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Motivation

Motivation (I): the need of requirement verification

New system: problem of verification of requirements

Performance of an industrial system → real need

Many systems modelled as Discrete Event Systems (DES)

Increasing size → exact performance computation unfeasible

State explosion problem

Size of the system
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Motivation

Motivation (II): performance evaluation approaches

Exact analytical measures

Need exhaustive state space exploration

Performance bounds: overcoming state explosion problem

Reduced running time, BUT how good (i.e., accurate) is the bound?
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Motivation

Motivation (II): performance evaluation approaches

Exact analytical measures

Need exhaustive state space exploration

Performance bounds: overcoming state explosion problem

Reduced running time, BUT how good (i.e., accurate) is the bound?

Our approach

Iterative algorithm

Sharper (i.e., closer) bounds
1 Initial bottleneck cycle (most

restrictive)
2 Add set of places likely to

constraint

Outputs:

Improved performance bound
New bottleneck
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Motivation

Motivation (III): a small example
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Bottleneck cycle → minimum ratio

Throughput bound:
1

5
= 0.2

Lowest ratio token/delay → {p1, p4, p6}

New thr bound: 0.1875 (6.25% lower)

Seek next constraint cycle non trivial

Tight marking and slack
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R.J. Rodŕıguez and J. Júlvez Performance Estimation for SMGs by Bottleneck Regrowing EPEW 2010 6 / 24



Motivation

Motivation (III): a small example

rC1
=

1

5
, rC2

=
1

4
and rC3

=
1

3
Bottleneck cycle → minimum ratio

Throughput bound:
1

5
= 0.2

Lowest ratio token/delay → {p1, p4, p6}

New thr bound: 0.1875 (6.25% lower)

Seek next constraint cycle non trivial

Tight marking and slack
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Motivation

Motivation (IV): running example

Performance bound 12.9% lower than the initial one

More iterations: a bound just 0.3% greater than the real performance

Benefits of the proposed method:

Efficient (uses linear programming)
Accurate (converges in few iterations)
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Some basic concepts Stochastic Marked Graph

Some basic concepts (I): Stochastic Marked Graph

Petri Net system: S = 〈P ,T ,Pre,Post,m0〉

Marked graph (MG): ordinary PN such that each place has exactly
one input and exactly one output arc

Stochastic Marked Graph (SMG): MG and a vector δ, where δ(t) is
the mean of the exponential firing time distribution associated to
each transition t ∈ T

SMG’s transitions work under infinite server semantics (assumed)

Steady state throughput χ: average number of firing counts per u.t.
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Some basic concepts Critical Cycle

Some basic concepts (II): Critical Cycle (1)

Little’s law

Average number of customers L in a queue: L = λ ·W

In a SMG: each pair {p, t}, where p• = {t}, can be seen as a simple
queueing system

m(p) = χ(p•) · s(p) (1)

s(p) =average waiting time + average service time (δ(p•) in our case)
→ δ(p•) ≤ s(p)

m(p) ≥ χ(p•) · δ(p•) (2)
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Some basic concepts Critical Cycle

Some basic concepts (II): Critical Cycle (2)

Note that MGs have a single minimal t-semiflow equal to 1

→ same steady state throughput for every transition

Maximize Θ :

m̂(p) ≥ δ(p•) ·Θ ∀p ∈ P (3a)

m̂ = m0 + C · σ (3b)

σ ≥ 0 (3c)

Θ is an upper throughput bound

Campos, J. Performance Bounds. Performance Models for Discrete Event Systems with Synchronizations: Formalisms and

Analysis Techniques, Ed. KRONOS, 1998
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Some basic concepts Critical Cycle

Some basic concepts (II): Critical Cycle (3)

Concept of slack: µ

m̂(p) ≥ δ(p•)·Θ −→ m(p) = δ(p•)·Θ+µ(p)

µ(p) = 0 if p belongs to critical cycle

Value of vector µ will depend on the
algorithm used by the LP solver

The lower the slack, the higher the
probability that place will constraint
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Some basic concepts Tight Marking

Some basic concepts (III): Tight Marking (1)

Tight marking vector (m̃)

m̃ = m0 + C · σ (4a)

∀ p : m̃(p) ≥ δ(p•) ·Θ (4b)

∀ t ∃ p ∈ •t : m̃(p) = δ(p•) ·Θ (4c)

Computed by solving the following LPP:

Maximize Σσ :

