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Instructor
• Ricardo J. Rodríguez

• PhD on Computer and Systems Engineering
• Associate Professor (public servant) at the University of Zaragoza
• Researcher in cybersecurity issues, especially in:

• Program Binary Analysis
• Digital forensics (in particular, in memory)
• Security in systems based on RFID/NFC

• DisCo research group
• RME-DisCo: https://reversea.me 
• Follow us on Twitter and on Telegram! @reverseame

• E-mail: rjrodriguez@unizar.es
• Feel free to contact me if you have questions after the workshop!

• Personal website: http://www.ricardojrodriguez.es
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1. Introduction

• Incident response phases (NIST SP 800-61)
1. Preparation

• Preparedness for incident management
• Incident prevention

2. Detect and Analysis
• Attack vectors
• Indicators of incidence
• Sources of precursors and indicators
• Incident analysis, documentation, prioritization and notification

3. Containment, Eradication, and Recovery
4. Post-incident activity

Incident Response

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf


1. Introduction

• Incident response phases (NIST SP 800-61)
1. Preparation
2. Detect and Analysis
3. Containment, Eradication, and Recovery

• Containment strategies
• Collection and management of evidence
• Identification of attackers
• Eradication and recovery

4. Post-incident activity
• Learned lessons
• Use of information collected from the incident
• Evidence retention

Incident Response

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf


1. Introduction

• Know what has happened, preserving all the information related to the incident
• Respond to the well-known 6 W's: what, who, why, how, when, and where
• Usual incident: presence of malicious software (malware)
• Various aspects of forensic analysis:

• Device forensics
• Digital media
• Memory

• Forensic analysis of communications

Incident Response



1. Introduction

• Forensic analysis of digital media versus memory
• Difficulty of access to digital media
• Encrypted information
• Volatile information
• Excessive amount of information

Incident Response



1. Introduction

• Can I use memory forensics to detect malware?
• Yes. And no.
• Problems related to the content available in memory

• Page swapping
• Load on demand (also called lazy loading)
• Page smearing

• The best would be to use the forensic analysis of digital media as a complement
• That is, that memory forensics is not only what we rely on

Memory Forensics



1. Introduction

• Malicious software
• Software specially designed to do some kind of damage to a computer system
• Different types, depending on their functionality: keylogger, banker, ransomware, botnet, etc...

• They can have several functionalities at the same time
• Lifecycle

1. Initial compromise (social engineering attacks, waterhole, insiders, etc.)
2. Persistence
3. Communication with C&C servers
4. Lateral movement
5. Data exfiltration / malicious activity

Malware

More details: Uroz, D. & Rodríguez, R. J. Characteris=cs and Detectability of Windows Auto-Start Extensibility Points in 
Memory Forensics. Digital InvesSgaSon, 2019, 28, S95-S104, Elsevier. h[ps://doi.org/10.1016/j.diin.2019.01.026

https://doi.org/10.1016/j.diin.2019.01.026
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2. Previous Concepts

• Since Windows NT 3.1
• PE: Portable Executable

• Data structure defined in WinNT.h (Microsoft Windows SDK)
• Three parts: MS-DOS headers, PE/COFF headers, Section headers
• https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

• MS-DOS headers
• First 64 bytes
• e_magic: MZ (Mark Zbikowski)
• e_lfanew:  offset to PE/COFF headers

Program Structure

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format


2. Previous Concepts

• PE/COFF headers
• PE signature (“PE\0\0”)
• PE file header

• Define target machine, number of sections, characteristics, etc.
• PE optional header

• Optional for some object files
• Fields of interest: ImageBase, BaseOfCode, AddressOfEntryPoint
• DataDirectory: Directory table. Each entry has a meaning

• Section headers
• IMAGE_SECTION_HEADER structure
• Common sections: .text/.code, .rdata/.rodata, .data, .reloc, …

Program Structure



2. Previous Concepts
Loading executables into memory



2. Previous Concepts

• Physical address vs. Virtual address
• Translation performed by the memory management unit (MMU)
• PTE: page table entries

• Each process and the kernel itself have their own page tables
• Map virtual address to physical address

• Virtual memory space of a process
• Contiguous regions
• Different uses: file mapping (disk file backup), unmapped memory

• Virtual Address Descriptor (VAD)
• Kernel structure to represent a contiguous region of memory (can contain multiple pages)
• Balanced tree
• Different permissions (we will comment later…)

