Accurate Performance Estimation for Stochastic Marked Graphs by Bottleneck Regrowing

Ricardo J. Rodríguez and Jorge Júlvez {rjrodriguez, julvez}@unizar.es

Universidad de Zaragoza Zaragoza, Spain

September 24th, 2010

EPEW'10: 7th European Performance Engineering Workshop Bertinoro, Italy

2 Some basic concepts

- Stochastic Marked Graph
- Critical Cycle
- Tight Marking
- Graph Regrowing Strategy
- Experiments and Results

2 Some basic concepts

- Stochastic Marked Graph
- Critical Cycle
- Tight Marking

3 Graph Regrowing Strategy

4 Experiments and Results

Motivation (I): the need of requirement verification

- New system: problem of verification of requirements
- \bullet Performance of an industrial system \rightarrow real need
- Many systems modelled as **Discrete Event Systems** (DES)
- \bullet Increasing size \rightarrow exact performance computation unfeasible
 - State explosion problem

Motivation (II): performance evaluation approaches

- Exact analytical measures
 - Need exhaustive state space exploration
- Performance bounds: overcoming state explosion problem
 - Reduced running time, BUT how good (i.e., accurate) is the bound?

Motivation (II): performance evaluation approaches

- Exact analytical measures
 - Need exhaustive state space exploration
- Performance bounds: overcoming state explosion problem
 - Reduced running time, BUT how good (i.e., accurate) is the bound?

- $r_{C_1} = \frac{1}{5}$, $r_{C_2} = \frac{1}{4}$ and $r_{C_3} = \frac{1}{3}$
- $\bullet \ \, {\sf Bottleneck} \ {\sf cycle} \rightarrow {\sf minimum} \ {\sf ratio}$
- Throughput bound: $\frac{1}{5} = 0.2$
- Lowest ratio token/delay $\rightarrow \{p_1, p_4, p_6\}$
- New thr bound: 0.1875 (6.25% lower)
- Seek next constraint cycle non trivial
- Tight marking and slack

- $r_{C_1} = \frac{1}{5}$, $r_{C_2} = \frac{1}{4}$ and $r_{C_3} = \frac{1}{3}$
- $\bullet \ \, {\sf Bottleneck} \ {\sf cycle} \rightarrow {\sf minimum} \ {\sf ratio}$
- Throughput bound: $\frac{1}{5} = 0.2$
- Lowest ratio token/delay $\rightarrow \{p_1, p_4, p_6\}$
- New thr bound: 0.1875 (6.25% lower)
- Seek next constraint cycle non trivial
- Tight marking and slack

- $r_{C_1} = \frac{1}{5}$, $r_{C_2} = \frac{1}{4}$ and $r_{C_3} = \frac{1}{3}$
- $\bullet \ \, \text{Bottleneck cycle} \to \text{minimum ratio}$
- Throughput bound: $\frac{1}{5} = 0.2$
- Lowest ratio token/delay $\rightarrow \{p_1, p_4, p_6\}$
- New thr bound: 0.1875 (6.25% lower)
- Seek next constraint cycle non trivial
- Tight marking and slack

- $r_{C_1} = \frac{1}{5}$, $r_{C_2} = \frac{1}{4}$ and $r_{C_3} = \frac{1}{3}$
- $\bullet \ \, {\sf Bottleneck} \ {\sf cycle} \rightarrow {\sf minimum} \ {\sf ratio}$
- Throughput bound: $\frac{1}{5} = 0.2$
- Lowest ratio token/delay $\rightarrow \{p_1, p_4, p_6\}$
- New thr bound: 0.1875 (6.25% lower)
- Seek next constraint cycle non trivial
- Tight marking and slack

- $r_{C_1} = \frac{1}{5}$, $r_{C_2} = \frac{1}{4}$ and $r_{C_3} = \frac{1}{3}$
- $\bullet \ \, {\sf Bottleneck} \ {\sf cycle} \rightarrow {\sf minimum} \ {\sf ratio}$
- Throughput bound: $\frac{1}{5} = 0.2$
- Lowest ratio token/delay $\rightarrow \{p_1, p_4, p_6\}$
- New thr bound: 0.1875 (6.25% lower)
- Seek next constraint cycle non trivial
- Tight marking and slack

