One FIAw over the Cuckoo's Nest

Iñaki Rodríguez-Gastón[†], Ricardo J. Rodríguez[‡]

③ All wrongs reversed inaki@sensepost.com, rjrodriguez@fi.upm.es @virtualminds_es * @RicardoJRdez

[†]SensePost London, UK

[‡]Universidad Politécnica de Madrid Madrid, Spain

1 de Noviembre, 2013

No cON Name 2013 Barcelona (España) \$whoarewe

\$whoarewe: command not found

- CLS member (2001)
- Ph.D. by UZ (2013)
- Working for UPM
- Trainee @ NcN, RootedCON, HIP
- Speaker @ NcN, HackLU, RootedCON, STIC CCN, HIP

- CISSP, CEH, GWAPT
- Security analyst @ SensePost
- Malware lover
- mlw.re staff
- Trainee @ 44CON

o . . .

Outline

Motivation

Previous Concepts

- Cuckoo Sandbox
- Dynamic Binary Instrumentation: The Pin Framework

3 On the Anti-VMs & Anti-Sandboxing Techniques

- VM Detection
- Sandboxing detection

4 Mixing Cuckoo Sandbox and Pin DBI

- Sticking both Programs
- Introducing PinVMShield
- 5 Case Study: the pafish tool
- 6 Related Work
- 7 Conclusions and Future Work

Outline

Motivation

Previous Concepts

- Cuckoo Sandbox
- Dynamic Binary Instrumentation: The Pin Framework

3 On the Anti-VMs & Anti-Sandboxing Techniques

- VM Detection
- Sandboxing detection

4 Mixing Cuckoo Sandbox and Pin DBI

- Sticking both Programs
- Introducing PinVMShield
- 6 Case Study: the pafish tool
- 6 Related Work
- Conclusions and Future Work

Motivation (I)

- Malware are increasing in number and complexity
- Targeted attacks also grown (specially industry and government espionage)

How do we currently fight against malware?

- Firstly, to understand how a sample works (what is it doing?)
- Then, to figure out how it can be removed
- Lastly, to avoid future infections (can we detect it again?)

Motivation (II)

Figuring out what it is doing...

- Manual analysis
 - Intensive
 - Time-consuming

Motivation (II)

Figuring out what it is doing...

- Manual analysis
 - Intensive
 - Time-consuming
 - $\bullet\,$ Good if you are paid per working hour $\ddot{-}$

Automatic analysis

- Just take a seat, and relax...
- Real problem here: automation of malware analysis tasks

Motivation (II)

Figuring out what it is doing...

- Manual analysis
 - Intensive
 - Time-consuming
 - $\bullet\,$ Good if you are paid per working hour $\ddot{-}$

Automatic analysis

- Just take a seat, and relax...
- Real problem here: automation of malware analysis tasks
- Only manual analysis for weird (or interesting) samples

Motivation (III)

Sandbox Environments

- Computer resources are tightly controlled and monitored
- Current trending of malware analysis
- Commercial and free-license solutions
 - Sandboxie
 - JoeBox
 - CWSandbox
 - Cuckoo Sandbox
 - PyBox

• Virtual Machine and Sandbox: a good combination

Motivation (III)

Sandbox Environments

- Computer resources are tightly controlled and monitored
- Current trending of malware analysis
- Commercial and free-license solutions
 - Sandboxie
 - JoeBox
 - CWSandbox
 - Cuckoo Sandbox
 - PyBox

Virtual Machine and Sandbox: a good combination

Do malware samples detect VMs/sandbox environments?

Motivation (III)

Sandbox Environments

- Computer resources are tightly controlled and monitored
- Current trending of malware analysis
- Commercial and free-license solutions
 - Sandboxie
 - JoeBox
 - CWSandbox
 - Cuckoo Sandbox
 - PyBox

Virtual Machine and Sandbox: a good combination

Do malware samples detect VMs/sandbox environments? Yes, they do.

Motivation (IV)

Can we avoid the detection of a VMs/sandbox environment?

Can we avoid the detection of a VMs/sandbox environment? Yes, we can! (at least, we should try...)

