Evaluation of the Executional Power in Windows
using Return Oriented Programming

Daniel Uroz, Ricardo J. Rodriguez*

@® All wrongs reversed — under CC-BY-NC-SA 4.0 license

ii Zaragoza

1542

Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

May 27, 2021

15th IEEE Workshop on Offensive Technologies

}@@@@I (online)

*Corresponding author: rjrodriguez@unizar.es

rjrodriguez@unizar.es

Outline

Introduction

Definition of the Virtual Language: ROPLANG
Evaluation

Related Work

Conclusions and Future Work

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] wooT'21 2/28

Outline

Introduction

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WwooT'21 3/28

Introduction
Return-Oriented-Programming (ROP) attacks
m A type of code-reuse techniques, introduced in 2007 by Shacham
m Hijacking of the control flow of a victim program without injected code

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOoT'21 4/28

Introduction

Return-Oriented-Programming (ROP) attacks

A type of code-reuse techniques, introduced in 2007 by Shacham
Hijacking of the control flow of a victim program without injected code

|
m Known to be Turing-complete (i.e., performing any arbitrary computation)
m Terminology

B ROP gadgets: (relatively short) code snippets already present in the victim’s memory
address space and ending in an assembly instruction that changes the control flow
B ROP chain: a chain of ROP gadgets

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOoT'21 4/28

Introduction

Return-Oriented-Programming (ROP) attacks

A type of code-reuse techniques, introduced in 2007 by Shacham
Hijacking of the control flow of a victim program without injected code

]
m Known to be Turing-complete (i.e., performing any arbitrary computation)
m Terminology

B ROP gadgets: (relatively short) code snippets already present in the victim’s memory

address space and ending in an assembly instruction that changes the control flow
B ROP chain: a chain of ROP gadgets

b8 89 41 08 c3 mov eax, 0xc3084189
89 41 08 mov [ecx+8], eax
c3 ret

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOoOoT'21 4/28

Introduction

Return-Oriented-Programming (ROP) attacks

A type of code-reuse techniques, introduced in 2007 by Shacham

Hijacking of the control flow of a victim program without injected code

|
m Known to be Turing-complete (i.e., performing any arbitrary computation)
|

Terminology

B ROP gadgets: (relatively short) code snippets already present in the victim’s memory
address space and ending in an assembly instruction that changes the control flow

B ROP chain: a chain of ROP gadgets

esp —
b8 89 41 08 c3 mov eax, 0xc3084189
89 41 08 mov [ecx+8], eax
c3 ret

Result:

0x7c37638d | — pop ecx; ret

0xF13C1A02

0x7c341591 | — pop edx; ret

0xBAADFOOD

0x7c367042 | — xor eax, eax;ret

0x7c34779f | — add eax, ecx;ret

0x7c347£97 | —» mov ebx, eax;ret

ecx=0xF13C1A02,
edx=0xBAADFOOD,
eax=ebx=0xF13C1A02

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOoT’21

4/28

Introduction

How much is the executional power of an adversary?

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOooT'21 5/28

Introduction

How much is the executional power of an adversary?

Research Questions

B How often do ROP gadgets emerge for any arbitrary operation
in real world programs?

[Is it possible to chain gadgets for any desired computation?
Can adversaries build any kind of algorithm using a ROP chain?

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOO0T’'21

5/28

Introduction

How much is the executional power of an adversary?

Research Questions

B How often do ROP gadgets emerge for any arbitrary operation
in real world programs?

[Is it possible to chain gadgets for any desired computation?
Can adversaries build any kind of algorithm using a ROP chain?

Adversary model

m ASLR is not deployed on the target system, or a break is available for ASLR

m CFl protection mechanisms are disabled in the victim program, or
a break is available for CFI protection mechanisms deployed

m The content of the memory address space of the victim program is known

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOooT'21 5/28

Introduction

CONTRIBUTIONS
m Definition of a Turing-complete virtual language, named ROPLaANG

m Quantification of the executional power of an adversary
in Windows 7 and Windows 10 (in their x86 and x86-64 versions)

m The software tool ROP3:

B Takes as input a set of program files and a ROP chain described with ROPLaNG
B Returns the ROP gadgets that make up such ROP chain

