
Extracting Malware
Indicators of Compromise
in Memory Forensics
Ricardo J. Rodríguez
University of Zaragoza

Distributed under CC BY-NC-SA 4.0 license (© R.J. Rodríguez)
https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

Instructor
• Ricardo J. Rodríguez

• PhD on Computer and Systems Engineering
• Associate Professor (public servant) at the University of Zaragoza
• Researcher in cybersecurity issues, especially in:

• Program Binary Analysis
• Digital forensics (in particular, in memory)
• Security in systems based on RFID/NFC

• DisCo research group
• RME-DisCo: https://reversea.me
• Follow us on Twitter and on Telegram! @reverseame

• E-mail: rjrodriguez@unizar.es
• Feel free to contact me if you have questions after the workshop!

• Personal website: http://www.ricardojrodriguez.es

!"#$%&'()*+,-,!".-")-%/+
0-,1)2(-&+2

3-4+%(+&-"($,0-,

https://reversea.me/
mailto:rjrodriguez@unizar.es
http://www.ricardojrodriguez.es/

AGENDA
1. Introduction

Incident Response
Memory forensics
Malware

2. Previous Concepts
Program Structure. Loading Executables into Memory
Virtual Memory. Pages and Processes. Issues

3. Malware Analysis in Memory Forensics
Malware Analysis Phases
Malware Analysis Phases in Memory Forensics

AGENDA
4. Collection of Memory Evidence

Memory acquisition
Memory Dump Analysis: Volatility
Detection of Indicators of Compromise with Volatility

5. Advanced Detection of Indicators of Compromise
Unofficial Plugins

6. Development of Own Analysis Tools
7. Workflows Design for Evidence Analysis

Workflow Assembly
Information Exchange

1. Introduction

1. Introduction

• Incident response phases (NIST SP 800-61)
1. Preparation

• Preparedness for incident management
• Incident prevention

2. Detect and Analysis
• Attack vectors
• Indicators of incidence
• Sources of precursors and indicators
• Incident analysis, documentation, prioritization and notification

3. Containment, Eradication, and Recovery
4. Post-incident activity

Incident Response

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf

1. Introduction

• Incident response phases (NIST SP 800-61)
1. Preparation
2. Detect and Analysis
3. Containment, Eradication, and Recovery

• Containment strategies
• Collection and management of evidence
• Identification of attackers
• Eradication and recovery

4. Post-incident activity
• Learned lessons
• Use of information collected from the incident
• Evidence retention

Incident Response

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf

1. Introduction

• Know what has happened, preserving all the information related to the incident
• Respond to the well-known 6 W's: what, who, why, how, when, and where
• Usual incident: presence of malicious software (malware)
• Various aspects of forensic analysis:

• Device forensics
• Digital media
• Memory

• Forensic analysis of communications

Incident Response

1. Introduction

• Forensic analysis of digital media versus memory
• Difficulty of access to digital media
• Encrypted information
• Volatile information
• Excessive amount of information

Incident Response

1. Introduction

• Can I use memory forensics to detect malware?
• Yes. And no.
• Problems related to the content available in memory

• Page swapping
• Load on demand (also called lazy loading)
• Page smearing

• The best would be to use the forensic analysis of digital media as a complement
• That is, that memory forensics is not only what we rely on

Memory Forensics

1. Introduction

• Malicious software
• Software specially designed to do some kind of damage to a computer system
• Different types, depending on their functionality: keylogger, banker, ransomware, botnet, etc...