Can we avoid the detection of a VMs/sandbox environment? Yes, we can! (at least, we should try...) We're gonna do it in a fancy way...

using Dynamic Binary Instrumentation -

Dynamic Binary Instrumentation (DBI)

- Analyse the runtime behaviour of a binary
- Executes arbitrary code during normal execution of a binary

Motivation (V) Why DBI? Its advantages

Binary instrumentation: advantages

- Programming language (totally) independent
- Machine-mode vision
- We can instrument proprietary software

Motivation (V) Why DBI? Its advantages

Binary instrumentation: advantages

- Programming language (totally) independent
- Machine-mode vision
- We can instrument proprietary software

Dynamic Instrumentation: advantages

- No need to recompile/relink each time
- Allow to find on-the-fly code
- Dynamically generated code
- Allow to instrument a process in execution already (attach)

Motivation (VI) Why DBI? Its disadvantages

Main disadvantages

- Overhead (by the instrumentation during execution)
- ↓ performance (analyst hopelessness!)
- Single execution path analysed

Motivation (VII) Summary of contributions

Our goal in this work

- Develop a Dynamic Binary Analysis (DBA) tool
 - Integrated with Cuckoo Sandbox

Motivation (VII) Summary of contributions

Our goal in this work

- Develop a Dynamic Binary Analysis (DBA) tool
 - Integrated with Cuckoo Sandbox
 - Protects Cuckoo for being detected...

Motivation (VII) Summary of contributions

Our goal in this work

- Develop a Dynamic Binary Analysis (DBA) tool
 - Integrated with Cuckoo Sandbox
 - Protects Cuckoo for being detected...
 - ... and also for (some) VMs detection

Outline

Motivation

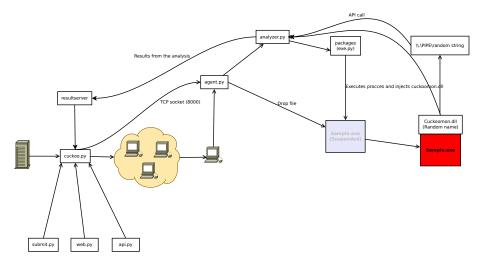
Previous Concepts

- Cuckoo Sandbox
- Dynamic Binary Instrumentation: The Pin Framework

3 On the Anti-VMs & Anti-Sandboxing Techniques

- VM Detection
- Sandboxing detection

4 Mixing Cuckoo Sandbox and Pin DBI

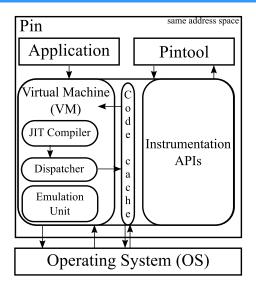

- Sticking both Programs
- Introducing PinVMShield
- 6 Case Study: the pafish tool
- 6 Related Work
- 7 Conclusions and Future Work

Cuckoo Sandbox (I)

What is Cuckoo Sandbox?

- Automated malware analysis tool
- Written in Python
- Reporting system (API calls, registry access, network activity)
- Extensible
- OpenSource

Cuckoo Sandbox (II)


Dynamic Binary Instrumentation: The Pin Framework (I)

http://www.pintools.org

What is Pin?

- Framework designed by Intel
- Allows to build easy-to-use, portable, transparent and efficient instrumentation tools (DBA, or Pintools)
- Recall: instrumentation enables the execution of arbitrary code during run-time of a binary
- Extensive API for doing whatever you can imagine
- Used for things like:
 - Instruction profiling
 - Performance evaluation
 - Bug detection
 - And malware analysis (here we are [¨])

Dynamic Binary Instrumentation: The Pin Framework (II) How does Pin work?

I. Rodríguez-Gastón, R.J. Rodríguez

Outline

- Motivatio
 - Previous Concepts
 - Cuckoo Sandbox
 - Dynamic Binary Instrumentation: The Pin Framework

3 On the Anti-VMs & Anti-Sandboxing Techniques

- VM Detection
- Sandboxing detection

4 Mixing Cuckoo Sandbox and Pin DBI

- Sticking both Programs
- Introducing PinVMShield
- 6 Case Study: the pafish tool
- 6 Related Work
- Conclusions and Future Work

How can an execution inside a VM be detected?

How can an execution inside a VM be detected?