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOoOoT'21 6/28

Outline

Definition of the Virtual Language: ROPLANG

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] wooT'21 7/28

Definition of the Virtual Language: ROPLANG

Virtual operations

m Simulated using sequences of instructions of the vulnerable program
conformed by ROP gadgets

m Similar notation to Intel’s assembly notation

B Our language adheres to the Intel x86 syntax

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WwOooT'21 8/28

Definition of the Virtual Language: ROPLANG

Virtual operations

m Simulated using sequences of instructions of the vulnerable program
conformed by ROP gadgets

m Similar notation to Intel’s assembly notation

B Our language adheres to the Intel x86 syntax

Categories of operations

m Arithmetic: addition (add), subtraction (sub), and negation (neg)

m Assighment: assign values to variables (logical registers of the CPU)

Dereference: visit a memory location for reading or writing (1d, st)

Logical: xor, and, or, and not operations

B By De Morgan’s Laws, they can be simplified to an operation {and, or} plus
an operation of the set {xor, not, neg}

Branching: conditional and unconditional

B Conditional branching operations require some tricky steps up front

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WwOooT'21 8/28

Definition of the Virtual Language

Arithmetic operations

Operation

ROP gadgets/Operations

add(dst, src)

add dst, src

clc
dst, src

dst

sub(dst, src)

dst, src

dst, src

dst

neg(dst)

REG1, REG1
sub REG1, dst
mov(dst, REG1)

neg dst

: ROPLANG

The ret instruction (at the end of each ROP gadget) was deliberately omitted

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez]

Definition of the Virtual Language: ROPLANG

Arithmetic operations

Assignment operations

ROP gadgets

Operation
Operation ROP gadgets/Operations
add dst, src
clc
add(dst, src) adc dst, src
inc dst
sub dst, src
clc mov(dst, src)
, ST
sub(dst, src) sbb dst, src
dec dst
xor REG1, REG1
sub REG1, dst
dst !
neg(dst) mov(dst, REG1)
neg dst

mov dst, src

xchg dst, src

xor dst, dst
add dst, src

xor dst, dst
not dst
and dst, src

clc
cmovnc dst, src

stc
cmove dst, src

push src
pop dst

lc(dst, value)

pop dst; value is set in the stack

popad; value is set in the stack
appropriately

The ret instruction (at the end of each ROP gadget) was deliberately omitted

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez]

wooT’21

9/28

Definition of the Virtual Language: ROPLANG

Arithmetic operations

Operation ROP gadgets/Operations

Assignment operations

Operation

ROP gadgets

add dst, src

add(dst, src) adc dst, src

inc dst

sub dst, src

, SIi
sub(dst, src) sbb dst, src

dec dst

xor REGl, REG1
sub REG1, dst

neg(dst) mov(dst, REG1)

neg dst

The ret instruction (at the end of each ROP gadget) was deliberately omitted

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez]

mov(dst, src)

mov dst,

src

xchg dst, src

xor dst,
add dst,

dst
src

xor dst,
not dst
and dst,

dst

src

clc

cmovnc dst, src

stc

cmovc dst, src

push src

pop dst

lc(dst, value)

pop dst; value is set in the stack

popad; value is set in the stack
appropriately

Dereference operations

Operation

ROP gadgets

1d(dst, src) mov dst, [src]

st(dst, src)

mov [dst], src

wooT’21

9/28

Definition of the Virtual Language: ROPLANG

Arithmetic operations Assignment operations
Operation ROP gadgets
Operation ROP gadgets/Operations mov dst, src
add dst, src xchg dst, src
add(dst, src) cle xor dst, dst
adc dst, src add dst, src
inc dst xor dst, dst
sub dst, src not dst
clc mov(dst, src) and dst, src
sub(dst, src) sbb dst, src clc
dec dst cmovnc dst, src
xor REGl, REG1 stc
neg(dst) sub REG1, dst cmovc dst, src
mov(dst, REG1) push src
neg dst pop dst
pop dst; value is set in the stack
X . leddst, value) popad; value is set in the stack
Loglcal operatlons appropriately
Operation ROP gadgets
xor(dst, src) =xor dst, src .
and(dst, sty and dst. src Dereference operations
or(dst, src) or dst, src Operation ROP gadgets
a not dst 1d(dst, src) mov dst, [src]
not (dst) xor dst, OxFFFFFFFF st(dst, src) mov [dst], src