Virtual Memory



2. Previous Concepts

• Page: minimal memory granularity
• Contiguous, fixed-size block of virtual memory
• Small (4KiB) and large (for example, 2MiB on x86 and x64, 4MiB on ARM)

• States:
• Free: initial state
• Reserved: for future use
• Committed (ready to use)

Virtual Memory: pages



2. Previous Concepts

1. Page swapping
• Memory space available for a process in 32 bits: 2GiB
• Is it physically possible?
• MMU manages memory pages that are accessed and paged, retrieving them from disk and placing them

back into memory

2. Load on demand
• Only the memory pages that are needed are loaded, and when they are needed (lazy loading)
• Copy-on-Write (CoW) mechanism

3. Page smearing
• Memory is a living entity, continually changing
• Memory capturing issue on running systems

• Possible references between very distant memory areas

Virtual Memory: Problems



2. Previous Concepts
Virtual Memory: Problems

More details: Martín-Pérez, M., Rodríguez, R.J. (2022). Quantifying Paging on Recoverable Data from Windows User-Space 
Modules. In: Digital Forensics and Cyber Crime. ICDF2C 2021. Lecture Notes of the Institute for Computer Sciences, Social 
Informatics and Telecommunications Engineering, vol 441. Springer. https://doi.org/10.1007/978-3-031-06365-7_

https://doi.org/10.1007/978-3-031-06365-7_


2. Previous Concepts
Virtual Memory: Problems

More details: Marin-Pérez, M., Rodríguez, R.J. (2022). Quan=fying Paging on Recoverable Data from Windows User-Space 
Modules. In: Digital Forensics and Cyber Crime. ICDF2C 2021. Lecture Notes of the InsStute for Computer Sciences, Social 
InformaScs and TelecommunicaSons Engineering, vol 441. Springer. h[ps://doi.org/10.1007/978-3-031-06365-7_
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2. Previous Concepts
Virtual Memory: Processes and Shared Libraries



3. Malware Analysis in Memory
Forensics



3. Malware Analysis in Memory Forensics

• Static analysis (the program does not run)
• Signatures (MD5, SHA-1, SHA-256…)

• HashTab, md5sum, sha1sum, WinMD5Free, …
• Strings

• strings
• PE properties

• Fields of interest (obfuscated? packed?)
• External functions set in Import Address Table (IAT)
• Resources within the PE

Malware Analysis Phases



3. Malware Analysis in Memory Forensics

• Dynamic analysis (the program runs – typically in an isolated environment)
• OS interac\on: files

• Crea]on? Access? Modifica]on? Dele]on?

• OS interac\on: Windows Registry
• Crea]on? Access? Modifica]on? Dele]on?

• OS interac\on: processes
• Crea]on? Access?

• Interac\on with the outside: network communica\ons
• IP addresses
• Domain names

Malware Analysis Phases
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3. Malware Analysis in Memory Forensics

• Memory dumps
• Contains item artifacts that were running at the time of acquisition

• Running processes, connected users, open sockets, etc.

Process: memory representation of a program
1. Memory mapped executable file

• Page alignment à inconclusive hash signatures
2. Load on demand

• Partial content: problem to know the real malicious activity carried out by the sample
• The way of acquiring memory can affect

3. Resolved IAT Function Table
• Difficulty of subsequent execution in the same or other environments

Malware Analysis Phases in Memory Forensics
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4. Collection of Memory Evidence

• Various acquisition techniques
• Tobias Latzo, Ralph Palutke, Felix Freiling, “A universal taxonomy and survey of forensic memory acquisition techniques,” 

Digital Investigation, Volume 28, 2019, pp. 56-69, ISSN 1742-2876, https://doi.org/10.1016/j.diin.2019.01.001

• Software tools for complete memory dump
• WinPmem: https://github.com/Velocidex/WinPmem

• Apache license
• Support for Windows XP up to Windows 10, for 32 and 64 bits
• Example: winpmem_mini_x64.exe physmem.raw

• Linux Memory Extractor (LiME): https://github.com/504ensicsLabs/LiME
• GNU/GPLv2 license
• Support for Linux and Android
• Extraction via local port connection

• FTK Imager: https://accessdata.com/product-download/ftk-imager-version-4-2-1
• Commercial tool
• Support for Windows

Memory Acquisition

https://doi.org/10.1016/j.diin.2019.01.001
https://github.com/Velocidex/WinPmem
https://github.com/504ensicsLabs/LiME
https://accessdata.com/product-download/ftk-imager-version-4-2-1