Detection ways

• Seek VME artifacts in processes, system files and/or registry

How can an execution inside a VM be detected?

Detection ways

- Seek VME artifacts in processes, system files and/or registry
- Seek VME artifacts in memory

How can an execution inside a VM be detected?

Detection ways

- Seek VME artifacts in processes, system files and/or registry
- Seek VME artifacts in memory
- Seek specific features of virtualised hardware

How can an execution inside a VM be detected?

Detection ways

- Seek VME artifacts in processes, system files and/or registry
- Seek VME artifacts in memory
- Seek specific features of virtualised hardware
- Seek CPU instructions specific to VME

On the Anti-VMs & Anti-Sandboxing Techniques (II) Artifacts in processes, system files and/or registry

Some examples

- VMWare
 - "VMTools" service
 - References in system files to "VMWare" and vmx
 - References in the registry to "VMWare"
- VirtualBox
 - VBoxService.exe process ("VirtualBoxGuestAdditions")
 - References in the registry to "VBox"
- MS Virtual PC
 - vmsrvc.exe, vpcmap.exe, vmusrvc.exe processes
 - References in the registry to "Virtual"

On the Anti-VMs & Anti-Sandboxing Techniques (III) Artifacts in memory

The Red Pill

- Software developed by Joanna Rutkwoska, 2004
- Uses the SIDT instruction (Store Interrupt Descriptor Table)
 - VMWare: IDT in 0xFFxxxxxx
 - VirtualPC: IDT in 0xE8xxxxxx
 - In real machines: Windows (0x80FFFFFF), Linux (0xC0FFFFFF)

Other options: GDT, LDT

- GDT, LDT also displaced in virtual environments
- Scoopy tool (http://www.trapkit.de)
 - (IDT == 0xC0) || IDT == 0x80
 - GDT == 0xC0
 - LDT == 0x00

On the Anti-VMs & Anti-Sandboxing Techniques (V) Specific features of virtualised hardware

• Specific virtualised hardware

- Network controller
- USBs controller
- Host controller
- . . .

Specific features of virtualised hardware

• Specific virtualised hardware

- Network controller
- USBs controller
- Host controller
- ۰. .
- Seek specific "fingerprints"
 - SCSI device type
 - Network controller MAC
 - Host controller type
 - o...

Specific features of virtualised hardware

• Specific virtualised hardware

- Network controller
- USBs controller
- Host controller
- ۰. .
- Seek specific "fingerprints"
 - SCSI device type
 - Network controller MAC
 - Host controller type
 - . . .
- Doo tool (also seeks Class IDs in the registry)

• Some VMs add/use own instructions to communicate host/guest

- Some VMs add/use own instructions to communicate host/guest
- Seek host/guest communication channel

- Some VMs add/use own instructions to communicate host/guest
- Seek host/guest communication channel
- Jerry tool
- VMDetect tool

- Some VMs add/use own instructions to communicate host/guest
- Seek host/guest communication channel
- Jerry tool
- VMDetect tool
- Magic number...CONSTANT (WTF!)

```
mov eax, 564D5868h ; "VMXh"
mov ebx, 0
mov ecx, 0Ah
mov edx, 5658 ; "VX"
in eax, dx
cmp ebx, 564D5868h
```

On the Anti-VMs & Anti-Sandboxing Techniques (VIII)

Sandbox

- Binary execution in controlled environment
- Examples: Sandboxie, Norman Sandbox Analyser, Anubis, Cuckoo, WinJail...
- They have some common and recognisable issues:
 - DLLs loaded
 - Read of ProductID key
 - Windows username (API GetUserName)
 - Window handle (API FindWindow)

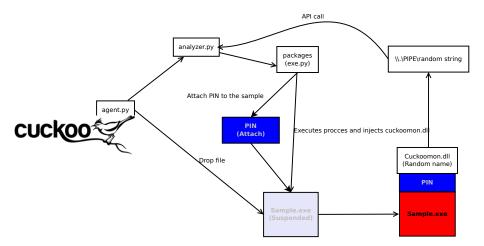
Outline

- Motivation
 - Previous Concepts
 - Cuckoo Sandbox
 - Dynamic Binary Instrumentation: The Pin Framework
- 3 On the Anti-VMs & Anti-Sandboxing Techniques
 - VM Detection
 - Sandboxing detection