The ret instruction (at the end of each ROP gadget) was deliberately omitted

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOO0T’21

9/28

Definition of the Virtual Language: ROPLANG

Comparison operations
Operation Operation
sub(dst, src)

neg(dst)
ltc(dst, src) sub(dst, src)

eqc(dst, src)

Conditional branching
Operation ROP gadgets/Operations
1c(REG1, 0)
Comparison operation cop(dst, src)
adc dstge, REGL
1c(REG1, 0)

gcf(dstor, cop(dst, src)) Comparison operation cop(dst, src) Unconditional branching

sbb dstor, REGL Operation ROP gadgets/Operations

neg(dstcr)
Tc(dstor, 0) jup(dst, &) icﬁizbé)
Comparison operation cop(dst, src) P

rcl dster, 1

1c(REG1, 6)

1sd(dstgr, 6) neg(dstcr)
and(dstcr, REG1)
spa(src) add(REG_SP, src)
sps(src) sub(REG_SP, src)

The ret instruction (at the end of each ROP gadget) was deliberately omitted

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOoT21

10/28

Definition of the Virtual Language: ROPLANG

Some remarks
m Non-exhaustive list of ROP gadgets
m Some operations are virtual operations, while others are ROP gadgets

m Assumption: no harmful side effects occur between sequences of virtual
operations

ROPLaNG is Turing-complete

m Simulation of a classic Turing machine with ROPLanG in the paper

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOooT21 11/28

Definition of the Virtual Language: ROPLANG
The ROP3 tool

ROP3
m Developed in Python, relying on Capstone to disassemble input files
m Supports the virtual operations that make up ROPLaANG

m Defining operations using YAML syntax

B Custom operations are possible (as a single or as multiple YAML files)
B Logical CPU registers and register masks can be specified
B Arbitrary values can also be set

m Similar approach to the Galileo algorithm to search for ROP gadgets

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOoOoT21 12/28

Definition of the Virtual Language: ROPLANG
The ROP3 tool — examples of YAML file

Add values

1
> add: ; ﬁoﬁpT value
3 # add dst, src
4 3 # not dst
- . 4 -
5 - mnemonic: add .
5 - mnemonic: not
6 op1: dst]
6 op1: dst
7 op2: src 7
8
9 # cle g # xor dst, src (src = OxFFFFFFFF)
10 # adc dst, src .
10 - mnemonic: xor
1" -
- 11 op1: dst
12 - mnemonic: clc
. 12 op2:
13 - mnemonic: adc
14 op1: dst 13 reg: src
P 14 value: OXFFFFFFFF
15 op2: src

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOT21 13/28

Definition of the Virtual Language: ROPLANG
The ROP3 tool — construction of ROP chains

m Specified by virtual operations of ROPLaNG

m Search algorithm:

Finds all gadgets that comply with each ROPLaNG operation in the chain

Builds a tree structure, considering the order of operations defined in the chain

Resolves data dependencies between operations by traversing the tree recursively
in depth-first order with backtracking

m Handling of side effects in the chain: TODO

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOT21 14/28

Definition of the Virtual Language: ROPLANG
The ROP3 tool — construction of ROP chains

m Specified by virtual operations of ROPLaNG

m Search algorithm:

Finds all gadgets that comply with each ROPLaNG operation in the chain

Builds a tree structure, considering the order of operations defined in the chain

Resolves data dependencies between operations by traversing the tree recursively
in depth-first order with backtracking

m Handling of side effects in the chain: TODO

ROP chain (input) ROP gadgets found Tree structure and backtracking

pop edx ; ret
pop edi ; ret

lc(regl)

neg ebx ; ret

neg(reg2) neg ecx ; ret

and ecx, eax ; ret

and(reg2, regl) and ecx, edx ; ret

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOoT’21

14/28

Definition of the Virtual Language: ROPLANG
The ROP3 tool

m Released under the GNU/GPLvV3 license
m Accepts many parameters:

B Maximum byte size of ROP gadgets
B Gadget final instructions (ret, jmp, retf)
..

m Is also a Python3 library

https://github.com/reverseame/rop3

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOoT21 15/28

https://github.com/reverseame/rop3

Outline

Evaluation

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOT21 16/28

Evaluation

Test-bed
m Subset of DLLs contained in the KnownD11s system object
B Common DLLs across all the versions of Windows considered for the experimentation
m Windows on top of Oracle VirtualBox hypervisor, 32-bit and 64-bit versions

