Modelling and Analysing Resilience as a Security Issue within UML

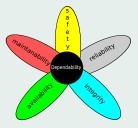
Ricardo J. Rodríguez, José Merseguer and Simona Bernardi {rjrodriguez, jmerse}@unizar.es, bernardi@di.unito.it

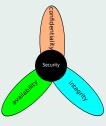
Universidad de Zaragoza Zaragoza, Spain

Università di Torino Torino, Italy

15th April 2010

SERENE'10: 2nd International Workshop on Software Engineering for Resilient Systems Birkbeck College (London, United Kingdom)

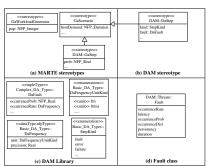

- Introduction
- 2 Background
- SecAM profile
 - Resilience package
 - Building the profile
- Example
 - System physical view and class diagram
 - UML state-charts
- Obtaining a formal model
 - Conversion of UML-SC into Petri nets
 - Discussion of the obtained Petri net
- © Experiments and results
 - Experiments
 - Results
 - Discussion of results
- Related work and conclusions
 - Related work
 - Conclusions and future work


Introduction (I)

- Security requirements: not ever globally considered
- Broad and heterogeneous field (hardware issues, coding bugs...)
- Non-functional properties (NFPs)
- Necessity of common framework to deal with such heterogeneity
- UML: well-known solution and comprehensive modelling language
- Tailored for specific purposes: profiling
- MARTE profile
 - Performance and schedulability analysis for RT and embedded systems
- Dependability and Analysis Modelling (DAM), non-standard profile
 - The same for dependability NFPs
- MARTE + DAM: performance and/on dependability requirements
 - → enlighten for security specification?

Introduction (II)

Relation between dependability-security



- Security specification ⊂ MARTE-DAM framework
- MARTE-DAM: stereotypes and tagged values to express NFPs
 - Attached to those UML model elements they affect
- Security Analysis and Modelling (SecAM) profile \rightarrow security NFPs

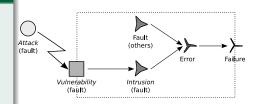
Background

MARTE: Modelling and Analysis of RT Embedded systems

- UML lightweight extension
- Provides support for schedulability and performance analysis
- NFPs with VSL (Value Specification Language) syntax
- Design model element extending its semantic

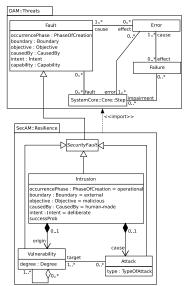
MARTE-DAM

- DAM stereotypes specialise MARTE stereotypes
- MARTE NFP types
 - value
 - expr (VSL expression)
 - source (req, est, statQ)

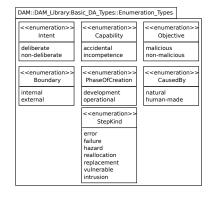

SecAM profile (I): Resilience package (1)

Domain model definition

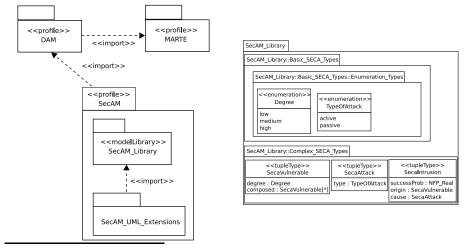
- Comprehensive modelling of security issues
- Domain model for each relevant security aspects
 - e.g., confidentiality, resilience or integrity
- In this work: Resilience package


Threats

- From dependability:
 - Fault \rightarrow Error \rightarrow Failure
- From security:
 - Attack → Vulnerability → Intrusion
- AVI as a refinement of FEF



Veríssimo, P. et al. Intrusion-Tolerant Architectures: Concepts and Design. LNCS, 2003


SecAM profile (I): Resilience package (2)

Fault class from DAM::Threats: extension with new attributes

SecAM profile (II): building the profile (1)

