PeabraiN: a PIPE extension for Performance Estimation and Resource Optimisation

Ricardo J. Rodríguez, Jorge Júlvez, José Merseguer

SAII wrongs reserved

{rjrodriguez, julvez, jmerse}@unizar.es

June 28th, 2012

12th International Conference on Application of Concurrency to System Design Hamburg, Deutschland

Outline

MotivationKind of problems

The PeabraiN Tool

- What is PeabraiN?
- Theory Overview behind PeabraiN
- Implemented Features
- Architecture

Tool Installation and Availability

4 Future Work

Motivation Kind

Kind of problems

Problems we are dealing with (I)

Informal way - for human beings

Main goals

- Performance Estimation
- Resource Optimisation

Kind of problems

Problems we are dealing with (I)

Informal way - for human beings

Main goals

- Performance Estimation
- Resource Optimisation
- PN class: Process Petri nets
- Shared resources systems
- Any process which involves resource usage to complete
- Different jobs with dissimilar handling
- Examples:
 - Assembly lines
 - Service-Oriented-Architecture services
 - Supermarket shopping
 - . . .

Motivation Ki

Kind of problems

Problems we are dealing with (II)

Informal way - some examples

Motivation Kind

Kind of problems

Problems we are dealing with (II)

Informal way - some examples

• Places can be divided in three subsets: $P = P_0 \cup P_S \cup P_R$

- Process-idle place, $P_0 = \{p_0\}$
- Process-activity places, $P_S \neq \emptyset$, $P_S \cap P_0 = \emptyset$, $P_S \cap P_R = \emptyset$
- Resources places, $P_R = \{r_1, \ldots, r_n\}, \ n > 0, P_R \cap P_0 = \emptyset$

Motivation Kind

Kind of problems

Problems we are dealing with (II)

Informal way - some examples

• When removing *P_R* places, we get a strongly connected state machine, s.t. every cycle contains *p*₀

R.J. Rodríguez et al.

The PeabraiN tool

ACSD 2012 4 / 24

Motivation Kind of

Kind of problems

Problems we are dealing with (II)

Informal way - some examples

• For each $r \in P_R$, there exists a unique minimal p-semiflow associated to $r, \mathbf{y}_r \in \mathbb{N}^{|P|}$ s.t. it contains on its support just the resource r and does not contains p_0

R.J. Rodríguez et al

Motivation Kind

Kind of problems

Problems we are dealing with (II)

Informal way - some examples

• For each $r \in P_R$, there exists a unique minimal p-semiflow associated to $r, \mathbf{y}_r \in \mathbb{N}^{|P|}$ s.t. it contains on its support just the resource r and does not contains p_0

R.J. Rodríguez et al

The PeabraiN tool

ACSD 2012 4 / 24

Motivation Kind

Kind of problems

Problems we are dealing with (II)

Informal way - some examples

• Activity places set *P_S* does not contain resource places, neither process-idle place

R.J. Rodríguez et al.

The PeabraiN tool

ACSD 2012 4 / 24

Outline

The PeabraiN Tool

- What is Peabrai N?
- Theory Overview behind PeabraiN
- Implemented Features
- Architecture

The PeabraiN tool (I): what is it? (1)

Our (primary) interest

- Performance estimation based on Linear Programming (LP) techniques
 - Upper throughput bound computation
- Resource optimisation
 - Might the assembly line get more items completed per unit of time?
 - If so, how many staff it is needed to achieve it?

Alternatives studied

- GreatSPN (platform-dependent)
- MATLAB (proprietary ¬¬)
- HISim (PIPE extension for Hybrid PNs)

∠aragoza

1542

The PeabraiN tool (I): what is? (2)

Performance Estimation bAsed (on) Bounds (and) Resource optimisAtIon (for Petri) Nets

• Based on PIPE tool

• User-friendly Java interface

1542

The PeabraiN tool (I): what is? (2)

Performance Estimation bAsed (on) Bounds (and) Resource optimisAtIon (for Petri) Nets