B Windows 10 Education 10.0.14393 Build 14393 (32-bit) and
Windows 10 Pro 1703 Build 15063.726 (64-bit)
B Windows 7 Professional 6.1.7601 Service Pack 1 Build 7601

Regarding the plots...

m Heatmap of the occurrence (in %) for each operation within each DLL
m Annotations show the number of results

B Most significant digit and order of magnitude when the number of results is > 10*

m DLLs sorted by byte size

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOoOoT21 17/28

Evaluation

Configuration of ROP3

m 10-byte-length ROP gadgets

m Only ret as final instruction

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOT21 18/28

Evaluation

Configuration of ROP3

m 10-byte-length ROP gadgets
m Only ret as final instruction

ROP gadgets made up of the same ins. sequence: counted only once

Only the current definitions of ROPLaNnG operations

ROP gadgets made up of several instructions are treated as single gadgets

Additional operations considered

B spa-4, spa-8, spa-16, and spa-32
B gcf divided into gcf-eqc and gcf-1tc

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOT21 18/28

Evaluation
Prevalence of ROP Gadgets

Windows 7 SP1 32-bit Windows 10 32-bi
NORMALIZ. 411 NORMALIZ. 411
PSAPLDLL 1 2 2 PSAPIDLL A a0 0oa
WSIall . . N1 a1l
sachost.all ¥ 7 a4 w2 o2 IMAGEHLP a1
Tos2an R 3 woe ouon 0 08 gai32.d11 03
IAGERP a1l W 15 s e »owoa e s fioiza a11
W25dl B o mWoeonome 2 wom \ SHLUAPY d11
WLDAP32.d “ Ssonos s 1w 22 VLDAP32.d11
ghisz.al 1 2 o 2 ditxaps dll
difxapi.dll ISt 2 . 06 ¥52.32.d11 0.6
SHUAPL.al w0 3 e
oLz ® 0 ! advapisz. a1
Clbcata.dll 1 32 Clbcata.dil
OLEAUTSS. " v
advepizzan m 2 \ 04 Forne13s i1 04
rpertd.dll 4B @ ' COMDLG32.d11
e 2 o VCRT 11
usersz.all 0 » Py Tporta all
CTFal 2o @ ot R Sloza a1 .
kernel32.dll M4 & X - 02 MSCTF.d11 02
airan (99 v users2 dll
os2an s 0w 5 i i1
Setupapi.d1l 0 2 i Setupaps 411
2 RN -] -00 SHELLD: . d11 Lo
>
S] D F
‘Windows 10 64-bit
NORMALIZ. 10 NORMALIZ. 10
PSAPI s 1 2 PSAPI s 2
NS T : s 2 :
IHAGEHLP . ' Sex 66 B IAGEHLP 1] 7 2 : 1 2
ochost. H s owmoss s % 3 i
Tz, ‘ 7 owwonowM 08 fiy 3 5 os w o
us232 P 2w on w2 = P o 04 2 =
iDAP3z. 1l 1 4 Fowoae oo itaaps . v s "
gdis2.dll 3 1S onowowon 4 VLDAPS2.d s v s E
suAPT.all w4 @ S oo oo 06 s 35,4 i N2 o 0
difrapi.dll M W PR E sochos.d P o 3 ' 3 2
codicszan m B Womom ooz os 5 VSVCRT 411 D0 4 4 “ g -
Clbcatq.all W 13 9w oa 2 Clbcatq.dil W % 3 o ERE
ASveRt o %% im 6w EE Ll K advapis.dll ;s 1 A 2
OLERUTS: “ Mo m e m s : 04 Korne1s2.dll M4 MW 1% %% ') 0
3 N Woema o o in OLEAVT32.a] “@ 3w 2w
users2. » s oS w4 ' 2w COMDLGS3 11 48 11§ Dk e "
MSCTF. n @ s w e 8 s F Tporva.dll 48 % 3 @ 8 3 on »
& » 005 e 5 0w » W ow »ow o = I
rpertd. - m e v 4+ » o . 02 oled2.dll M B @ n 49 2 % 02
tdll w0 e s o N N EN Y userss.d n Wty %
3 u a1l 1 0 - EXEN Em 0
01032 s : » Setupapi.dll M 23 o Y
HELL: - - e oo SHELL32.d ENEE Enc o EE Lo
o P e A TR I S R
£ 58X IEF FEFSF P eSS S SRS PP SIS
R & LSS

