memory range of the
process, its address is de-relocated

Next slice starts at the byte FE (in
0x1016)

address 0 1 2 3 4 5 6 7 8 9 a b c d e
slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 -1 -1 -1 17 -1 -1 -1 -1 -1 -1 -1 -1 -1

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 22 / 35

Agenda

1 Introduction

2 Background

3 Pre-Processing Methods

4 Evaluation and Tool Support
Experiments
Tool Support

5 Related Work

6 Conclusions and Future Work

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 23 / 35

Evaluation and Tool Support
Description of experiments

Windows 7 6.1.7601, Windows 8.1 6.3.9600, and Windows 10 10.0.14393

x86 and x86-64 versions, on top of VirtualBox hypervisor

Ten memory acquisitions in ten minutes after a fresh boot

Three sets of modules for comparison:
System libraries: ntdll.dll, kernel32.dll, and advapi32.dll
System programs: winlogon.exe, lsass.exe, and spoolsv.exe
Workstation programs: Notepad++ 7.5.8, vlc 3.0.4

Three scenarios:
No pre-processing (Raw scenario)
Application of the Guided De-relocation pre-processing method (Guided De-relocation
scenario)
Application of the Linear Sweep De-relocation method (Linear Sweep De-relocation
scenario)

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 24 / 35

Evaluation and Tool Support
Related comparison – Raw scenario

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100
Si

m
ila

rit
y

sc
or

e

(a) x86

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

(b) x86-64
⬢ dcfldd $ ssdeep ' sdhash NTLSH

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 25 / 35

Evaluation and Tool Support
Related comparison – Guided De-relocation scenario

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100
Si

m
ila

rit
y

sc
or

e

(a) x86

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

(b) x86-64
⬢ dcfldd $ ssdeep ' sdhash NTLSH

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 26 / 35

Evaluation and Tool Support
Related comparison – Linear Sweep De-relocation scenario

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100
Si

m
ila

rit
y

sc
or

e

(a) x86

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

(b) x86-64
⬢ dcfldd $ ssdeep ' sdhash NTLSH

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 27 / 35

Evaluation and Tool Support
Related comparison with cross pre-processing methods

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100
Si

m
ila

rit
y

sc
or

e

(a) x86

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

(b) x86-64
⬢ dcfldd $ ssdeep ' sdhash NTLSH

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 28 / 35

Evaluation and Tool Support
Effect of byte changes on the similarity score

100 75 50 25 0
Similarity score

0

25

50

75

100

125

150

175

N
um

be
ro

fd
iff

er
en

tb
yt

es

dcfldd
ssdeep
sdhash
TLSH

dcfldd needs more byte changes

Byte modifications in ssdeep were affecting an arbitrary number of features,
provoking no seven consecutive features in common between inputs
were found (and thus the similarity score becomes zero)

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 29 / 35

Evaluation and Tool Support
Tool Support

Similarity Unrelocated Module (SUM)

Volatility plugin released under GNU/AGPL version 3

Supports both methods. By default, it applies none
It also supports:

To use more than one similarity digest algorithm at once
To select only specific sections of the modules for similarity comparison
To select process by PID or process and libraries by name

Publicly available in GitHub

https://github.com/reverseame/similarity-unrelocated-module

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 30 / 35

https://github.com/reverseame/similarity-unrelocated-module

Agenda

1 Introduction

2 Background

3 Pre-Processing Methods

4 Evaluation and Tool Support

5 Related Work

6 Conclusions and Future Work

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 31 / 35

Related Work

Performance and robustness of similarity digest algorithms against
random byte modification attacks are largely studied in the literature

Some others proposed pre-processing methods aiming to exclude
common features and thus enhance the performance of sdhash and
mrsh-v2

Our methods are independent of the particular digest algorithm
Our methods work in the input of the algorithm, rather than in internal working details of
the algorithm

Other works, as (White et al., 2013), proposed a normalization process
of relocated bytes by setting constant values

Their approach recreates the Windows PE loader
Our methods do not need binary files and are less conservative, as we only normalize
the bytes considering 64-KiB memory alignment

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 32 / 35

Agenda

1 Introduction

2 Background

3 Pre-Processing Methods

4 Evaluation and Tool Support

5 Related Work

6 Conclusions and Future Work

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 33 / 35

Conclusions and Future Work

Two pre-processing methods to undo the Windows relocation process
Guided De-relocation, which relies on File Objects
Linear Sweep De-relocation, which performs a linear sweep of the binary code to identify
instructions that contain (absolute) memory addresses as operands

Assessment in different scenarios with different similarity digest
algorithms (in particular, dcfldd, ssdeep, sdhash, and TLSH)

Similarity score are improved when pre-processing methods are applied

Evaluation of the sensitivity to byte modifications
Intelligent arbitrary byte modifications can dramatically affect the similarity score

Future work

Improve the disassembling process

Extend SUM to contemplate also other PE sections

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 34 / 35

Conclusions and Future Work

Two pre-processing methods to undo the Windows relocation process
Guided De-relocation, which relies on File Objects
Linear Sweep De-relocation, which performs a linear sweep of the binary code to identify
instructions that contain (absolute) memory addresses as operands

Assessment in different scenarios with different similarity digest
algorithms (in particular, dcfldd, ssdeep, sdhash, and TLSH)

Similarity score are improved when pre-processing methods are applied

Evaluation of the sensitivity to byte modifications
Intelligent arbitrary byte modifications can dramatically affect the similarity score

Future work

Improve the disassembling process

Extend SUM to contemplate also other PE sections

Unrelocating Windows modules in memory dumps (M. Martín-Pérez et al.) [© CC BY-NC-SA 4.0] NcN 2020 34 / 35

Unrelocating Windows modules in memory dumps

Miguel Martín-Pérez, Ricardo J. Rodríguez, Davide Balzarotti
« All wrongs reversed – under CC-BY-NC-SA 4.0 license

rjrodriguez@unizar.es ※ @RicardoJRdez ※ www.ricardojrodriguez.es

Dpto. de Informática e Ingeniería de Sistemas
Universidad de Zaragoza, Spain

December 19, 2020

NoConName 2020
The Internet

mailto:rjrodriguez@unizar.es
https://twitter.com/RicardoJRdez
www.ricardojrodriguez.es

	$whoami
	Introduction
	Background
	Pre-Processing Methods
	Guided De-Relocation
	Linear Sweep De-Relocation

	Evaluation and Tool Support
	Experiments
	Tool Support

	Related Work
	Conclusions and Future Work
	