Lagarde, F. et al. Improving UML Profile Design Practices by Leveraging Conceptual Domain Models. ASE, 2007

SecAM profile (II): building the profile (2)

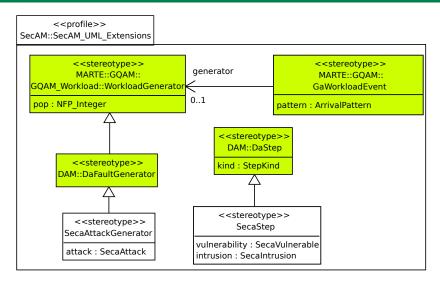
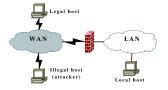



Figure: SecAM UML extensions

Example (I): system physical view and class diagram

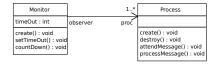


Figure: System physical view

Figure: Class diagram

- How to use SecAM from a use of view
- Advanced firewall: integrates a monitor
 - ullet Exposed to attacks o vulnerable
 - Attend messages from WAN and forwarded them to LAN
 - Critical information systems (e.g. MAFTIA, CRUTIAL, OASIS)
- Monitor
 - ullet Tamper-proof embedded system o invulnerable
 - Its mission: to check firewall processes and to clean up those hung

Example (II): UML state-charts (1)

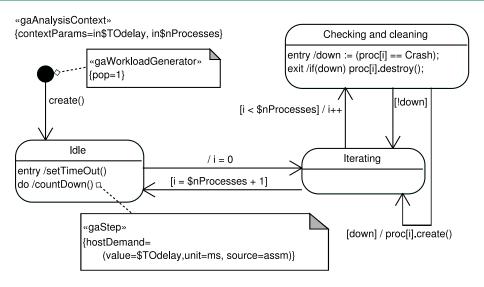


Figure: Monitor state-chart diagram.

Example (II): UML state-charts (2)

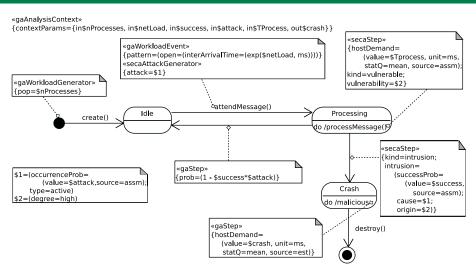
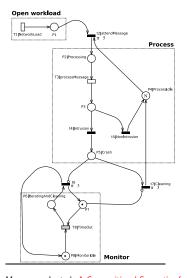



Figure: Process state-chart diagram.

Obtaining a formal model (1): Conversion of UML-SC

- Translation proposed by Merseguer et al. (WODES'02)
- Given for performance analysis purposes → minor changes will arise
- ArgoSPE tool: UML-SC annotated with SPT (precursor of MARTE)
- General ideas:
 - SC simple state \rightarrow PN place
 - Entry and exit actions → immediate transitions
 - Do-activity actions → timed transitions
 - Conflicting transitions: in stochastic way (probabilities)
- Communication via events → PN places modelling event mailboxes
- Working out the PN to incorporate DAM and SecAM annotations
- Open workload: manually produced
- Simplified the subnets → gaining readability

Obtaining a formal model (II): Obtained DSPN

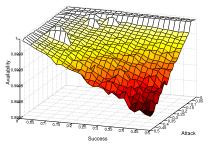
Place	Initial marking	Value
P4 Idle	nProcesses	6

Transition	Parameter (type)	Value(s)
T1 NetworkLoad	1/netload (rate)	0.01, 0.05, 0.1/ms
T3 processMessage	1/Tprocess (rate)	0.2/ms
T8 TimeOut	TOdelay (delay)	1, 100ms
t4 Intrusion	attack · success (weight)	
t5 NonIntrusion	1 − attack · success (weight)	

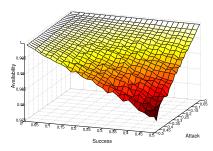
L	Parameter	Values
	attack	[0.01 0.5]
	success	[0.01 0.5]

