Automating Data-Throttling Analysis for Data-Intensive Workflow

Ricardo J. Rodríguez, Rafael Tolosana-Calasanz, Omer F. Rana {rjrodriguez, rafaelt}@unizar.es, o.f.rana@cs.cardiff.ac.uk

Universidad de Zaragoza Zaragoza, Spain

Cardiff University Cardiff, United Kingdom

May 15th, 2012

CCGrid'12: 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing Ottawa, Canada

Motivation

Outline

1 Motivation

- Knowing the problem
- Data-movement policies
- The goal & our approach

2 Background

- Petri nets
- From DAG to PN
- Slack Concept

3 Automating Data-Throttling Analysis

Experiments and Results

- Impact on the Workflow Makespan
- Input Buffers and Network Bandwidth Usage

Related Work

Conclusions and Future Work

Motivation (I): data movement issue

Scientific Workflows

- Control/data flow graph
 - Set of tasks
 - Dependencies

Motivation (I): data movement issue

Scientific Workflows

- Control/data flow graph
 - Set of tasks
 - Dependencies

Data-Intensive Workflows

- Data workload ≥ computational workload
- How to deal with this?
 - Minimise data movement
 - Move data via higher capacity links as fast as possible

Motivation Data-movement policies

Motivation (II): data-movement policies

Pipeline workflow

• Transmit as fast as possible \rightarrow OK!

Motivation (II): data-movement policies

Pipeline workflow

• Transmit as fast as possible \rightarrow OK!

Directed Acyclic Graph workflow

- Transmit as fast as possible \rightarrow WRONG!
- $\bullet \ \ Cluster \ tasks \rightarrow minimise \ data \\ movement$
- Problems may arise
 - Isolation view: networking + buffering (merge tasks)
 - In-the-large: harmful (finite buffer capacity → cannot be reused)

The goal

- Balance workflow paths...
- ... eliminating unnecessary bandwidth usage

The goal

- Balance workflow paths...
- ... eliminating unnecessary bandwidth usage
 - Efficient buffer usage
 - Efficient network bandwidth usage

The goal

- Balance workflow paths...
- ... eliminating unnecessary bandwidth usage
 - Efficient buffer usage
 - Efficient network bandwidth usage

Open question: WHAT strategy should I use?

The goal

- Balance workflow paths...
- ... eliminating unnecessary bandwidth usage
 - Efficient buffer usage
 - Efficient network bandwidth usage

Open question: WHAT strategy should I use?

Our approach

• Automatically derive values for data-throttling

1542

(AKD

The goal

- Balance workflow paths...
- ... eliminating unnecessary bandwidth usage
 - Efficient buffer usage
 - Efficient network bandwidth usage

Open question: WHAT strategy should I use?

Our approach

- Automatically derive values for data-throttling
- Directed Acyclic Graphs (DAGs) \rightarrow Petri nets (performance model)
- Analysis on Petri net model (explained later :))

1542

Outline

• Knowing the problem

- Data-movement policies
- The goal & our approach

2 Background

- Petri nets
- From DAG to PN
- Slack Concept

3 Automating Data-Throttling Analysis

Experiments and Results

- Impact on the Workflow Makespan
- Input Buffers and Network Bandwidth Usage

Related Work

Conclusions and Future Work

Background

Petri nets

Background (I): Petri nets (PNs)

Background (I): Petri nets (PNs)

- Mathematical formalism
- Places (circles, p_X)
- Transitions (bars, t_X). Associated delay
 - Immediate ($\delta_{t_X} = 0$)
 - Timed (δ_{t_X} exponential distribution \rightarrow Stochastic Petri Nets)
- Tokens (black dots)
- Directed arcs
 - Place \rightarrow Transition
 - $\bullet \ \ {\sf Transition} \rightarrow {\sf Place}$
- Initial marking: no. tokens on places

Background (I): Petri nets (PNs)

- Mathematical formalism
- Places (circles, p_X)
- Transitions (bars, t_X). Associated delay
 - Immediate ($\delta_{t_X} = 0$)
 - Timed (δ_{t_X} exponential distribution \rightarrow Stochastic Petri Nets)
- Tokens (black dots)
- Directed arcs
 - Place \rightarrow Transition
 - $\bullet \ \ {\sf Transition} \rightarrow {\sf Place}$
- Initial marking: no. tokens on places
- Enables modelling
 - Concurrency
 - Synchronisation

Background (II): From DAG to PN

Transforming from a DAG to a PN

- Computation task \rightarrow place + timed transition
 - Delay equal to computation task time

zaragoza

(AERDYD)