- $r_{C_1} = \frac{1}{5}$, $r_{C_2} = \frac{1}{4}$ and $r_{C_3} = \frac{1}{3}$
- $\bullet \ \, {\sf Bottleneck} \ {\sf cycle} \rightarrow {\sf minimum} \ {\sf ratio}$
- Throughput bound: $\frac{1}{5} = 0.2$
- Lowest ratio token/delay $\rightarrow \{p_1, p_4, p_6\}$
- New thr bound: 0.1875 (6.25% lower)
- Seek next constraint cycle non trivial
- Tight marking and slack

- $r_{C_1} = \frac{1}{5}$, $r_{C_2} = \frac{1}{4}$ and $r_{C_3} = \frac{1}{3}$
- $\bullet \ \, \text{Bottleneck cycle} \to \text{minimum ratio}$
- Throughput bound: $\frac{1}{5} = 0.2$
- Lowest ratio token/delay $\rightarrow \{p_1, p_4, p_6\}$
- New thr bound: 0.1875 (6.25% lower)
- Seek next constraint cycle non trivial
- Tight marking and slack

Motivation (IV): running example

• Performance bound 12.9% lower than the initial one

- More iterations: a bound just 0.3% greater than the real performance
- Benefits of the proposed method:
 - Efficient (uses linear programming)
 - Accurate (converges in few iterations)

2 Some basic concepts

- Stochastic Marked Graph
- Critical Cycle
- Tight Marking

3 Graph Regrowing Strategy

4 Experiments and Results

Some basic concepts (I): Stochastic Marked Graph

- Petri Net system: $S = \langle P, T, Pre, Post, m_0 \rangle$
- Marked graph (MG): ordinary PN such that each place has exactly one input and exactly one output arc
- Stochastic Marked Graph (SMG): MG and a vector δ , where $\delta(t)$ is the mean of the exponential firing time distribution associated to each transition $t \in T$
- SMG's transitions work under *infinite* server semantics (assumed)
- Steady state throughput χ : average number of firing counts per u.t.

Some basic concepts (II): Critical Cycle (1)

Little's law

- Average number of customers L in a queue: $L = \lambda \cdot W$
- In a SMG: each pair {p, t}, where p[•] = {t}, can be seen as a simple queueing system

$$\overline{\mathbf{m}}(\boldsymbol{p}) = \chi(\boldsymbol{p}^{\bullet}) \cdot \overline{\mathbf{s}}(\boldsymbol{p}) \tag{1}$$

• $\overline{\mathbf{s}}(p) = \text{average waiting time} + \text{average service time} (\delta(p^{\bullet}) \text{ in our case})$ $<math>\rightarrow \delta(p^{\bullet}) \leq \overline{\mathbf{s}}(p)$

Some basic concepts (II): Critical Cycle (2)

Note that MGs have a single minimal t-semiflow equal to 1
 → same steady state throughput for every transition

 $\begin{aligned} & \text{Maximize } \Theta: \\ & \hat{\mathbf{m}}(p) \geq \delta(p^{\bullet}) \cdot \Theta \quad \forall p \in P \\ & \hat{\mathbf{m}} = \mathbf{m}_0 + \mathbf{C} \cdot \sigma \\ & \sigma \geq 0 \end{aligned} \tag{3a}$

 $\bullet~\Theta$ is an upper throughput bound

Analysis Techniques, Ed. KRONOS, 1998

Campos, J. Performance Bounds. Performance Models for Discrete Event Systems with Synchronizations: Formalisms and

Some basic concepts (II): Critical Cycle (3)

Concept of *slack*: μ

 $\hat{\mathbf{m}}(p) \ge \delta(p^{\bullet}) \cdot \Theta \longrightarrow \mathbf{m}(p) = \delta(p^{\bullet}) \cdot \Theta + \mu(p)$

- $\mu(p) = 0$ if p belongs to critical cycle
- Value of vector μ will depend on the algorithm used by the LP solver
- The lower the slack, the higher the probability that place will constraint

Some basic concepts (II): Critical Cycle (3)

Concept of *slack*: μ

 $\hat{\mathbf{m}}(p) \geq \delta(p^{\bullet}) \cdot \Theta \longrightarrow \mathbf{m}(p) = \delta(p^{\bullet}) \cdot \Theta + \mu(p)$