Merseguer, J. et al. A Compositional Semantics for UML State Machines Aimed at Performance Evaluation. WODES, 2002

Description of the experiments

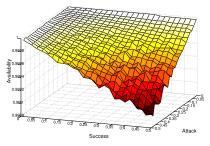

Availability

At DSPN model level:

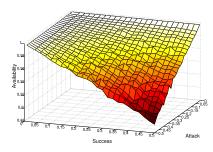

$$\frac{MTTF}{MTTF + MTTDI} = 1 - \frac{E[P5|Crash]}{N} \tag{1}$$

- MTTF: Mean Time To Failure
- MTTDI: Mean Time To Detect an Intrusion
- $E[P_i]$: mean number of tokens in place P_i
- P5|Crash: unavailable state of the process
- Under different assumptions:
 - Three types of network loads: low, high, very high (0.01, 0.05, 0.1/ms)
 - Two types of time-out durations: short, long (1, 100 ms)
 - Probabilities of attacks and successful attacks from 1% up to 50%

Results (I): under low workload

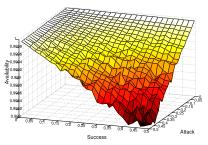


(a) short time-out

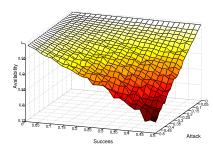


(b) long time-out

Results (II): under high workload



(a) short time-out



(b) long time-out

Results (III): under very high workload

(a) short time-out

(b) long time-out

Discussion

Availability

- Inverse proportion to probability of attacks and of successful attacks
- Decreasing factor: sensitive to the network workload and monitor time-out assumptions
 - Higher for higher workloads and for longer time-out duration (e.g., 0.021% in case of low network workload and short time-out duration, 20.9% when very high network workload and long time-out duration)
- Incoming messages are potential attack carriers → frequency of attacks increases from low to very high network workload → higher availability decreasing factor
- ullet Short time-out duration o promptly detection o higher availability
- Isolated hills close to 100% (low workload, short time-out)
 - Due to simulation accuracy (their height is lower than 0.01%)
- False alarms (i.e., time-out expires and no process is crashed)
 - Do not provoke side effects in the system

Related work and conclusions (I)

Related work

- SecureUML (T. Lodderstedt et al.)
 - Just focused on annotating static UML design models
- UMLsec (J. Jürjens)
 - Not worry on influence on the throughput of the system

Both approaches focus on the design phase and allow model-checking

- Other work close (D. C. Petriu et al.)
 - Not focussed on giving a unified framework
- Dependability and SPNs
 - . A. E. Rugina et al.
 - Exclusively for the dependability field
 - Very bound to AADL (Architecture Analysis & Design Language)
 - Several works of Bondavalli et al.
 - Dependability attributes in early design phases of the system
 - Construct a Timed PN using graph transformation techniques in structural UML diagrams

Related work and conclusions (II)

Conclusions

- Proposal profile ⊂ MARTE-DAM profile
- Analysis of relevant dependability-security aspects
- Considering the system performance characteristics
 - e.g., to measure the real impact of introducing more security layers

Future work

- Tools supporting the SecAM approach
 - Reuse of existing tools for UML and MARTE
- Effort focused on the security analysis on top of existing tool sets
- Extend SecAM adding more security fields to its domain
 - Easy fit: SecAM-MARTE-DAM fit already done

Modelling and Analysing Resilience as a Security Issue within UML

Ricardo J. Rodríguez, José Merseguer and Simona Bernardi {rjrodriguez, jmerse}@unizar.es, bernardi@di.unito.it

Universidad de Zaragoza Zaragoza, Spain

Università di Torino Torino, Italy

15th April 2010

SERENE'10: 2nd International Workshop on Software Engineering for Resilient Systems Birkbeck College (London, United Kingdom)