Based on PIPE tool

- User-friendly Java interface
- Non-CPU-friendly Java interface :)
- PNML-compliant tool (+1)
 - PNML is ISO/IEC 15909 standard
- Easiness of extension: modules (+1)
- GPL license
 - $\bullet~$ Some flaws discovered \rightarrow -1
- Multiplatform (Java-based)

The PeabraiN tool (II): behind the scenes (1a) Performance Estimation

• LP problem (LPP) for computing upper throughput bounds

$$\begin{split} \mathbf{\Gamma}(t_i) &= \textit{ maximum } \mathbf{y} \cdot \mathbf{Pre} \cdot \mathbf{D} \\ \textit{ subject to } \mathbf{y} \cdot \mathbf{C} &= \mathbf{0} \\ \mathbf{y} \cdot \mathbf{m_0} &= 1 \\ \mathbf{y} &\geq \mathbf{0} \end{split}$$

Lower bound for the *average inter-firing time* of transition t_i , $\Gamma(t_i)$ Upper bound $\Theta(t_i)$ for the steady-state throughput $\Theta(t_i) = \frac{1}{\Gamma(t_i)}$

- Based on previous work
 - Regrowing technique
- More accurate than previous methods
- Further reading: google "RJ-EPEW-10"

(1)

The PeabraiN tool (II): behind the scenes (1b) Performance Estimation

Input	Output
• Degree of improvement to	• New upper throughput bound
achieve	

Steps

- Compute initial upper throughput bound and initial bottleneck cycle (LPP in previous slide!)
- Iterate until no significant improvement is achieved
 - Look for next slowest p-semiflow (constraining the current one)
 - Add the next slowest p-semiflow to the current one
 - S Compute new throughput bound

∠aragoza

1542

The PeabraiN tool (II): behind the scenes (1c) Performance Estimation (example)

Parameters

•
$$nC = 15; nS = 4; nP = 2$$

The PeabraiN tool (II): behind the scenes (1c) Performance Estimation (example)

Parameters

•
$$nC = 15; nS = 4; nP = 2$$

• Slowest p-semiflow: $\{p_0, p_1, p_3, p_4, p_6, p_7, p_8, p_9\},\$ $\Theta = 0.384612$

The PeabraiN tool (II): behind the scenes (1c) Performance Estimation (example)

Parameters

•
$$nC = 15; nS = 4; nP = 2$$

- Slowest p-semiflow: $\{p_0, p_1, p_3, p_4, p_6, p_7, p_8, p_9\},\$ $\Theta = 0.384612$
- Next candidates: { p_2, p_5 }

The PeabraiN tool (II): behind the scenes (1c) Performance Estimation (example)

Parameters

•
$$nC = 15; nS = 4; nP = 2$$

- Slowest p-semiflow: $\{p_0, p_1, p_3, p_4, p_6, p_7, p_8, p_9\},\$ $\Theta = 0.384612$
- Next candidates: $\{p_2, p_5\} \rightarrow p_5$

The PeabraiN tool (II): behind the scenes (1c) Performance Estimation (example)

Parameters

•
$$nC = 15; nS = 4; nP = 2$$

- Slowest p-semiflow: $\{p_0, p_1, p_3, p_4, p_6, p_7, p_8, p_9\},\$ $\Theta = 0.384612$
- Next candidates: $\{p_2, p_5\} \rightarrow p_5$ $\Theta' = 0.339410$

1542

∠aragoza

The PeabraiN tool (II): behind the scenes (1c) Performance Estimation (example)

Parameters

•
$$nC = 15; nS = 4; nP = 2$$

- Slowest p-semiflow: $\{p_0, p_1, p_3, p_4, p_6, p_7, p_8, p_9\},\$ $\Theta = 0.384612$
- Next candidates: $\{p_2, p_5\} \rightarrow p_5$ $\Theta' = 0.339410$
- Next candidate: {p₂}

The PeabraiN tool (II): behind the scenes (1c) Performance Estimation (example)

Parameters

•
$$nC = 15; nS = 4; nP = 2$$

- Slowest p-semiflow: $\{p_0, p_1, p_3, p_4, p_6, p_7, p_8, p_9\},\$ $\Theta = 0.384612$
- Next candidates: $\{p_2, p_5\} \rightarrow p_5$ $\Theta' = 0.339410$