- $\mu(p) = 0$ if p belongs to critical cycle
- Value of vector μ will depend on the algorithm used by the LP solver
- The lower the slack, the higher the probability that place will constraint

Some basic concepts (II): Critical Cycle (3)

Concept of *slack*: μ

 $\hat{\mathbf{m}}(p) > \delta(p^{\bullet}) \cdot \Theta \longrightarrow \mathbf{m}(p) = \delta(p^{\bullet}) \cdot \Theta + \mu(p)$

- $\mu(p) = 0$ if p belongs to critical cycle
- Value of vector μ will depend on the algorithm used by the LP solver
- The lower the slack, the higher the probability that place will constraint

R.J. Rodríguez and J. Júlvez Performance Estimation for SMGs by Bottleneck Regrowing **EPEW 2010** 12 / 24

Some basic concepts (II): Critical Cycle (3)

Concept of *slack*: μ

 $\hat{\mathbf{m}}(p) \geq \delta(p^{\bullet}) \cdot \Theta \longrightarrow \mathbf{m}(p) = \delta(p^{\bullet}) \cdot \Theta + \mu(p)$

- $\mu(p) = 0$ if p belongs to critical cycle
- Value of vector μ will depend on the algorithm used by the LP solver
- The lower the slack, the higher the probability that place will constraint

Some basic concepts (II): Critical Cycle (3)

Concept of *slack*: μ

 $\hat{\mathbf{m}}(p) \geq \delta(p^{\bullet}) \cdot \Theta \longrightarrow \mathbf{m}(p) = \delta(p^{\bullet}) \cdot \Theta + \mu(p)$

- $\mu(p) = 0$ if p belongs to critical cycle
- Value of vector μ will depend on the algorithm used by the LP solver
- The lower the slack, the higher the probability that place will constraint

Some basic concepts (II): Critical Cycle (3)

Concept of *slack*: μ

 $\hat{\mathbf{m}}(p) \ge \delta(p^{\bullet}) \cdot \Theta \longrightarrow \mathbf{m}(p) = \delta(p^{\bullet}) \cdot \Theta + \mu(p)$

- $\mu(p) = 0$ if p belongs to critical cycle
- Value of vector μ will depend on the algorithm used by the LP solver
- The lower the slack, the higher the probability that place will constraint

R.J. Rodríguez and J. Júlvez Performance Estimation for SMGs by Bottleneck Regrowing EPEW 2010 12 / 24

Some basic concepts (II): Critical Cycle (3)

Concept of *slack*: μ

 $\hat{\mathbf{m}}(p) \geq \delta(p^{\bullet}) \cdot \Theta \longrightarrow \mathbf{m}(p) = \delta(p^{\bullet}) \cdot \Theta + \mu(p)$

- $\mu(p) = 0$ if p belongs to critical cycle
- Value of vector μ will depend on the algorithm used by the LP solver
- The lower the slack, the higher the probability that place will constraint

R.J. Rodríguez and J. Júlvez Performance Estimation for SMGs by Bottleneck Regrowing EPEW 2010 12 / 24

Some basic concepts Tight Marking

Some basic concepts (III): Tight Marking (1)

Tight marking vector $(\tilde{\mathbf{m}})$

$$\begin{split} \tilde{\mathbf{m}} &= \mathbf{m}_{\mathbf{0}} + \mathbf{C} \cdot \sigma \qquad (4a) \\ \forall \ p : \quad \tilde{\mathbf{m}}(p) \geq \delta(p^{\bullet}) \cdot \Theta \qquad (4b) \\ \forall \ t \ \exists \ p \in {}^{\bullet}t : \quad \tilde{\mathbf{m}}(p) = \delta(p^{\bullet}) \cdot \Theta \qquad (4c) \end{split}$$

• Computed by solving the following LPP:

$$\begin{array}{l} \text{Maximize } \Sigma \sigma : \\ \delta(p^{\bullet}) \cdot \Theta \leq \tilde{\mathbf{m}}(p) \quad \text{for every } p \in P \\ \tilde{\mathbf{m}} = \mathbf{m}_0 + \mathbf{C} \cdot \sigma \\ \sigma(t_p) = k \end{array} \tag{5}$$