Background (II): From DAG to PN

Transforming from a DAG to a PN

- Computation task \rightarrow place + timed transition
 - Delay equal to computation task time

Background (II): From DAG to PN

Transforming from a DAG to a PN

- Computation task \rightarrow place + timed transition
 - Delay equal to computation task time

Background (II): From DAG to PN

Transforming from a DAG to a PN

- Computation task \rightarrow place + timed transition
 - Delay equal to computation task time
- \bullet Transmission link \rightarrow place + timed transition

• Delay equal to transmission time: $\delta_t = \frac{data \ size \ transmitted}{link \ bandwidth}$

∠aragoza

1542

AERD

Slack Concept

Background (III): Slack concept (1)

Background

Slack Concept

Background (III): Slack concept (1)

For human beings: an example

 δ execution time; tx transmission time

R.J. Rodríguez et al. Automating Data-Throttling Analysis for Data-Intensive Workflow CCGrid'12 9 / 25

Slack Concept

Background (III): Slack concept (2) For tough guys/gals – Maths fans

- Upper performance bound vs. exact analysis
 - Exact analysis needs reachability graph \rightarrow NP-hard problem

Background (III): Slack concept (2) For tough guys/gals – Maths fans

- Upper performance bound vs. exact analysis
 - $\bullet~\mbox{Exact}$ analysis needs reachability graph $\rightarrow~\mbox{NP-hard}$ problem
- Use of Linear Programming (LP) techniques \rightarrow polynomial complexity
- Based on Petri net theory: tight marking (m̃) [p. 3 on the paper]
 Further reading: google "RJ-EPEW-10"

$$\tilde{\mathbf{m}}(p) \ge \delta(p^{\bullet}) \cdot \Theta \to \mathbf{m}(p) = \delta(p^{\bullet}) \cdot \Theta + \mu(p)$$
(1)

 $\delta(p^{\bullet})$ delay of transition after place p; Θ inverse of execution time of slowest path; $\mu(p)$ slack of place p

Outline

Motivation

- Knowing the problem
- Data-movement policies
- The goal & our approach

2) Background

- Petri nets
- From DAG to PN
- Slack Concept

3 Automating Data-Throttling Analysis

- Experiments and Results
 - Impact on the Workflow Makespan
 - Input Buffers and Network Bandwidth Usage

Related Work

Conclusions and Future Work

- Inputs: Performance estimation (i.e., DAX annotations) + PN-based model
- Outputs: Data-throttling values + Analysis results

- Inputs: Performance estimation (i.e., DAX annotations) + PN-based model
- Outputs: Data-throttling values
 + Analysis results
- 4 steps
 - Compute slack values
 - Oluster slacks
 - Why? In the next slide!

- Compute data-throttling values
- Performance analysis
 - With and w/out data-throttling

542

Automating Data-Throttling Analysis (II)

The need of clustering slacks

- Influence between slacks
- Order of adjusting IS IMPORTANT

Automating Data-Throttling Analysis (II)

The need of clustering slacks

- Influence between slacks
- Order of adjusting IS IMPORTANT
- From output to input
- Cluster slacks, then:

1542

- Compute data-throttling values
- Recompute slacks values

Zaragoza

Automating Data-Throttling Analysis (II)

The need of clustering slacks

- Influence between slacks
- Order of adjusting IS IMPORTANT
- From output to input
- Cluster slacks, then:
 - Compute data-throttling values
 - 2 Recompute slacks values

Zaragoza

PRIFYSGOL

AERDY

In the example:

ÏĨĨ

1542

- $\{ \mu_{3,5}, \mu_{1,5} \}$
- **2** μ_{1,3}

Automating Data-Throttling Analysis (III)

Deriving data-throttling values from slack

μ(p) → some delay may be added on the path
tx_{new} = tx_{old} + α, α = μ(p)/Θ

Automating Data-Throttling Analysis (III)

Deriving data-throttling values from slack

$$BW_{new} = rac{1}{rac{1}{BW_{old}} + rac{\mu(p)}{\Theta \cdot data \ size}}$$

 μ slack; *tx* transmission time;

 $\boldsymbol{\Theta}$ inverse of execution time of slowest path

(2)

Automating Data-Throttling Analysis (IV)

Applying to an example

Recall: slacks on synchronisation points

Universidad

Zaragoza

......