1542

Next candidate: {*p*₂}
 Θ" = 0.328190

∠aragoza

The PeabraiN tool (II): behind the scenes (1c) Performance Estimation (example)

Parameters

- Slowest p-semiflow: $\{p_0, p_1, p_3, p_4, p_6, p_7, p_8, p_9\},\$ $\Theta = 0.384612$
- Next candidates: $\{p_2, p_5\} \rightarrow p_5$ $\Theta' = 0.339410$
- Next candidate: {p₂}
 Θ" = 0.328190
- Improvement of 14.67%

Laragoza

The PeabraiN tool (II): behind the scenes (1d) Performance Estimation (example)

Performance Estimation Module in PeabraiN

The PeabraiN tool (II): behind the scenes (2a)

Resource Optimisation

Inputs	Outputs		
 Resource places Process-idle place Available budget Cost per resource (vector) 	 Throughput maximised Vector (resource, number_of_instances) When reached process idle-place → over-dimensioned system (idle resources) 		

Steps

- LPP for slowest p-semiflow (previous slide!)
- ② Iterate until no more money available, or reached process idle-place
 - O Compute next p-semiflow constraining current one
 - Q Compute the cost of incrementing such a resource
- Have all resources been incremented? Still remaining money?
 - If so, we can keep incrementing ~ Bounded Knapsack Problem (NP-complete)

The PeabraiN tool (II): behind the scenes (2b) Resource Optimisation (example)

Parameters

- Initial budget \$80,000
- New hiring \$6,000; new beverage dispenser \$250

The PeabraiN tool (II): behind the scenes (2b) Resource Optimisation (example)

Parameters

nC = 10, 50% take beverage;
 nW = 2; nD = 2;

- Initial budget \$80,000
- New hiring \$6,000; new beverage dispenser \$250

 Slowest p-semiflow: {p₂, p₃, p₄, p₅, p₆, p₇, p₈, p₉, p₁₀, p₁₁}

The PeabraiN tool (II): behind the scenes (2b) Resource Optimisation (example)

Parameters

- Initial budget \$80,000
- New hiring \$6,000; new beverage dispenser \$250

- Slowest p-semiflow: {p₂, p₃, p₄, p₅, p₆, p₇, p₈, p₉, p₁₀, p₁₁}
- Candidates: $\{p_0, p_1\}$ or $\{p_7\}$

The PeabraiN tool (II): behind the scenes (2b) Resource Optimisation (example)

Parameters

- Initial budget \$80,000
- New hiring \$6,000; new beverage dispenser \$250

- Slowest p-semiflow: {p₂, p₃, p₄, p₅, p₆, p₇, p₈, p₉, p₁₀, p₁₁}
- Candidates: $\{p_0, p_1\}$ or $\{p_7\}$ $\rightarrow \{p_0, p_1\}$

The PeabraiN tool (II): behind the scenes (2b) Resource Optimisation (example)

Parameters

- Initial budget \$80,000
- New hiring \$6,000; new beverage dispenser \$250

- Slowest p-semiflow: {p₂, p₃, p₄, p₅, p₆, p₇, p₈, p₉, p₁₀, p₁₁}
- Candidates: $\{p_0, p_1\}$ or $\{p_7\}$ $\rightarrow \{p_0, p_1\}$
- Contains p₀ → no more increments can be carried out!

The PeabraiN tool (II): behind the scenes (2b) Resource Optimisation (example)

Parameters

nC = 10, 50% take beverage;
 nW = 2; nD = 2;

 New hiring \$6,000; new beverage dispenser \$250

- Slowest p-semiflow: {p₂, p₃, p₄, p₅, p₆, p₇, p₈, p₉, p₁₀, p₁₁}
- Candidates: $\{p_0, p_1\}$ or $\{p_7\}$ $\rightarrow \{p_0, p_1\}$
- Contains p₀ → no more increments can be carried out!
- *p*₂ must be incremented in 3 units

R.J. Rodríguez et al

The PeabraiN tool (II): behind the scenes (2c) Resource Optimisation (example)