δ(p•) ·Θ ≤ m̃(p) for every p ∈ P

m̃ = m0 + C · σ

σ(tp) = k

(5)
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Some basic concepts Tight Marking

Some basic concepts (III): Tight Marking (2)

Tight place p: m̃(p) = δ(p•) ·Θ

Considering tight places (and their
input and output transitions)
→ kind of tree

Critical cycle is the root
All transitions are reached
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Graph Regrowing Strategy

Graph regrowing strategy (I): algorithm

Input data: SMG, accuracy

Output data: sharper performance bound, bottleneck

Algorithm steps

1 Calculate initial upper throughput bound and initial bottleneck cycle

2 Calculate tight marking and slacks
3 Iterate until no significant improvement is achieved

1 Look for place with minimum slack and add it
2 Calculate new throughput bound
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Graph Regrowing Strategy

Graph regrowing strategy (II): running example

P1 P2

P3 P4

P5 P6

P9

P7

P13

P8 P12

P15
P11

P10 P14

T1

T2 T3

T4

T7 T9

T6

T5

T8
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Graph Regrowing Strategy

Graph regrowing strategy (II): running example
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Graph Regrowing Strategy

Graph regrowing strategy (II): running example

Iteration Candidates
Added Θ %last %initialstep places

0 - - 0.3704 - -
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Graph Regrowing Strategy

Graph regrowing strategy (II): running example

Iteration Candidates
Added Θ %last %initialstep places

0 p1, p14 - 0.3704 - -
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Graph Regrowing Strategy

Graph regrowing strategy (II): running example

Iteration Candidates
Added Θ %last %initialstep places

0 p1, p14 p1 0.3704 - -
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Graph Regrowing Strategy

Graph regrowing strategy (II): running example

Iteration Candidates
Added Θ %last %initialstep places

0 p1, p14 p1 0.3704 - -
1 - - 0.322581 12.9% 12.9%
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Graph Regrowing Strategy

Graph regrowing strategy (II): running example

Iteration Candidates
Added Θ %last %initialstep places

0 p1, p14 p1 0.3704 - -
1 p10, p14 - 0.322581 12.9% 12.9%
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Graph Regrowing Strategy

Graph regrowing strategy (II): running example

Iteration Candidates
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Graph Regrowing Strategy

Graph regrowing strategy (II): running example

Iteration Candidates
Added Θ %last %initialstep places

0 p1, p14 p1 0.3704 - -
1 p10, p14 p10 0.322581 12.9% 12.9%
2 - - 0.297914 7.647% 19.563%
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Graph Regrowing Strategy

Graph regrowing strategy (II): running example

Iteration Candidates
Added Θ %last %initialstep places

0 p1, p14 p1 0.3704 - -
1 p10, p14 p10 0.322581 12.9% 12.9%
2 p5, p11, - 0.297914 7.647% 19.563%

p14, p15
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Graph Regrowing Strategy

Graph regrowing strategy (II): running example

Iteration Candidates
Added Θ %last %initialstep places

0 p1, p14 p1 0.3704 - -
1 p10, p14 p10 0.322581 12.9% 12.9%
2 p5, p11, p5 0.297914 7.647% 19.563%

p14, p15
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Graph Regrowing Strategy

Graph regrowing strategy (II): running example

Iteration Candidates
Added Θ %last %initialstep places

0 p1, p14 p1 0.3704 - -
1 p10, p14 p10 0.322581 12.91% 12.91%
2 p5, p11 p5 0.297914 7.647% 19.563%

p14, p15
3 - - 0.288401 3.193% 22.137%
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Graph Regrowing Strategy

Graph regrowing strategy (II): running example

Iteration Candidates
Added Θ %last %initialstep places

0 p1, p14 p1 0.3704 - -
1 p10, p14 p10 0.322581 12.9% 12.9%
2 p5, p11, p5 0.297914 7.647% 19.563%

p14, p15
3 p11, p14, p11 0.288401 3.193% 22.137%

p15
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Graph Regrowing Strategy

Graph regrowing strategy (II): running example

Iteration Candidates
Added Θ %last %initialstep places

0 p1, p14 p1 0.3704 - -
1 p10, p14 p10 0.322581 12.9% 12.9%
2 p5, p11, p5 0.297914 7.647% 19.563%

p14, p15
3 p11, p14, p11 0.288401 3.193% 22.137%

p15
4 - - 0.288401 0% 22.137%
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Experiments and Results