4. Collection of Memory Evidence

• Acquisition in virtual machines
• VirtualBox

• vboxmanage debugvm "Win7" dumpvmcore --filename test.elf
• VMWare

1. Create a snapshot of the virtual machine execu]on (.vmss and .vmem files are generated)
2. vmss2core tool: hfps://flings.vmware.com/vmss2core??src=vmw_so_vex_mraff_549

• Other tools for extracting processes or modules
• ProcDump: h`ps://docs.microsoa.com/en-us/sysinternals/downloads/procdump

• procdump -ma 4572
• Single dump (fichero .dmp)

• Windows Memory Extractor: h`ps://github.com/pedrofdez26/windows-memory-extractor
• GNU/GPLv3 license
• WindowsMemoryExtractor_x64.exe --pid 1234
• Create sec]onal dump of process memory

Memory Acquisition

https://flings.vmware.com/vmss2core??src=vmw_so_vex_mraff_549
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://github.com/pedrofdez26/windows-memory-extractor


4. Collection of Memory Evidence

• De facto standard to analyze memory dumps
• FOSS (GNU/GPLv2 license)
• Published in 2007 in BH USA, called Volatoools
• Support for Windows, Linux and MacOS, in 32 and 64 bits
• Very extensive API for your own implementations
• Version 2.6 vs. Version 3

• Python2 vs Python3
• Version 3 is already stable! https://github.com/volatilityfoundation/volatility3

Memory Dump Analysis: Volatility

https://github.com/volatilityfoundation/volatility3


4. Collection of Memory Evidence

• Virtual machine provided: Debian 10.10
• Volatility 2.6 and Volatility 3.0 already installed
• User/password: alumno / alumno

• Help:
• python vol.py –h

• Memory dump to analyze :
• python vol.py --f mem.dmp --profile Win7SP1x86
• The profile is only necessary in version 2.6. It indicates where are the internal structures of the SO

• How to know the profile to use? à imageinfo plugin
• python vol.py --f mem.dmp imageinfo

• Plugins are always indicated at the end of the command

First Steps with Volatility



4. Collection of Memory Evidence

• Processes and DLLs
• pslist, pstree (psscan for possible rootkits)
• dlllist, dlldump
• handles
• enumfuncs (list of imported and exported functions, by process/dll)

• Process memory
• memmap, memdump
• procdump
• Vadinfo, vadwalk, vadtree, vaddump
• evtlogs
• iehistory

• Network
• connections, connscan
• sockets, sockscan
• netscan (network artifacts in Win7)

Detection of Indicators of Compromise with Volatility

https://github.com/volatilityfoundation/volatility/wiki/Command-Reference

https://github.com/volatilityfoundation/volatility/wiki/Command-Reference


4. Collection of Memory Evidence

• Kernel memory and other (internal) objects
• modules, modscan, moddump
• driverscan
• filescan

• Register
• hivescan, hivelist, hivedump
• printkey
• lsadump
• userassist, shellbags, shimcache
• dumpregistry

• Filesystem
• mbrparser, mftparser

• Hibernation file analysis or other dumps

Detection of Indicators of Compromise with Volatility

https://github.com/volatilityfoundation/volatility/wiki/Command-Reference

https://github.com/volatilityfoundation/volatility/wiki/Command-Reference


4. Collection of Memory Evidence

• Imprecision of memory dump content
• The content of an image is not faithful to its image file
• Mainly due to:

• Paginated effect (4kiB alignment causes null bytes filling)
• Relocation (resolved IAT addresses or lack of some sections)

• Solutions?
• Use of approximate similarity algorithms (sum plugin)
• Database construction with allowed hashes

Memory Forensic & Malware Analysis: Related Problems



4. Collection of Memory Evidence

• Lack of completeness of memory dump content
• The content of an image is not complete, with respect to image file
• Mainly due to:

• Swapping effect (if a page is not used, is temporarily saved on disk)
• Load on demand (only what is going to be used is charged)

• Solu*ons?
• Use disk forensic to recover files
• Combine memory forensics with disk forensics

Memory Forensic & Malware Analysis: Related Problems



4. Recolección de evidencias de memoria

• Incompletitud del contenido del volcado de memoria

Forense de memoria & análisis de malware: problemas relacionados



4. Collection of Memory Evidence

• Imprecision of memory dump
• Memory is continuously updated and acquired in a non-atomic way
• Especially relevant when there are acquisitions in living systems
• Highly probable. Inconsistency due to:

• Pointers
• Memory fragmentation

• Sophisticated malware can force inconsistencies deliberately (DKOM attacks)
• Solutions?