Some basic concepts Tight Marking

Some basic concepts (III): Tight Marking (2)

- Tight place $p: \tilde{\mathbf{m}}(p) = \delta(p^{\bullet}) \cdot \Theta$
- Considering tight places (and their input and output transitions)
 → kind of tree
 - Critical cycle is the root
 - All transitions are reached

Some basic concepts Tight Marking

Some basic concepts (III): Tight Marking (2)

- Tight place $p: \tilde{\mathbf{m}}(p) = \delta(p^{\bullet}) \cdot \Theta$
- Considering tight places (and their input and output transitions)
 → kind of tree
 - Critical cycle is the root
 - All transitions are reached

2 Some basic concepts

- Stochastic Marked Graph
- Critical Cycle
- Tight Marking

Graph Regrowing Strategy

4 Experiments and Results

Graph regrowing strategy (I): algorithm

- Input data: SMG, accuracy
- Output data: sharper performance bound, bottleneck

Algorithm steps

- Calculate initial upper throughput bound and initial bottleneck cycle
- ② Calculate tight marking and slacks
- Iterate until no significant improvement is achieved
 - Look for place with minimum slack and add it
 - O Calculate new throughput bound

Iteration step	Candidates places	Added	Θ	% _{last}	% _{initial}
0	-	-	0.3704	-	-

Iteration step	Candidates places	Added	Θ	% _{last}	% _{initial}
0	<i>P</i> 1, <i>P</i> 14	-	0.3704	-	-

Iteration step	Candidates places	Added	Θ	% _{last}	% _{initial}
0	<i>p</i> ₁ , <i>p</i> ₁₄	<i>p</i> 1	0.3704	-	-

Iteration step	Candidates places	Added	Θ	% _{last}	% _{initial}
0	p_1, p_{14}	<i>p</i> ₁	0.3704	-	-
1	-	-	0.322581	12.9%	12.9%

Iteration step	Candidates places	Added	Θ	% _{last}	% _{initial}
0	p_1, p_{14}	<i>p</i> ₁	0.3704	-	-
1	<i>P</i> ₁₀ , <i>P</i> ₁₄	-	0.322581	12.9%	12.9%

Iteration step	Candidates places	Added	Θ	% _{last}	% _{initial}
0	p_1, p_{14}	<i>p</i> ₁	0.3704	-	-
1	p_{10}, p_{14}	P ₁₀	0.322581	12.9%	12.9%

Iteration step	Candidates places	Added	Θ	% _{last}	% _{initial}
0	p_1, p_{14}	<i>p</i> ₁	0.3704	-	-
1	<i>P</i> 10, <i>P</i> 14	P10	0.322581	12.9%	12.9%
2	-	-	0.297914	7.647%	19.563%

Iteration step	Candidates places	Added	Θ	% _{last}	% _{initial}
0	p_1, p_{14}	<i>p</i> ₁	0.3704	-	-
1	<i>P</i> 10, <i>P</i> 14	P10	0.322581	12.9%	12.9%
2	$p_5, p_{11},$	-	0.297914	7.647%	19.563%
	<i>P</i> 14, <i>P</i> 15				

Iteration step	Candidates places	Added	Θ	% _{last}	% _{initial}
0	p_1, p_{14}	<i>p</i> 1	0.3704	-	-
1	P10, P14	P10	0.322581	12.9%	12.9%
2	P5, P11, P14, P15	<i>P</i> 5	0.297914	7.647%	19.563%
	1147715				

Iteration step	Candidates places	Added	Θ	% _{last}	% _{initial}
0	p_1, p_{14}	<i>p</i> ₁	0.3704	-	-
1	P10, P14	<i>p</i> ₁₀	0.322581	12.91%	12.91%
2	<i>P</i> 5, <i>P</i> 11 <i>P</i> 14, <i>P</i> 15	<i>p</i> 5	0.297914	7.647%	19.563%
3	-	-	0.288401	3.193%	22.137%

Iteration step	Candidates places	Added	Θ	% _{last}	% _{initial}
0	p_1, p_{14}	<i>p</i> ₁	0.3704	-	-
1	<i>P</i> 10, <i>P</i> 14	P10	0.322581	12.9%	12.9%
2	$p_5, p_{11}, p_{14}, p_{15}$	<i>p</i> 5	0.297914	7.647%	19.563%
3	P11, P14, P15	-	0.288401	3.193%	22.137%