• They can have several functionalities at the same time
• Lifecycle

1. Initial compromise (social engineering attacks, waterhole, insiders, etc.)
2. Persistence
3. Communication with C&C servers
4. Lateral movement
5. Data exfiltration / malicious activity

Malware

More details: Uroz, D. & Rodríguez, R. J. Characteris=cs and Detectability of Windows Auto-Start Extensibility Points in
Memory Forensics. Digital InvesSgaSon, 2019, 28, S95-S104, Elsevier. h[ps://doi.org/10.1016/j.diin.2019.01.026

https://doi.org/10.1016/j.diin.2019.01.026

2. Previous Concepts

2. Previous Concepts

• Since Windows NT 3.1
• PE: Portable Executable

• Data structure defined in WinNT.h (Microsoft Windows SDK)
• Three parts: MS-DOS headers, PE/COFF headers, Section headers
• https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

• MS-DOS headers
• First 64 bytes
• e_magic: MZ (Mark Zbikowski)
• e_lfanew: offset to PE/COFF headers

Program Structure

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

2. Previous Concepts

• PE/COFF headers
• PE signature (“PE\0\0”)
• PE file header

• Define target machine, number of sections, characteristics, etc.
• PE optional header

• Optional for some object files
• Fields of interest: ImageBase, BaseOfCode, AddressOfEntryPoint
• DataDirectory: Directory table. Each entry has a meaning

• Section headers
• IMAGE_SECTION_HEADER structure
• Common sections: .text/.code, .rdata/.rodata, .data, .reloc, …

Program Structure

2. Previous Concepts
Loading executables into memory

2. Previous Concepts

• Physical address vs. Virtual address
• Translation performed by the memory management unit (MMU)
• PTE: page table entries

• Each process and the kernel itself have their own page tables
• Map virtual address to physical address

• Virtual memory space of a process
• Contiguous regions
• Different uses: file mapping (disk file backup), unmapped memory

• Virtual Address Descriptor (VAD)
• Kernel structure to represent a contiguous region of memory (can contain multiple pages)
• Balanced tree
• Different permissions (we will comment later…)

Virtual Memory

2. Previous Concepts

• Page: minimal memory granularity
• Contiguous, fixed-size block of virtual memory
• Small (4KiB) and large (for example, 2MiB on x86 and x64, 4MiB on ARM)

• States:
• Free: initial state
• Reserved: for future use
• Committed (ready to use)

Virtual Memory: pages

2. Previous Concepts

1. Page swapping
• Memory space available for a process in 32 bits: 2GiB
• Is it physically possible?
• MMU manages memory pages that are accessed and paged, retrieving them from disk and placing them

back into memory

2. Load on demand
• Only the memory pages that are needed are loaded, and when they are needed (lazy loading)
• Copy-on-Write (CoW) mechanism

3. Page smearing
• Memory is a living entity, continually changing
• Memory capturing issue on running systems

• Possible references between very distant memory areas

Virtual Memory: Problems

2. Previous Concepts
Virtual Memory: Problems

More details: Martín-Pérez, M., Rodríguez, R.J. (2022). Quantifying Paging on Recoverable Data from Windows User-Space
Modules. In: Digital Forensics and Cyber Crime. ICDF2C 2021. Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, vol 441. Springer. https://doi.org/10.1007/978-3-031-06365-7_

https://doi.org/10.1007/978-3-031-06365-7_

2. Previous Concepts
Virtual Memory: Problems

More details: Marin-Pérez, M., Rodríguez, R.J. (2022). Quan=fying Paging on Recoverable Data from Windows User-Space
Modules. In: Digital Forensics and Cyber Crime. ICDF2C 2021. Lecture Notes of the InsStute for Computer Sciences, Social
InformaScs and TelecommunicaSons Engineering, vol 441. Springer. h[ps://doi.org/10.1007/978-3-031-06365-7_

https://doi.org/10.1007/978-3-031-06365-7_

2. Previous Concepts
Virtual Memory: Processes and Shared Libraries

3. Malware Analysis in Memory
Forensics

3. Malware Analysis in Memory Forensics

• Static analysis (the program does not run)
• Signatures (MD5, SHA-1, SHA-256…)

• HashTab, md5sum, sha1sum, WinMD5Free, …
• Strings

• strings
• PE properties

• Fields of interest (obfuscated? packed?)
• External functions set in Import Address Table (IAT)
• Resources within the PE

Malware Analysis Phases

3. Malware Analysis in Memory Forensics

• Dynamic analysis (the program runs – typically in an isolated environment)
• OS interac\on: files

• Crea]on? Access? Modifica]on? Dele]on?