Zaragoza

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOoT21 19/28

Evaluation
Prevalence of ROP Gadgets — Discussion
m Branching virtual operations are the least frequent, in both architectures
B No results for unconditional branching in 64-bit systems

m Different results in the other virtual operations

B The larger the DLLs, the greater the number of results (as expected)

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOT21 20/28

Evaluation
Prevalence of ROP Gadgets — Discussion

m Branching virtual operations are the least frequent, in both architectures
B No results for unconditional branching in 64-bit systems

m Different results in the other virtual operations
B The larger the DLLs, the greater the number of results (as expected)

m The number of virtual operations in Windows 10 is always greater than
in Windows 7, and in 64-bit than in 32-bit

B May be motivated due to differences in DLL sizes

m NOTE: in 32-bit assembly, the instructions can have references to memory
addresses that are randomized by ASLR. We have considered each DLL
with its base address. Hence, these results:

B Are highly dependent on the base addresses of the DLLs
B Can change when the base addresses are different

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOT21 20/28

Evaluation
Prevalence of ROP Gadgets — Discussion

m Branching virtual operations are the least frequent, in both architectures
B No results for unconditional branching in 64-bit systems

m Different results in the other virtual operations
B The larger the DLLs, the greater the number of results (as expected)

m The number of virtual operations in Windows 10 is always greater than
in Windows 7, and in 64-bit than in 32-bit

B May be motivated due to differences in DLL sizes

m NOTE: in 32-bit assembly, the instructions can have references to memory
addresses that are randomized by ASLR. We have considered each DLL
with its base address. Hence, these results:

B Are highly dependent on the base addresses of the DLLs
B Can change when the base addresses are different

How does ASLR affect the prevalence of ROP gadgets
on 32-bit Windows systems?

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOT21 20/28

Evaluation
Simulating a Turing machine — intermediate mov

m Very limited results for conditional and unconditional operations

B Mandatory operations to simulate a classic Turing machine

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOoT21 21/28

Evaluation
Simulating a Turing machine — intermediate mov

m Very limited results for conditional and unconditional operations
B Mandatory operations to simulate a classic Turing machine
m IDEA: Relax data dependency constraints on certain operations by
adding intermediate assignment operations (like mov(regl, dst))

B High probability of finding the mov(regl, dst) operation
B By contrast, the length of the ROP chain will increase and more side effects are likely to

occur

m Example of extension: eqc(dst, src)

sub(dst, src) = sub(dst, src)
neg(dst) mov(regl, dst)
neg(regl)

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOoT21 21/28

Evaluation
Simulating a Turing machine — intermediate mov

m Very limited results for conditional and unconditional operations

B Mandatory operations to simulate a classic Turing machine

m IDEA: Relax data dependency constraints on certain operations by
adding intermediate assignment operations (like mov(regl, dst))

B High probability of finding the mov(regl, dst) operation
B By contrast, the length of the ROP chain will increase and more side effects are likely to
occur

m Example of extension: eqc(dst, src)

sub(dst, src) = sub(dst, src)
neg(dst) mov(regl, dst)
neg(regl)

B neg, eqc, gcf, 1sd, and jmp operations

B Extended with the use of intermediate mov between their operations

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOoT21 21/28

Evaluation
Simulating a Turing machine

Windows 7 SP1 32-bit (with an intermediate zov)

NORMALIZ.d11
PSAPI.DLL

sIdall 6
sechost.dll ¥ 7 4w
DoE2 Al 2 5
IMAGEHLP A1l 186 15 415 o »
us232.d11 B 2 s

S PP PP
e 0,»» £ .;?
& &

‘Windows 7 SP1 64-bit (with an intermediate zov)

NORMALIZ. 411
PSAPI.DLL Ls ' -

NSI 1) s owos o203 :
IMAGEHLPd11 Lo e D s 6 36 s ' 20
sochost.d11 s nowmomos s onoas i