Experiments (I): description of the experiments

Benchmarking and used tools

ISCAS benchmarking

Strongly connected components of the ISCAS graphs
Initial marking randomly selected in [1 . . . 10]
Delay of transitions randomly selected in [0.1 . . . 1]

Strategy implemented in MATLAB (linprog)

Simulation tool: GreatSPN

Confidence level 99%; accuracy 1%

Host: Pentium IV 3.6GHz, 2GB DDR2 533MHz RAM
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Experiments and Results

Experiments (II): Gets close to the real thr. after few steps
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Experiments and Results

Experiments (III): results of improvement

Graph
Size % Size Regrowing Initial

Θ
|P| |T | |P′| (%) |T ′| (%) steps thr. bound

s1423 1107 792 79 (7.13%) 76 (9.59%) 3 0.236010 0.235213 (0.34%)
s1488 1567 1128 91 (5.8%) 86 (7.62%) 6 0.201300 0.173127 (13.99%)
s208 27 24 27 (100%) 24 (100%) 3 0.409390 0.377683 (7.75%)
s27 54 44 19 (35.18%) 18 (40.9%) 1 0.305960 0.304987 (0.31%)
s349 187 146 26 (13.9%) 24 (16.44%) 2 0.340320 0.327867 (3.66%)
s444 92 68 14 (15.21%) 12 (17.64%) 2 0.181670 0.181260 (0.22%)
s510 1038 734 45 (4.33%) 40 (5.45%) 5 0.133030 0.117819 (11.43%)
s526 113 92 18 (15.93%) 16 (17.39%) 2 0.313490 0.305860 (2.43%)
s713 271 208 11 (4.06%) 10 (4.8%) 1 0.428720 0.427840 (0.2%)
s820 1162 848 40 (3.44%) 38 (4.48%) 2 0.161060 0.147483 (8.43%)
s832 1293 948 84 (6.5%) 78 (12.04%) 5 0.239429 0.208798 (12.79%)
s953 415 312 88 (11.36%) 82 (26.28%) 6 0.369214 0.337811 (8.50%)

Sharper upper bound in few regrowing steps

Improvement varies from 0.2% to 14%

Uses a very low percentage of the size of the original graph

Lower than 10% (in most of cases)
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Experiments and Results

Experiments (IV): graph throughput and time comparative

Graph
Original graph thr. Θ Original graph

Θ
%

CPU time (s) CPU time (s) thr. thr.

s1423 59948.980 8.283 0.222720 0.235270 5.63%
s1488 36717.156 7.165 0.168760 0.172154 2.01%
s208 0.492 0.492 0.376892 0.376892 0%
s27 2166.002 0.954 0.305082 0.306166 0.35%
s349 141.210 0.441 0.328340 0.327398 −0.28%
s444 2278.231 0.205 0.181069 0.181260 0.11%
s510 13669.814 1.358 0.117500 0.118040 0.46%
s526 129.181 0.344 0.270010 0.305860 13.27%
s713 628.503 0.405 0.411630 0.427840 3.94%
s820 20775.811 0.788 0.144770 0.147699 2.02%
s832 16165.863 1.914 0.196920 0.208873 6.07%
s953 453.850 19.155 0.327910 0.338644 3.27%

Θ CPU time insignificant respect to original thr CPU time

Improvement varies from very close value to 13% over the real thr

Slow cycles far away from critical cycle?

Negative relative error caused by simulation parameters
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s27 2166.002 0.954 0.305082 0.306166 0.35%
s349 141.210 0.441 0.328340 0.327398 −0.28%
s444 2278.231 0.205 0.181069 0.181260 0.11%
s510 13669.814 1.358 0.117500 0.118040 0.46%
s526 129.181 0.344 0.270010 0.305860 13.27%
s713 628.503 0.405 0.411630 0.427840 3.94%
s820 20775.811 0.788 0.144770 0.147699 2.02%
s832 16165.863 1.914 0.196920 0.208873 6.07%
s953 453.850 19.155 0.327910 0.338644 3.27%

Θ CPU time insignificant respect to original thr CPU time

Improvement varies from very close value to 13% over the real thr

Slow cycles far away from critical cycle?

Negative relative error caused by simulation parameters
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Summary

Summary

Proposed approach based on an iterative algorithm

Takes initial thr bound and refines it in each iteration

Accurate upper bound in few iterations

Efficient and good accuracy-computational complexity load trade-off

Outputs:

Accurate estimate for the steady state thr
Subnet representing bottleneck of the system
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