Resource Optimisation Module in PeabraiN

Process-idle place:	P0 -	Reso	ource	Unit cos	st		
		P2	6	6000			
Budget:	80000.0000	P7	2:	0		Compute	
Resource costs:							
More incre	Remainin	g budg	et: \$6200).0 bla.confi	iguratio	מו	
	Resource	e place	Increme	nt			
	P2		3.0				
	Elapsed tir	ne (seco	onds): 0.0	80			
Computations	done taking v	isit rati	o normal	sed for	transi	tion T0.	
$v = \{1\}$	0. 1.0. 1.0. 1.0	. 1.0. 0.5	5.0.5.0.5	0.5.0.5.	. 1.0}		

The PeabraiN tool (III): Other Features Some Easter eggs

Extra Functionalities added

- Lower and Upper throughput bound
- Slowest P-semiflow
- Structural marking (enabling) bound of a place (transition)

The PeabraiN tool (III): Other Features Some Easter eggs

Extra Functionalities added

- Lower and Upper throughput bound
- Slowest P-semiflow
- Structural marking (enabling) bound of a place (transition)
- Visit ratios computation
- SPN simulator
 - PIPE built-in simulator DOES NOT handle infinite-server semantics
 - Simulates just a no. of firings
 - Can be invoked stand-alone
 - Supports command-line invokation
 - Uses an exact stochastic simulation algorithm

Zaragoza

The PeabraiN Tool Architecture

The PeabraiN tool (IV): Architecture (1)

PeabraiN software architect

• Model-View-Controller (MVC) architectural pattern

R.J. Rodríguez et al

The PeabraiN tool

ACSD 2012 16 / 24

The PeabraiN Tool Architecture

The PeabraiN tool (IV): Architecture (2)

Integration of PeabraiN in PIPE

- Modules
- PN matrix definition (PetriNetModel)

Zaragoza

1.

1542

Universidad

The PeabraiN Tool Architecture

The PeabraiN tool (IV): Architecture (3)

Outline

Motivation

Kind of problems

The PeabraiN Too

- What is PeabraiN?
- Theory Overview behind PeabraiN
- Implemented Features
- Architecture

3 Tool Installation and Availability

4) Future Work

Tool Installation and Availability

What do I need for executing it?

• JRE \geq v1.6

- An LPP solver, namely GLPK and GLPK JNI library
- Rest of necessary files included in deployment!
- Successfully tested in
 - GNU/Linux
 - Windows
 - $\bullet~\mbox{Not}$ yet in MacOS $\rightarrow~\mbox{error}$ on GLPK JNI library

Sounds nice, where can I get it?

- Project description
 - http://webdiis.unizar.es/GISED/?q=tool/peabrain
- Source code + binaries
 - http://peabrain.sourceforge.net

Outline

Motivation

Kind of problems

The PeabraiN To

- What is PeabraiN?
- Theory Overview behind PeabraiN
- Implemented Features
- Architecture

Tool Installation and Availability

What do we expect in the future?

- Automatic detection of installed LPP solvers
- LPP solver chosen by user
- Parametric evaluation (as GreatSPN does)
- Approximate stochastic simulation algorithm
- Simulation with DSPN

What do we expect in the future?

- Automatic detection of installed LPP solvers
- LPP solver chosen by user
- Parametric evaluation (as GreatSPN does)
- Approximate stochastic simulation algorithm
- Simulation with DSPN
- (put here your idea, we'll [try to...] do it!)

What do we expect in the future?

- Automatic detection of installed LPP solvers
- LPP solver chosen by user
- Parametric evaluation (as GreatSPN does)
- Approximate stochastic simulation algorithm
- Simulation with DSPN
- (put here your idea, we'll [try to...] do it!)

[Some of these currently under development by a Final Degree Project]

Wait! Not yet finished :D

It's demo time! (in a while) Just reach me on Tool Exhibition slot!

PeabraiN: a PIPE extension for Performance Estimation and Resource Optimisation

Ricardo J. Rodríguez, Jorge Júlvez, José Merseguer

SAII wrongs reserved

{rjrodriguez, julvez, jmerse}@unizar.es

June 28th, 2012

12th International Conference on Application of Concurrency to System Design Hamburg, Deutschland