• OS interac\on: Windows Registry
• Crea]on? Access? Modifica]on? Dele]on?

• OS interac\on: processes
• Crea]on? Access?

• Interac\on with the outside: network communica\ons
• IP addresses
• Domain names

Malware Analysis Phases

3. Malware Analysis in Memory Forensics

3. Malware Analysis in Memory Forensics

• Memory dumps
• Contains item artifacts that were running at the time of acquisition

• Running processes, connected users, open sockets, etc.

Process: memory representation of a program
1. Memory mapped executable file

• Page alignment à inconclusive hash signatures
2. Load on demand

• Partial content: problem to know the real malicious activity carried out by the sample
• The way of acquiring memory can affect

3. Resolved IAT Function Table
• Difficulty of subsequent execution in the same or other environments

Malware Analysis Phases in Memory Forensics

4. Collection of memory evidence

4. Collection of Memory Evidence

• Various acquisition techniques
• Tobias Latzo, Ralph Palutke, Felix Freiling, “A universal taxonomy and survey of forensic memory acquisition techniques,”

Digital Investigation, Volume 28, 2019, pp. 56-69, ISSN 1742-2876, https://doi.org/10.1016/j.diin.2019.01.001

• Software tools for complete memory dump
• WinPmem: https://github.com/Velocidex/WinPmem

• Apache license
• Support for Windows XP up to Windows 10, for 32 and 64 bits
• Example: winpmem_mini_x64.exe physmem.raw

• Linux Memory Extractor (LiME): https://github.com/504ensicsLabs/LiME
• GNU/GPLv2 license
• Support for Linux and Android
• Extraction via local port connection

• FTK Imager: https://accessdata.com/product-download/ftk-imager-version-4-2-1
• Commercial tool
• Support for Windows

Memory Acquisition

https://doi.org/10.1016/j.diin.2019.01.001
https://github.com/Velocidex/WinPmem
https://github.com/504ensicsLabs/LiME
https://accessdata.com/product-download/ftk-imager-version-4-2-1

4. Collection of Memory Evidence

• Acquisition in virtual machines
• VirtualBox

• vboxmanage debugvm "Win7" dumpvmcore --filename test.elf
• VMWare

1. Create a snapshot of the virtual machine execu]on (.vmss and .vmem files are generated)
2. vmss2core tool: hfps://flings.vmware.com/vmss2core??src=vmw_so_vex_mraff_549

• Other tools for extracting processes or modules
• ProcDump: h`ps://docs.microsoa.com/en-us/sysinternals/downloads/procdump

• procdump -ma 4572
• Single dump (fichero .dmp)

• Windows Memory Extractor: h`ps://github.com/pedrofdez26/windows-memory-extractor
• GNU/GPLv3 license
• WindowsMemoryExtractor_x64.exe --pid 1234
• Create sec]onal dump of process memory

Memory Acquisition

https://flings.vmware.com/vmss2core??src=vmw_so_vex_mraff_549
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://github.com/pedrofdez26/windows-memory-extractor

4. Collection of Memory Evidence

• De facto standard to analyze memory dumps
• FOSS (GNU/GPLv2 license)
• Published in 2007 in BH USA, called Volatoools
• Support for Windows, Linux and MacOS, in 32 and 64 bits
• Very extensive API for your own implementations
• Version 2.6 vs. Version 3

• Python2 vs Python3
• Version 3 is already stable! https://github.com/volatilityfoundation/volatility3