1542

^ARDIF

- BW=100Mbps, latency $1e^{-4}s$
- Data-sets equal to 10MiB
- Dedicated network topology

Automating Data-Throttling Analysis (IV)

Applying to an example

Recall: slacks on synchronisation points

- BW=100Mbps, latency $1e^{-4}s$
- Data-sets equal to 10MiB
- Dedicated network topology

- Slowest path: $2 \rightarrow 5 \rightarrow 6$
- Slacks: μ_{1,4}, μ_{3,6}, μ_{4,6}

Automating Data-Throttling Analysis (IV)

Applying to an example

Recall: slacks on synchronisation points

Makespan: 5.6779 seconds

- Slowest path: $2 \rightarrow 5 \rightarrow 6$
- Slacks: μ_{1,4}, μ_{3,6}, μ_{4,6}

- BW=100Mbps, latency $1e^{-4}s$
- Data-sets equal to 10MiB
- Dedicated network topology

Automating Data-Throttling Analysis (IV)

Applying to an example

Recall: slacks on synchronisation points

Makespan: 5.6779 seconds

• Slowest path: $2 \rightarrow 5 \rightarrow 6$

- Slacks: $\mu_{1,4}, \mu_{3,6}, \mu_{4,6}$
 - $1 \rightarrow 4$ adjust to 28.57%
 - $3 \rightarrow 6$ adjust to 35.15%
 - $4 \rightarrow 6$ adjust to 44.55%

- BW=100Mbps, latency $1e^{-4}s$
- Data-sets equal to 10MiB
- Dedicated network topology

Automating Data-Throttling Analysis (IV)

Applying to an example

Assumptions

- BW=100Mbps, latency $1e^{-4}s$
- Data-sets equal to 10MiB
- Dedicated network topology

Recall: slacks on synchronisation points

- Slowest path: $2 \rightarrow 5 \rightarrow 6$
- Slacks: $\mu_{1,4}, \mu_{3,6}, \mu_{4,6}$
 - $1 \rightarrow 4$ adjust to 28.57%
 - $3 \rightarrow 6$ adjust to 35.15%
 - $4 \rightarrow 6$ adjust to 44.55%

Outline

Motivation

- Knowing the problem
- Data-movement policies
- The goal & our approach

2) Background

- Petri nets
- From DAG to PN
- Slack Concept

Automating Data-Throttling Analysis

- Experiments and Results
 - Impact on the Workflow Makespan
- Input Buffers and Network Bandwidth Usage

Related Work

Conclusions and Future Work

Experiments and Results (I): Description

Experiments and Results (I): Description

Montage Workflow – 5inputs

 Performance estimation from DAX (Pegasus Wf System)

17 / 25

Experiments and Results (I): Description

- Montage Workflow 5inputs
- Performance estimation from DAX (Pegasus Wf System)
- Network topologies assumed:
 - Single vs. dedicated data-link (throttling in dedicated)

17 / 25

Experiments and Results (I): Description

- Montage Workflow 5inputs
- Performance estimation from DAX (Pegasus Wf System)
- Network topologies assumed:
 - Single vs. dedicated data-link (throttling in dedicated)

Tools used

- Slack computation: MATLAB
- Performance analysis: SimGrid

Experiments and Results (I): Description

- Montage Workflow 5inputs
- Performance estimation from DAX (Pegasus Wf System)
- Network topologies assumed:
 - Single vs. dedicated data-link (throttling in dedicated)

Tools used

- Slack computation: MATLAB
- Performance analysis: SimGrid

Experiments performed

- Impact on makespan
- Input buffers & net BW usage

Lalayuza

1542

CAERDY

Experiments and Results (II): Experiments (1)

Impact on the Workflow Makespan

Network topology	Network bandwidth		
	10Mbps	100Mbps	1Gbps
Single output	193.20 <i>s</i>	61.18 <i>s</i>	47.98 <i>s</i>
PP without BW throttling	153.15 <i>s</i>	57.17 <i>s</i>	47.58 <i>s</i>
PP with BW throttling	153.32 <i>s</i>	57.21 <i>s</i>	47.58 <i>s</i>

- Data-throttling looses (insignificantly)
- Correlation <u>data transmission</u> (as indicated by Park & Humphrey) <u>computation</u>
 - Verified by our results

R.J. Rodríguez et al. Automating Data-Throttling Analysis for Data-Intensive Workflow CCGrid'12 18 / 25

Input Buffers and Network Bandwidth Usage

Experiments and Results (II): Experiments (2)

Input Buffers and Network Bandwidth Usage - some plots

• Data-throttling has great impact on input buffers • Outperforms both other topologies

R.J. Rodríguez et al. Automating Data-Throttling Analysis for Data-Intensive Workflow CCGrid'12 19 / 25