4 Mixing Cuckoo Sandbox and Pin DBI

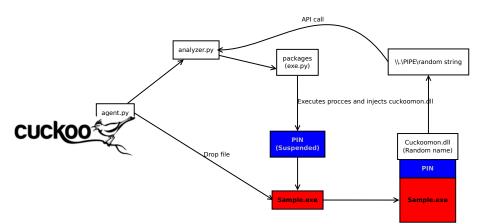
- Sticking both Programs
- Introducing PinVMShield
- 5 Case Study: the pafish tool
- 6 Related Work
- Conclusions and Future Work

Mixing Cuckoo Sandbox and Pin DBI (I)

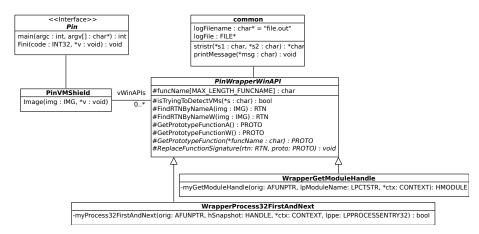

• Every file has a package

- Best place for the integration:
 - Attaching Pin to the suspended process
 - Directly executing the sample with Pin
- Pin and cuckoomon together

Mixing Cuckoo Sandbox and Pin DBI Sticking both Programs


Mixing Cuckoo Sandbox and Pin DBI (II)

Attach to suspended process



Mixing Cuckoo Sandbox and Pin DBI Sticking both Programs

Mixing Cuckoo Sandbox and Pin DBI (III) Pin integrated into a package

Mixing Cuckoo Sandbox and Pin DBI (IV) Introducing PinVMShield (1)

Mixing Cuckoo Sandbox and Pin DBI (...): our Tool Introducing PinVMShield (2)

APIs fooled

- GetUserNameA/W
- GetUserNameExA/W
- RegQueryValueA/W
- RegQueryValueExA/W
- RegOpenKeyA/W

- RegOpenKeyExA/W
 GetModuleHandleA/W
- GetModuleHandleExA/W
- GetFileAttributesA/W
- Process32First / Process32Next

- FindWindowA/W
- FindWindowExA/W
- CreateFileA/W
- CreateNamedPipeA/W
- GetCursorPos

Alpha version available for download: (soon) https://bitbucket.org/rjrodriguez/pinvmshield/

Outline

- Motivation
 - Previous Concepts
 - Cuckoo Sandbox
 - Dynamic Binary Instrumentation: The Pin Framework
- On the Anti-VMs & Anti-Sandboxing Techniques
 - VM Detection
 - Sandboxing detection
- 4 Mixing Cuckoo Sandbox and Pin DBI
 - Sticking both Programs
 - Introducing PinVMShield
- 5 Case Study: the pafish tool
- 6 Related Work
- Conclusions and Future Work

Case Study: the pafish tool (I)

- Tool that incorporates several detections for vms and sandboxing
- Developed by Alberto Ortega
- In v.0.2.5.1 (the one of case study):
 - Generic Sandbox
 - Sandboxie
 - QEMU
 - Wine
 - VirtualBox
 - VMWare

0							WinXP SP3
	\PinVMShield\Debug\p						
	afish (Paranoid :						
Sone used	e anti(debugger∕ d by malware for	JM/sandbox the gener	> tric al pub	ks lic.			
	Windows version Running checks		d 2600				
E ** 3	Debuggers detec Using IsDebugge Using OutputDeb	Present()		ĸ			
[*] [*]	Generic sandbox Using mouse act Checking userna Checking file p	ivity ne OK	OK				
[-] [*]	Sandboxie detec Using sbiedll.d	:ion 11 <mark>OK</mark>					
	Vine detection Using GetProcAd	lress(wine					
(*) [*] [*] [*]	VirtualBox dete Scsi port->bus- Reg key (HKLM\M Reg key (HKLM\S Reg key (HKLM\M Looking for C:\	>target id ARDWARE\De DFTWARE\Or ARDWARE\De	script acle\U script	ion\Syste irtualBox ion\Syste	m "SystemBio Guest Addit m "VideoBios	SVersion") ions) trac	traced? ed?
[×] [×] [×]	UMware detection Scsi port->bus- Reg key (HKLM\S Looking for C:\ Looking for C:\	target id DFTWARE\UM JINDOWS\sy	ware, stem32	Inc.\UMua \drivers\	ure Tools) vmnouse.sys	- OK	