Memory Dump Analysis: Volatility

https://github.com/volatilityfoundation/volatility3

4. Collection of Memory Evidence

• Virtual machine provided: Debian 10.10
• Volatility 2.6 and Volatility 3.0 already installed
• User/password: alumno / alumno

• Help:
• python vol.py –h

• Memory dump to analyze :
• python vol.py --f mem.dmp --profile Win7SP1x86
• The profile is only necessary in version 2.6. It indicates where are the internal structures of the SO

• How to know the profile to use? à imageinfo plugin
• python vol.py --f mem.dmp imageinfo

• Plugins are always indicated at the end of the command

First Steps with Volatility

4. Collection of Memory Evidence

• Processes and DLLs
• pslist, pstree (psscan for possible rootkits)
• dlllist, dlldump
• handles
• enumfuncs (list of imported and exported functions, by process/dll)

• Process memory
• memmap, memdump
• procdump
• Vadinfo, vadwalk, vadtree, vaddump
• evtlogs
• iehistory

• Network
• connections, connscan
• sockets, sockscan
• netscan (network artifacts in Win7)

Detection of Indicators of Compromise with Volatility

https://github.com/volatilityfoundation/volatility/wiki/Command-Reference

https://github.com/volatilityfoundation/volatility/wiki/Command-Reference

4. Collection of Memory Evidence

• Kernel memory and other (internal) objects
• modules, modscan, moddump
• driverscan
• filescan

• Register
• hivescan, hivelist, hivedump
• printkey
• lsadump
• userassist, shellbags, shimcache
• dumpregistry

• Filesystem
• mbrparser, mftparser

• Hibernation file analysis or other dumps

Detection of Indicators of Compromise with Volatility

https://github.com/volatilityfoundation/volatility/wiki/Command-Reference

https://github.com/volatilityfoundation/volatility/wiki/Command-Reference

4. Collection of Memory Evidence

• Imprecision of memory dump content
• The content of an image is not faithful to its image file
• Mainly due to:

• Paginated effect (4kiB alignment causes null bytes filling)
• Relocation (resolved IAT addresses or lack of some sections)

• Solutions?
• Use of approximate similarity algorithms (sum plugin)
• Database construction with allowed hashes

Memory Forensic & Malware Analysis: Related Problems

4. Collection of Memory Evidence

• Lack of completeness of memory dump content
• The content of an image is not complete, with respect to image file
• Mainly due to:

• Swapping effect (if a page is not used, is temporarily saved on disk)
• Load on demand (only what is going to be used is charged)

• Solu*ons?
• Use disk forensic to recover files
• Combine memory forensics with disk forensics

Memory Forensic & Malware Analysis: Related Problems

4. Recolección de evidencias de memoria

• Incompletitud del contenido del volcado de memoria

Forense de memoria & análisis de malware: problemas relacionados

4. Collection of Memory Evidence

• Imprecision of memory dump
• Memory is continuously updated and acquired in a non-atomic way
• Especially relevant when there are acquisitions in living systems
• Highly probable. Inconsistency due to:

• Pointers
• Memory fragmentation

• Sophisticated malware can force inconsistencies deliberately (DKOM attacks)
• Solutions?

• Use of other acquisition techniques
• Check the temporary consistency of the data: temporal forensics (Pagani, F.; Fedorov, O. &

Balzarotti, D. Introducing the Temporal Dimension to Memory Forensics. ACM Trans. Priv. Secur., vol. 22, no. 2, pp. 9:1-9:21,
ACM, https://doi.org/10.1145/3310355)

Memory Forensic & Malware Analysis: Related Problems

https://doi.org/10.1145/3310355

4. Collection of Memory Evidence

• Stealthy malware
• VAD are unreliable sources of information

• Pages permissions are not updated if they are changed after putting the initial permissions
• You can “swap” pages deliberately
• Process hollowing attacks
• Solutions?