• Use of other acquisition techniques
• Check the temporary consistency of the data: temporal forensics (Pagani, F.;  Fedorov, O. & 

Balzarotti, D. Introducing the Temporal Dimension to Memory Forensics. ACM Trans. Priv. Secur., vol. 22, no. 2, pp. 9:1-9:21, 
ACM, https://doi.org/10.1145/3310355)

Memory Forensic & Malware Analysis: Related Problems

https://doi.org/10.1145/3310355


4. Collection of Memory Evidence

• Stealthy malware
• VAD are unreliable sources of information

• Pages permissions are not updated if they are changed after putting the initial permissions
• You can “swap” pages deliberately
• Process hollowing attacks
• Solutions?

• Malware signatures (but not based on cryptographic hashes)
• Robust kernel signatures
• Volatility Plugins: malfind, malscan, impfuzzy

Memory Forensic & Malware Analysis: Related Problems



4. Collection of Memory Evidence

LAB SESSION 1
• “zeus.vmem” memory dump (from “Malware Analyst’s Cookbook” book)
• Follow the laboratory workbook provided on the workshop's website: 

https://webdiis.unizar.es/~ricardo/sbc-2022/malware-memory-
forensics/laboratories/lab1_introduction.pdf
• Details many Vola\lity plugins of interest for memory dump analysis

Detection of Indicators of Compromise with Volatility: example

https://webdiis.unizar.es/~ricardo/sbc-2022/malware-memory-forensics/laboratories/lab1_introduction.pdf


5. Advanced Detection of 
Indicators of Compromise



5. Advanced Detection of IoC

• There are many additional plugins that expand Volatility functionality
• Mode of use

1. Plugin installaSon (for instance, source code repository download)
2. ExecuSon: volatility --plugins="/path/to/plugin" -f file [OPTIONS] pluginname

Unofficial Plugins



5. Advanced Detection of IoC

• MalConfScan: https://github.com/JPCERTCC/MalConfScan
• Extract configuration, deciphered chains or DGA domains from some malware families

• Malscan: https://github.com/reverseame/malscan (for Volatility 2.6)
• GNU/GPLv3 license
• Integrates Malfind with ClamAV-daemon (only available in Linux). Less false negatives
• Operating modes: Normal (regions +WX, any executable module, and VADs-type private memory) 

and full-scan (regions with +x)
• VADs without associated executables, beginnings of function and empty pages followed by code

Unofficial Plugins

https://github.com/JPCERTCC/MalConfScan
https://github.com/reverseame/malscan


5. Advanced Detection of IoC

• Similarity Unrelocated Module: https://github.com/reverseame/similarity-unrelocated-
module (for Volatility 2.6)
• GNU/GPLv3 license
• Calculate approximate signatures on the modules of a dump: 

• Algorithms: dcfldd, ssdeep, sdhash, TLSH
• A module is an executable file or library of functions loaded in memory

• Allows comparison between modules of different memory dumps
• Undoes the changes made by the operating system (relocation). Two methods :

• Guided De-relocation
• Linear Sweep De-relocation

• More details: M. Martín-Pérez, R. J. Rodríguez,D. Balzarotti, “Pre-processing Memory Dumps to Improve
Similarity Score of Windows Modules”, Computers & Security, vol. 101, p. 102119, 2021, 
https://doi.org/10.1016/j.cose.2020.102119

Unofficial Plugins

https://github.com/reverseame/similarity-unrelocated-module
https://doi.org/10.1016/j.cose.2020.102119


5. Advanced Detection of IoC

• Winesap: https://github.com/reverseame/winesap (for Volatility 2.6)
• AGPLv3 license
• Look for all Windows ASEPs in memory dump
• Binary or unknown registration keys: they are analyzed as PE
• Chains related to usual malware file routes

(%Appdata%,%TMP%,%Temp%, Appdata), 
NTFS ADS, Shells commands
(e.g., rundll32.exe shell32.dll, Shellexecute_rundll)