Iteration step	Candidates places	Added	Θ	% _{last}	% _{initial}
0	p_1, p_{14}	<i>p</i> ₁	0.3704	-	-
1	<i>p</i> ₁₀ , <i>p</i> ₁₄	P10	0.322581	12.9%	12.9%
2	$p_5, p_{11},$	<i>P</i> 5	0.297914	7.647%	19.563%
	p_{14}, p_{15}				
3	<i>P</i> ₁₁ , <i>P</i> ₁₄ ,	<i>P</i> 11	0.288401	3.193%	22.137%
	P15				

Iteration step	Candidates places	Added	Θ	% _{last}	% _{initial}
0	<i>p</i> ₁ , <i>p</i> ₁₄	<i>p</i> 1	0.3704	-	-
1	p_{10}, p_{14}	<i>p</i> ₁₀	0.322581	12.9%	12.9%
2	<i>P</i> 5, <i>P</i> 11, <i>P</i> 14, <i>P</i> 15	<i>p</i> 5	0.297914	7.647%	19.563%
3	P11, P14, P15	P11	0.288401	3.193%	22.137%
4	-	-	0.288401	0%	22.137%

2 Some basic concepts

- Stochastic Marked Graph
- Critical Cycle
- Tight Marking

3 Graph Regrowing Strategy

Experiments and Results

Experiments (I): description of the experiments

Benchmarking and used tools

- ISCAS benchmarking
 - Strongly connected components of the ISCAS graphs
 - Initial marking randomly selected in [1...10]
 - Delay of transitions randomly selected in [0.1...1]
- Strategy implemented in MATLAB (linprog)
- Simulation tool: GreatSPN
 - Confidence level 99%; accuracy 1%
- Host: Pentium IV 3.6GHz, 2GB DDR2 533MHz RAM

Experiments and Results

Experiments (II): Gets close to the real thr. after few steps

Experiments (III): results of improvement

Craph	Size		% Size		Regrowing	Initial	A	
Graph	P		P' (%)	T' (%)	steps	thr. bound	0	
s1423	1107	792	79 (7.13%)	76 (9.59%)	3	0.236010	0.235213 (0.34%)	
s1488	1567	1128	91 (5.8%)	86 (7.62%)	6	0.201300	0.173127 (13.99%)	
s208	27	24	27 (100%)	24 (100%)	3	0.409390	0.377683 (7.75%)	
s27	54	44	19 (35.18%)	18 (40.9%)	1	0.305960	0.304987 (0.31%)	
s349	187	146	26 (13.9%)	24 (16.44%)	2	0.340320	0.327867 (3.66%)	
s444	92	68	14 (15.21%)	12 (17.64%)	2	0.181670	0.181260 (0.22%)	
s510	1038	734	45 (4.33%)	40 (5.45%)	5	0.133030	0.117819 (11.43%)	
s526	113	92	18 (15.93%)	16 (17.39%)	2	0.313490	0.305860 (2.43%)	
s713	271	208	11 (4.06%)	10 (4.8%)	1	0.428720	0.427840 (0.2%)	
s820	1162	848	40 (3.44%)	38 (4.48%)	2	0.161060	0.147483 (8.43%)	
s832	1293	948	84 (6.5%)	78 (12.04%)	5	0.239429	0.208798 (12.79%)	
s953	415	312	88 (11.36%)	82 (26.28%)	6	0.369214	0.337811 (8.50%)	

• Sharper upper bound in few regrowing steps

- $\bullet\,$ Improvement varies from 0.2% to 14%
- Uses a very low percentage of the size of the original graph
 - Lower than 10% (in most of cases)