T3 a1 0 RN 0
vs2.32.d11 2o s e v oW om0 o
VLDAP32 d11 + - n =
gdi32.d1l 15 n]
SHLWAPT.d11 » » 2
difxapi dll n » W
cOMDLG32. 11 i » »
clbcatq.d1l n - =
HSVCRT.d1l e % W -

UT32.a11 4 & » n

advapi32.dll W 2 - W
ser32.dll 19 “ i
NSCTF.11 8 1 2 x

xernels2 1l 4 ¥ El b
crtd.dil - F o
el dll 7 oSN e o

Setupapi dll 2 e
oles2.dll (M2 G110t 3 £l
ELL32 a11 »

S I

Executional Power

intermediate mov

-00

-00

NORMALIZ.
PSAPI
NSI
MAGEHLP

Setupapi
SHELLS2.

NORMALIZ
PSAPT

sechost
MSVCRT

clbcatq.

dvapi3:

an
DI

g

kernel32

Setupapi
SHELLS2.

‘Windows 10 32-bit (with an intermed

te mov)

: . os
o5
oo -~
2 . o
=
- 0
D -y
N
§
y
os
. e 04
gl ki
2 e
e e
ot -
e 0
2 5
w [
E s
= S -0g
PSPPI PGP IS PRSP SIS
s
& &
Lm\q()/,\

in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez]

Evaluation
Simulating a Turing machine — Discussion

m More results on 32-bit systems, still discrete results on 64-bit systems
B No results yet for unconditional operation on Windows 7 SP1 64 bits

m A sophisticated link of other operations increases the probability of
simulating any operation when it is not found directly

B Simple extension of virtual operations supported by ROP3

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOT21 23/28

Outline

Related Work

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOT21 24/28

Related Work

m Tools focused on detection and mitigation ROP attacks
B DROP, ROPDefender, ROPGuard, kBouncer (to name a few)

m Tools more focused on offensive technology
B ROPInjector, Frankenstein, ROPOB, RopSteg, SpecROP

m Generation and analysis of ROP chains

B deROP, SROP, ROPEMU, AMOCO
B ropper, ROPgadget, ropium

Our approach

m Simpler solution
m Easy extension to search for semantically equivalent operations

m Automatic generation of ROP chains backing in ROPLanG operations

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOT21 25/28

Outline

Conclusions and Future Work

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOT21 26/28

Conclusions and Future Work

m Defined a virtual language, dubbed ROPLANg,
whose operations are mapped to ROP gadgets

m Developed ROP3, a tool that allows a user to
find ROP gadgets and build a ROP chain specified by ROPLanG

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOoT21 27/28

Conclusions and Future Work

m Defined a virtual language, dubbed ROPLANg,
whose operations are mapped to ROP gadgets

m Developed ROP3, a tool that allows a user to
find ROP gadgets and build a ROP chain specified by ROPLanG

m Any virtual operation is found, the branching operation ones
being the least frequent

B Careful linking of virtual operations can be performed to find operations
that are not found directly

m The size of the program file clearly impacts the prevalence of ROP gadgets

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOoT21 27/28

Conclusions and Future Work

m Defined a virtual language, dubbed ROPLANg,
whose operations are mapped to ROP gadgets

m Developed ROP3, a tool that allows a user to
find ROP gadgets and build a ROP chain specified by ROPLanG

m Any virtual operation is found, the branching operation ones
being the least frequent

B Careful linking of virtual operations can be performed to find operations
that are not found directly

m The size of the program file clearly impacts the prevalence of ROP gadgets

m Eliminate side-effects that can occur with some ROP gadgets

m Evaluate the executional powers in other operating systems

Executional Power in Windows using ROP [CC BY-NC-SA 4.0 © D. Uroz, R. J. Rodriguez] WOOoT21 27/28

Evaluation of the Executional Power in Windows
using Return Oriented Programming

Daniel Uroz, Ricardo J. Rodriguez*

@® All wrongs reversed — under CC-BY-NC-SA 4.0 license

ii Zaragoza

1542

Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

May 27, 2021

15th IEEE Workshop on Offensive Technologies

}@@@@I (online)

*Corresponding author: rjrodriguez@unizar.es

rjrodriguez@unizar.es

	Introduction
	Definition of the Virtual Language: ROPLang
	Evaluation
	Related Work
	Conclusions and Future Work
	