Unofficial Plugins

• More details: D. Uroz, R. J. Rodríguez, “Characteristics and 
Detectability of Windows Auto-Start Extensibility Points in 
Memory Forensics”, Digital Investigation, vol. 28, p. S95-S104, 
2019, https://doi.org/10.1016/j.diin.2019.01.026

https://github.com/reverseame/winesap
https://doi.org/10.1016/j.diin.2019.01.026


5. Advanced Detection of IoC

• Sigcheck: https://github.com/reverseame/sigcheck (for Volatility 2.6)
• GNU/GPLv3 license
• Verify PE files digitally signed with Microsoft Authenticode
• Two signature methods: embedded (in the PE), by catalog (in external file)
• IMPORTANT: Verify that the executable file that began was original

• If a malware does process hollowing would not be detected with this method
• More details: D. Uroz, R. J. Rodríguez, “On Challenges in Verifying Trusted Executable Files in 

Memory Forensics”, Forensic Science International: Digital Investigation, vol. 32, p. 300917, 2020, 
https://doi.org/10.1016/j.fsidi.2020.300917

Unofficial Plugins

https://github.com/reverseame/sigcheck
https://doi.org/10.1016/j.fsidi.2020.300917


5. Advanced Detection of IoC

LAB SESSION 2
• “wannacry.elf” memory dump
• Follow the laboratory workbook provided on the workshop's website: 

https://webdiis.unizar.es/~ricardo/sbc-2022/malware-memory-
forensics/laboratories/lab2_example_wannacry.pdf

Example: WannaCry

https://webdiis.unizar.es/~ricardo/sbc-2022/malware-memory-forensics/laboratories/lab2_example_wannacry.pdf


6. Development of Own Analysis Tools



6. Development of Own Analysis Tools

LAB SESSION 3
• “alina1G.elf” memory dump
• Follow the laboratory workbook provided on the workshop's website: 

https://webdiis.unizar.es/~ricardo/sbc-2022/malware-memory-
forensics/laboratories/lab3_plugin_development.pdf

https://webdiis.unizar.es/~ricardo/sbc-2022/malware-memory-forensics/laboratories/lab3_plugin_development.pdf


7. Workflows design for
evidence analysis



7. Workflows design for evidence analysis

• Clearly define what you want to obtain
• Search in the plugins of the Vola\lity community if it is already made (the wheel should not be reinvented!)

• Pipeline development
• Python? Bash?
• Muld-threading
• Module extracdon and analysis

• Sandbox, VT, pefile

• Information exchange
• Standard formats:

• JSON, CSV, etc.

• Final analysis report:
• JSON? Markdown?

Workflow Assembly and Information Exchange

https://github.com/volatilityfoundation/community


7. Workflows design for evidence analysis

LAB SESSION 4
• Any memory dump of interest
• Follow the laboratory workbook provided on the workshop's website: 

https://webdiis.unizar.es/~ricardo/sbc-2022/malware-forense-
memoria/laboratorios/lab4_automatizacion_analisis.pdf

• With what is described in the workbook, you have to develop an analysis system for:
• DLLs extraction of a particular process (if provided by parameter) or all DLLS
• Static analysis to measure entropy of the extracted DLLs (with pefile)
• ClamAV execution in the DLLs expected

https://webdiis.unizar.es/~ricardo/sbc-2022/malware-forense-memoria/laboratorios/lab4_automatizacion_analisis.pdf
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Recommended Bibliography

• The Art of Memory Forensics
• Additional material available here

• Practical Malware Analysis. The Hands-On Guide to Dissecting Malicious 
Software

• Malware Analyst’s Cookbook
• Documentación de Volatility 3

https://www.amazon.es/Art-Memory-Forensics-Detecting-Malware/dp/1118825098
https://www.memoryanalysis.net/amf
https://www.amazon.es/Practical-Malware-Analysis-Hands-Dissecting/dp/1593272901/ref=pd_lpo_14_t_1/257-7554497-4540432?_encoding=UTF8&pd_rd_i=1593272901&pd_rd_r=f2c2f1bf-7cf4-4be7-8f8c-e18bc0dd2d6d&pd_rd_w=LhRpi&pd_rd_wg=1A36T&pf_rd_p=1bd89de7-36f2-4034-8d5f-e44968acbf56&pf_rd_r=XGVY206RR1NMEE4SCVSY&psc=1&refRID=XGVY206RR1NMEE4SCVSY
https://www.amazon.es/Malware-Analysts-Cookbook-DVD-Techniques/dp/0470613033
https://volatility3.readthedocs.io/en/latest/