Experiments (III): results of improvement

Graph	Size		% Size		Regrowing	Initial	Α	
Graph	<i>P</i>	T	P' (%)	T' (%)	steps	thr. bound	0	
s1423	1107	792	79 (7.13%)	76 (9.59%)	3	0.236010	0.235213 (0.34%)	
s1488	1567	1128	91 (5.8%)	86 (7.62%)	6	0.201300	0.173127 (13.99%)	
s208	27	24	27 (100%)	24 (100%)	3	0.409390	0.377683 (7.75%)	
s27	54	44	19 (35.18%)	18 (40.9%)	1	0.305960	0.304987 (0.31%)	
s349	187	146	26 (13.9%)	24 (16.44%)	2	0.340320	0.327867 (3.66%)	
s444	92	68	14 (15.21%)	12 (17.64%)	2	0.181670	0.181260 (0.22%)	
s510	1038	734	45 (4.33%)	40 (5.45%)	5	0.133030	0.117819 (11.43%)	
s526	113	92	18 (15.93%)	16 (17.39%)	2	0.313490	0.305860 (2.43%)	
s713	271	208	11 (4.06%)	10 (4.8%)	1	0.428720	0.427840 (0.2%)	
s820	1162	848	40 (3.44%)	38 (4.48%)	2	0.161060	0.147483 (8.43%)	
s832	1293	948	84 (6.5%)	78 (12.04%)	5	0.239429	0.208798 (12.79%)	
s953	415	312	88 (11.36%)	82 (26.28%)	6	0.369214	0.337811 (8.50%)	

• Sharper upper bound in few regrowing steps

- $\bullet\,$ Improvement varies from 0.2% to 14%
- Uses a very low percentage of the size of the original graph
 - Lower than 10% (in most of cases)

Experiments (IV): graph throughput and time comparative

Graph	Original graph thr. CPU time (s)	Θ CPU time (s)	Original graph thr.	Θ	% thr.
s1423	59948.980	8.283	0.222720	0.235270	5.63%
s1488	36717.156	7.165	0.168760	0.172154	2.01%
s208	0.492	0.492	0.376892	0.376892	0%
s27	2166.002	0.954	0.305082	0.306166	0.35%
s349	141.210	0.441	0.328340	0.327398	-0.28%
s444	2278.231	0.205	0.181069	0.181260	0.11%
s510	13669.814	1.358	0.117500	0.118040	0.46%
s526	129.181	0.344	0.270010	0.305860	13.27%
s713	628.503	0.405	0.411630	0.427840	3.94%
s820	20775.811	0.788	0.144770	0.147699	2.02%
s832	16165.863	1.914	0.196920	0.208873	6.07%
s953	453.850	19.155	0.327910	0.338644	3.27%

• O CPU time insignificant respect to original thr CPU time

- Improvement varies from very close value to 13% over the real thr
 - Slow cycles far away from critical cycle?
- Negative relative error caused by simulation parameters

Experiments (IV): graph throughput and time comparative

Graph	Original graph thr. CPU time (s)	Θ CPU time (s)	Original graph thr.	Θ	% thr.
s1423	59948.980	8.283	0.222720	0.235270	5.63%
s1488	36717.156	7.165	0.168760	0.172154	2.01%
s208	0.492	0.492	0.376892	0.376892	0%
s27	2166.002	0.954	0.305082	0.306166	0.35%
s349	141.210	0.441	0.328340	0.327398	-0.28%
s444	2278.231	0.205	0.181069	0.181260	0.11%
s510	13669.814	1.358	0.117500	0.118040	0.46%
s526	129.181	0.344	0.270010	0.305860	13.27%
s713	628.503	0.405	0.411630	0.427840	3.94%
s820	20775.811	0.788	0.144770	0.147699	2.02%
s832	16165.863	1.914	0.196920	0.208873	6.07%
s953	453.850	19.155	0.327910	0.338644	3.27%

• O CPU time insignificant respect to original thr CPU time

- Improvement varies from very close value to 13% over the real thr
 - Slow cycles far away from critical cycle?
- Negative relative error caused by simulation parameters

- Proposed approach based on an iterative algorithm
 - Takes initial thr bound and refines it in each iteration
- Accurate upper bound in few iterations
- Efficient and good accuracy-computational complexity load trade-off
- Outputs:
 - Accurate estimate for the steady state thr
 - Subnet representing bottleneck of the system

Accurate Performance Estimation for Stochastic Marked Graphs by Bottleneck Regrowing

Ricardo J. Rodríguez and Jorge Júlvez {rjrodriguez, julvez}@unizar.es

Universidad de Zaragoza Zaragoza, Spain

September 24th, 2010

EPEW'10: 7th European Performance Engineering Workshop Bertinoro, Italy