в

Case Study: the pafish tool (I)

- Tool that incorporates several detections for vms and sandboxing
- Developed by Alberto Ortega
- In v.0.2.5.1 (the one of case study):
 - Generic Sandbox
 - Sandboxie
 - QEMU
 - Wine
 - VirtualBox
 - VMWare

0	0											WinXP SP3
				afish.exe								_0
* Pai	fish	Para	noid H	ish> ×								
				IM∕sand the ge								
			rto O		albe							
			rsion ecks		uild	2680						
E*3 I	Using	IsDe	detec bugger utDeb	ion Presen gStrin	t() g()	0	ĸ					
[*] [*]	Using Check	nous ing u	e act: serna	detect ivity . 10 11	ок О							
[-] : [*] :	Sandb Using	oxie sbie	deteci d11.d	ion 11	ок							
	Wine Using											
[*] [*] [*] [*]	Scsi Reg k Reg k Reg k	port- ey (H ey (H ev (H	KLM\HI KLM\S KLM\HI	target RDVARE DFTVARE	\Des \Ora \Des	cript cle\U cript	ion\Syst irtualBo ion\Syst	en "Sy x Guest en "Vi	ð identi stemBios t Additi deoBiosV buse.sys	Jersion"	traced	raced?
[*] [*] [*]	Scsi Reg k Looki	port- ey (H ng fo	KLM\S(target OFTWARE /INDOWS	VUMu Na va	tem32	Inc.\UMu \drivers	Are Io	ð identi ols) se.sys . s.sys	OK		

Do you wanna know more about the blue fish?

Case Study: the pafish tool (I)

- Tool that incorporates several detections for vms and sandboxing
- Developed by Alberto Ortega
- In v.0.2.5.1 (the one of case study):
 - Generic Sandbox
 - Sandboxie
 - QEMU
 - Wine
 - VirtualBox
 - VMWare

0	0				WinXP SP3
	PinVMShield\Debug				
* Pa	fish (Paranoid	fish> *			
Sone used	anti(debugger by malware fo	/UM/sandbox) r the genera	tricks		
- Aw		Ortega (albe		box.net)	
[*] [*]	Windows versio Running checks	n: 5.1 build	2600		
[*] I	Debuggers dete Using IsDebugg Using OutputDe	erPresent()	ОК ОК		
[*] [*]	Generic sandbo Using mouse ac Checking usern Checking file	tivity 0 ame OK			
	Sandboxie dete Using sbiedll.				
	Vine detection Using GetProcA				
[*] [*] [*] [*]	Reg key (HKLM) Reg key (HKLM) Reg key (HKLM)	->target id- HARDWARE\Des SOFTWARE\Ora HARDWARE\Des	cription\Sy cle\Uirtual cription\Sy	sten "Syster Box Guest Ad sten "Videol	dentifier traced! nBiosUersion") traced! dditions) traced! BiosUersion") traced! s.Sys traced!
[*] [[*] [[*]]	UMware detecti Scsi port->bus Reg key (HKLM) Looking for C: Looking for C:	->target id- SOFTWARE\UMu \WINDOWS\sus	are, Inc.\U tem32\drive	Muare Tools: rs\umnouse.s	sus OK

Do you wanna know more about the blue fish? \rightarrow attend Alberto's session! (tomorrow afternoon)

Case Study: the pafish tool

Case Study: the pafish tool (II)

It's demo time!