• Malware signatures (but not based on cryptographic hashes)
• Robust kernel signatures
• Volatility Plugins: malfind, malscan, impfuzzy

Memory Forensic & Malware Analysis: Related Problems

4. Collection of Memory Evidence

LAB SESSION 1
• “zeus.vmem” memory dump (from “Malware Analyst’s Cookbook” book)
• Follow the laboratory workbook provided on the workshop's website:

https://webdiis.unizar.es/~ricardo/sbc-2022/malware-memory-
forensics/laboratories/lab1_introduction.pdf
• Details many Vola\lity plugins of interest for memory dump analysis

Detection of Indicators of Compromise with Volatility: example

https://webdiis.unizar.es/~ricardo/sbc-2022/malware-memory-forensics/laboratories/lab1_introduction.pdf

5. Advanced Detection of
Indicators of Compromise

5. Advanced Detection of IoC

• There are many additional plugins that expand Volatility functionality
• Mode of use

1. Plugin installaSon (for instance, source code repository download)
2. ExecuSon: volatility --plugins="/path/to/plugin" -f file [OPTIONS] pluginname

Unofficial Plugins

5. Advanced Detection of IoC

• MalConfScan: https://github.com/JPCERTCC/MalConfScan
• Extract configuration, deciphered chains or DGA domains from some malware families

• Malscan: https://github.com/reverseame/malscan (for Volatility 2.6)
• GNU/GPLv3 license
• Integrates Malfind with ClamAV-daemon (only available in Linux). Less false negatives
• Operating modes: Normal (regions +WX, any executable module, and VADs-type private memory)

and full-scan (regions with +x)
• VADs without associated executables, beginnings of function and empty pages followed by code

Unofficial Plugins

https://github.com/JPCERTCC/MalConfScan
https://github.com/reverseame/malscan

5. Advanced Detection of IoC

• Similarity Unrelocated Module: https://github.com/reverseame/similarity-unrelocated-
module (for Volatility 2.6)
• GNU/GPLv3 license
• Calculate approximate signatures on the modules of a dump:

• Algorithms: dcfldd, ssdeep, sdhash, TLSH
• A module is an executable file or library of functions loaded in memory

• Allows comparison between modules of different memory dumps
• Undoes the changes made by the operating system (relocation). Two methods :

• Guided De-relocation
• Linear Sweep De-relocation

• More details: M. Martín-Pérez, R. J. Rodríguez,D. Balzarotti, “Pre-processing Memory Dumps to Improve
Similarity Score of Windows Modules”, Computers & Security, vol. 101, p. 102119, 2021,
https://doi.org/10.1016/j.cose.2020.102119

Unofficial Plugins

https://github.com/reverseame/similarity-unrelocated-module
https://doi.org/10.1016/j.cose.2020.102119

5. Advanced Detection of IoC

• Winesap: https://github.com/reverseame/winesap (for Volatility 2.6)
• AGPLv3 license
• Look for all Windows ASEPs in memory dump
• Binary or unknown registration keys: they are analyzed as PE
• Chains related to usual malware file routes

(%Appdata%,%TMP%,%Temp%, Appdata),
NTFS ADS, Shells commands
(e.g., rundll32.exe shell32.dll, Shellexecute_rundll)

Unofficial Plugins

• More details: D. Uroz, R. J. Rodríguez, “Characteristics and
Detectability of Windows Auto-Start Extensibility Points in
Memory Forensics”, Digital Investigation, vol. 28, p. S95-S104,
2019, https://doi.org/10.1016/j.diin.2019.01.026

https://github.com/reverseame/winesap
https://doi.org/10.1016/j.diin.2019.01.026

5. Advanced Detection of IoC

• Sigcheck: https://github.com/reverseame/sigcheck (for Volatility 2.6)
• GNU/GPLv3 license
• Verify PE files digitally signed with Microsoft Authenticode
• Two signature methods: embedded (in the PE), by catalog (in external file)
• IMPORTANT: Verify that the executable file that began was original