Related Work

Outline

Motivation

- Knowing the problem
- Data-movement policies
- The goal & our approach

2 Background

- Petri nets
- From DAG to PN
- Slack Concept

3 Automating Data-Throttling Analysis

Experiments and Results

- Impact on the Workflow Makespan
- Input Buffers and Network Bandwidth Usage

Related Work

Conclusions and Future Work

Related Work

- PNs already used in scientific workflow community
 - GWorkflowDL, GridFlow, FlowManager
- Overhead analysis (Nerieri et al.)
 - Load imbalance + data movement
- Data throttling issue (Park & Humphrey)

1542

Related Work

- PNs already used in scientific workflow community
 - GWorkflowDL, GridFlow, FlowManager
- Overhead analysis (Nerieri et al.)
 - Load imbalance + data movement
- Data throttling issue (Park & Humphrey)
- Performance analysis
 - Hybrid Bayesian-neural network (Duan et al., predicts execution time of tasks)
 - Parametrised PN-based model (Tolosana-Calasanz et al.)
- Structural analysis (Van der Alst & Van Hee)
 - WF-nets
 - Operations: sequence, choice, synchroniser, fork, merge
 - Analysis: correctness, deadlock analysis, liveness

(AERDY

Nice work, but...

How can I use this *fancy* approach?

Nice work, but...

How can I use this *fancy* approach?

Workflows characteristics

- Synchronisation points/merge tasks
- DAX (DAG in XML format) \rightarrow PNML (PN in XML format)
 - Automatic transformation

Nice work, but...

How can I use this *fancy* approach?

Workflows characteristics

- Synchronisation points/merge tasks
- DAX (DAG in XML format) \rightarrow PNML (PN in XML format)
 - Automatic transformation

<pre>k?xml version="1.0" encoding="UTF-8"?> <l 2008-09-24t14:28:09-07:00="" generated:=""> <l [7?]="" by:="" generated="" shishir=""> <l [7?]="" by:="" generated="" shishir=""> <adog 1.0"="" ?="" childcount="; <l part 1: list of all referenced files (may be empty)> <l-> part 2: definition of all jobs (at least one)> <job id=" dax"="" encoding="iso-8859-1" file="cellsa-toldex=00000e-citb20000e-citb20000e-titb2000e-titb200e-titb2000e-titb2000e-titb2</th><th><pre>k?xml version=" filecount="0" http:="" id08000"="" index="0" jobcount="25" link="input" name="http://powers" nomespace="Montage" pegasus.isi.edu="" pi="" register="true" schema="" thtp:="" true"="" trues="" uses="" xmln="http://pegasus.isi.edu/schema/DAX" xmlns:xsi="http xsi:schemaLocation="> <pre>cpnml> <net id="Net-One" type="P/T net"> <pre>cplace id="P0"> <pre>cgraphics> <position x="180.0" y="50.0"></position> <name> <sulue>P0 <graphics> <offset x="-15.0" y="15.0"></offset> </graphics> <place-transitiontype> <value>D</value> </place-transitiontype></sulue></name></pre></pre></net></pre></adog></l></l></l></pre>	
<pre></pre>	<pre><place-transitiontype> <value>D</value> </place-transitiontype> <showlabel> <position1>1</position1> <position2>@</position2> <position3>@</position3></showlabel></pre>
R.J. Rodríguez et al. Automating Data-Throttling Anal	lysis for Data-Intensive Workflow CCGrid'12 22 / 25

Outline

Motivation

- Knowing the problem
- Data-movement policies
- The goal & our approach

2 Background

- Petri nets
- From DAG to PN
- Slack Concept

3 Automating Data-Throttling Analysis

Experiments and Results

- Impact on the Workflow Makespan
- Input Buffers and Network Bandwidth Usage

Related Work

Conclusions and Future Work

Conclusions and Future Work

Conclusions and Future Work

Conclusions

- Transfer as-fast-as-possible is not always the best option
 - Network bandwidth misuse
 - Input buffer misuse

Conclusions and Future Work

Conclusions and Future Work

Conclusions

- Transfer as-fast-as-possible is not always the best option
 - Network bandwidth misuse
 - Input buffer misuse
- Strategy for computing data-throttling values proposed
 - Main drawbacks
 - Needs previous performance information
 - Scalability

Future Work

- Test in more realistic environments
- Extend to other workflows
- Improve strategy computation (reduce its complexity)

1542

(A^ERDY

Automating Data-Throttling Analysis for Data-Intensive Workflow

Ricardo J. Rodríguez, Rafael Tolosana-Calasanz, Omer F. Rana {rjrodriguez, rafaelt}@unizar.es, o.f.rana@cs.cardiff.ac.uk

Universidad de Zaragoza Zaragoza, Spain

Cardiff University Cardiff, United Kingdom

May 15th, 2012

CCGrid'12: 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing Ottawa, Canada