Outline

- Motivatio
 - Previous Concepts
 - Cuckoo Sandbox
 - Dynamic Binary Instrumentation: The Pin Framework
- On the Anti-VMs & Anti-Sandboxing Techniques
 - VM Detection
 - Sandboxing detection
- 4 Mixing Cuckoo Sandbox and Pin DBI
 - Sticking both Programs
 - Introducing PinVMShield
- 5 Case Study: the pafish tool
- Related Work
- 7 Conclusions and Future Work

Related Work (I)

CWSandox

- Sandbox environment
- Three design criteria: automation, effectiveness and correctness
- Performs a dynamic analysis
- API hooking

Related Work (I)

CWSandox

- Sandbox environment
- Three design criteria: automation, effectiveness and correctness
- Performs a dynamic analysis
- API hooking
- It is detected by sandbox detection techniques

Related Work (II)

$\mathsf{Sandbox} + \mathsf{DBI}$

- Pin as DBI framework
- Own-created sandbox environment
- Two execution environments:
 - Testing: binary execution is traced. Traces are checked against some security policies
 - Real: binary execution is monitored avoiding harmful behaviours

Related Work (II)

Sandbox + DBI

- Pin as DBI framework
- Own-created sandbox environment
- Two execution environments:
 - Testing: binary execution is traced. Traces are checked against some security policies
 - Real: binary execution is monitored avoiding harmful behaviours

Our solution also monitors the execution but...

Related Work (II)

Sandbox + DBI

- Pin as DBI framework
- Own-created sandbox environment
- Two execution environments:
 - Testing: binary execution is traced. Traces are checked against some security policies
 - Real: binary execution is monitored avoiding harmful behaviours

Our solution also monitors the execution but... besides avoids sandbox detection!

Outline

- Motivation
 - Previous Concepts
 - Cuckoo Sandbox
 - Dynamic Binary Instrumentation: The Pin Framework
- On the Anti-VMs & Anti-Sandboxing Techniques
 - VM Detection
 - Sandboxing detection
- 4 Mixing Cuckoo Sandbox and Pin DBI
 - Sticking both Programs
 - Introducing PinVMShield
- 5 Case Study: the pafish tool
- 6 Related Work
- 7 Conclusions and Future Work

Conclusions and Future Work (I)

PinVMShield

Integrated with Cuckoo Sandbox

Conclusions and Future Work (I)

- Integrated with Cuckoo Sandbox
- ✓ Avoids Cuckoo (and other) detections commonly realised by malware

- Integrated with Cuckoo Sandbox
- ✓ Avoids Cuckoo (and other) detections commonly realised by malware
- ✓ Not currently detected! ¨

- Integrated with Cuckoo Sandbox
- ✓ Avoids Cuckoo (and other) detections commonly realised by malware
- \checkmark Not currently detected! $\ddot{-}$
- X Main drawback: runtime

- Integrated with Cuckoo Sandbox
- ✓ Avoids Cuckoo (and other) detections commonly realised by malware
- 🗸 Not currently detected! $\ddot{-}$
- X Main drawback: runtime
- X Coding C++ is like a pain in the ass

PinVMShield

- Integrated with Cuckoo Sandbox
- Avoids Cuckoo (and other) detections commonly realised by malware
- ✓ Not currently detected! ¨
- X Main drawback: runtime
- X Coding C++ is like a pain in the ass

We do have more control on malware (binary) execution

- Find a logo
- Stand-alone app
- Improve anti-detection techniques (not only hooking...)

- Find a logo
- Stand-alone app
- Improve anti-detection techniques (not only hooking...)
- Replace (totally) cuckoomon.dll

- Find a logo
- Stand-alone app
- Improve anti-detection techniques (not only hooking...)
- Replace (totally) cuckoomon.dll
- Add anti-DBI techniques

- Find a logo
- Stand-alone app
- Improve anti-detection techniques (not only hooking...)
- Replace (totally) cuckoomon.dll
- Add anti-DBI techniques
- Test in real malware samples

Future Work

- Find a logo
- Stand-alone app
- Improve anti-detection techniques (not only hooking...)
- Replace (totally) cuckoomon.dll
- Add anti-DBI techniques
- Test in real malware samples

Acknowledgments

- Alberto Ortega (pafish)
- NcN staff

One FIAw over the Cuckoo's Nest

Iñaki Rodríguez-Gastón[†], Ricardo J. Rodríguez[‡]

③ All wrongs reversed inaki@sensepost.com, rjrodriguez@fi.upm.es @virtualminds_es * @RicardoJRdez

[†]SensePost London, UK

[‡]Universidad Politécnica de Madrid Madrid, Spain

1 de Noviembre, 2013

No cON Name 2013 Barcelona (España)