• If a malware does process hollowing would not be detected with this method
• More details: D. Uroz, R. J. Rodríguez, “On Challenges in Verifying Trusted Executable Files in

Memory Forensics”, Forensic Science International: Digital Investigation, vol. 32, p. 300917, 2020,
https://doi.org/10.1016/j.fsidi.2020.300917

Unofficial Plugins

https://github.com/reverseame/sigcheck
https://doi.org/10.1016/j.fsidi.2020.300917

5. Advanced Detection of IoC

LAB SESSION 2
• “wannacry.elf” memory dump
• Follow the laboratory workbook provided on the workshop's website:

https://webdiis.unizar.es/~ricardo/sbc-2022/malware-memory-
forensics/laboratories/lab2_example_wannacry.pdf

Example: WannaCry

https://webdiis.unizar.es/~ricardo/sbc-2022/malware-memory-forensics/laboratories/lab2_example_wannacry.pdf

6. Development of Own Analysis Tools

6. Development of Own Analysis Tools

LAB SESSION 3
• “alina1G.elf” memory dump
• Follow the laboratory workbook provided on the workshop's website:

https://webdiis.unizar.es/~ricardo/sbc-2022/malware-memory-
forensics/laboratories/lab3_plugin_development.pdf

https://webdiis.unizar.es/~ricardo/sbc-2022/malware-memory-forensics/laboratories/lab3_plugin_development.pdf

7. Workflows design for
evidence analysis

7. Workflows design for evidence analysis

• Clearly define what you want to obtain
• Search in the plugins of the Vola\lity community if it is already made (the wheel should not be reinvented!)

• Pipeline development
• Python? Bash?
• Muld-threading
• Module extracdon and analysis

• Sandbox, VT, pefile

• Information exchange
• Standard formats:

• JSON, CSV, etc.

• Final analysis report:
• JSON? Markdown?

Workflow Assembly and Information Exchange

https://github.com/volatilityfoundation/community

7. Workflows design for evidence analysis

LAB SESSION 4
• Any memory dump of interest
• Follow the laboratory workbook provided on the workshop's website:

https://webdiis.unizar.es/~ricardo/sbc-2022/malware-forense-
memoria/laboratorios/lab4_automatizacion_analisis.pdf

• With what is described in the workbook, you have to develop an analysis system for:
• DLLs extraction of a particular process (if provided by parameter) or all DLLS
• Static analysis to measure entropy of the extracted DLLs (with pefile)
• ClamAV execution in the DLLs expected

https://webdiis.unizar.es/~ricardo/sbc-2022/malware-forense-memoria/laboratorios/lab4_automatizacion_analisis.pdf

Recommended Bibliography

Recommended Bibliography

• The Art of Memory Forensics
• Additional material available here

• Practical Malware Analysis. The Hands-On Guide to Dissecting Malicious
Software

• Malware Analyst’s Cookbook
• Documentación de Volatility 3

https://www.amazon.es/Art-Memory-Forensics-Detecting-Malware/dp/1118825098
https://www.memoryanalysis.net/amf
https://www.amazon.es/Practical-Malware-Analysis-Hands-Dissecting/dp/1593272901/ref=pd_lpo_14_t_1/257-7554497-4540432?_encoding=UTF8&pd_rd_i=1593272901&pd_rd_r=f2c2f1bf-7cf4-4be7-8f8c-e18bc0dd2d6d&pd_rd_w=LhRpi&pd_rd_wg=1A36T&pf_rd_p=1bd89de7-36f2-4034-8d5f-e44968acbf56&pf_rd_r=XGVY206RR1NMEE4SCVSY&psc=1&refRID=XGVY206RR1NMEE4SCVSY
https://www.amazon.es/Malware-Analysts-Cookbook-DVD-Techniques/dp/0470613033
https://volatility3.readthedocs.io/en/latest/

