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Software Development Life-Cycle

@ Phased involved for developing (and maintaining) software systems
and code

o Deployment (production): what happens when faults (or changes)
raise?
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Motivation (1)

Software Development Life-Cycle

@ Phased involved for developing (and maintaining) software systems
and code

o Deployment (production): what happens when faults (or changes)
raise?
o Were they initially taken into account? Otherwise — need to redesign
o Model-Driven Engineering
@ Increase productivity, simplifying design
@ Maximise compatibility between systems

Verify correctness BEFORE deployment

How?: Using model-checking

@ Proofs of correctness

@ Counter-examples (why not correct)
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Motivation (II)

o UML: standard de facto as modelling language

@ UML State Machines (UML-SMs): dynamic system behaviour
@ Assumption: intercommunication through asynchronous channels

o Erlang: functional and concurrent programming language
o Native support for concurrency, distribution and fault tolerance
@ Concurrency based on asynchronous message passing
o Widely used in the industry: T-Mobile, Ericsson, FB, WhatsApp. ..
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o Native support for concurrency, distribution and fault tolerance
@ Concurrency based on asynchronous message passing
o Widely used in the industry: T-Mobile, Ericsson, FB, WhatsApp. ..

v

Contributions

@ Minimise development time
o Automatically generate Erlang code from UML-SMs

@ Detect problems in early stages (save efforts and costs)
o Apply Erlang-based model checking techniques into UML-SMs
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A Transformation Approach: The Dining Philosophers (1)

Philosopher

( Thinking )

[TOUT expired] / fL.acquire(self) (

fL, fR
@ | co/ setTimeout(1000)

- J

Eating )

acquired|/ fR.acquire(self)

Ldo / eatSpaghetti()

exit / fL.release(); fR.reIease9

Waiting
acquired

(_ Hungry ]
—

v

Idle

o —

acquire(p)
e BeingUsed )
entry / p.acquired()
release ecquire / defer

v

Please note: thinking time and fork grabbing order
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( Eating ) V
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P = {f, R}

€ = {acquired} thinking(FL, FR) ->
receive
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start(FL, FR) -> . .
spawn(fun() -> thinking(FL, FR) end). acquired -> eating(FL, FR)
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hungry(FL, FR) —> ...

From UML State-Machine Diagrams to Erlang PROLE 2013 8/ 19

R.J. Rodriguez, L. Fredlund, A. Herranz



A Transformation Approach

A Transformation Approach: The Dining Philosophers (I1)

Philosopher

LR _ [ Thinking ") [TOUT expired]/ fL.acquire(self) (_ Hungry
@ > o/ setTimeout(1000)
—

acquired|/ fR.acquire(self;]

Waiting
acquired

P
&

{fL, fR}
{acquired}

-module (philosopher) . .
—export ([start/2]) . eating(FL, FR) —->

start(FL, FR) -> .
spavn(fun() -> thinking(FL, FR) end). €atSpaghetti(),
thinking(FL, FR) -> ... | |
by (oL, Ry > FL!release, FR!release,
thinking(FL, FR).

waiting(FL, FR) —> ...

PROLE 2013 8/ 19

From UML State-Machine Diagrams to Erlang

R.J. Rodriguez, L. Fredlund, A. Herranz



A Transformation Approach

A Transformation Approach: The Dining Philosophers (I1)

Philosopher

fiLLfR [ Thinking ")  [TOUT expired] / fL.acquire(self)

do / setTimeout(1000)

acquired|/ fR.acquire(self;

(__Waiting
acquired
4
P = {fL, fR}
& = {acquired}
-module (philosopher) .
-export([start/2]).

start (FL, FR) ->
spawn(fun() -> thinking(FL, FR) end).
thinking(FL, FR) -> ...
hungry(FL, FR) -> ... ) )
waiting(FL, FR) -> ... A UML instance is an Erlang process

eating(FL, FR) -> ...
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A Transformation Approach: The Dining Philosophers (111)

acquire(p)

Idle BeingUsed
entry / p.acquired()
release Kacquire / defer
2'):: ?acquire, release’} -module (fork) .
-export ([start/0]).
start() ->

spawn(fun() -> idle() end).
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BeingUsed )

entry / p.acquired()
acquire / defer

P=0
& = {acquire, release}

-module (fork) .
-export ([start/0]).

start() ->
spawn(fun() -> idle() end).

idle() —>
receive
{acquire, P} -> beingUsed(P);

X -> idle()

end.
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o —

P=0 s -

& = {acquire, release} belngUsed(P) >
Placquired(),

-module (fork) . receive

-export ([start/0]). .

start() -> release -> idle()

spawvn(fun() -> idle() end).
idle() -> ... end.
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A Transformation Approach: The Dining Philosophers (1V)

Wait! Explain me about defer. ..

Assume that current state is BeingUsed, and acquire event is received

( BeingUsed .
Lentry / p.acquired()J (entrnylprng;Sic:ed()j

acquire / defer

@ acquire is received
@ Something to do?
@ No. Do nothing.

@ acquire is received
@ Something to do?
@ Yes. Defers it.

Event has been discarded! Event is (eventually) handled

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 10 / 19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (1V)

Example system startup

run(N) ->
Forks = lists:map (fun (_) -> fork:start() end, lists:
lists:foreach
(fun ({L,R}) -> philosopher:start(L, R) end, adjacen

adjacent ([]) -> [1;
adjacent ([X|Xs]) -> lists:zip([X] ++ Xs, Xs ++ [X]).
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run(N) ->
Forks = lists:map (fun (_) -> fork:start() end, lists:

lists:foreach
(fun ({L,R}) -> philosopher:start(L, R) end, adjacen

adjacent ([]) -> [1;
adjacent ([X|Xs]) -> lists:zip([X] ++ Xs, Xs ++ [X]).

Using McErlang to verify correctness

> mce:start
(#mce_opts{program=fun () -> dining:run(2) end,
monitor=mce_mon_deadlock}).

**x*%x Monitor failed
monitor error:
deadlock
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A Transformation Approach

A Transformation Approach: Algorithm (VI)

o Input data: UML-SM

@ Output data: Erlang source code

Algorithm steps (abstractedly)

© Store parameters of initial transition (P)
@ Create the Erlang header (module, export, start)

© Create a set of triggered events of current state (&)
@ lterate for each state in the UML-SM

@ Convert entry, do activities to message passing
@ Special case: timeout activities
@ lterate in the output transitions

@ Fill a receive Erlang skeleton properly

@ Convert exit activity to message passing
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Automatic code generation
(multi-threaded behaviour and asynchronous communication)

Translator compiler

o C code from finite state machines with a synchronous semantics
o PM-FORMS-03,AFLTY-ISORC-10
@ Aynchronous semantics with a state table to reacts to events
o NT-SEA-03,KNNZ-ICSE-00
o Design pattern forms implementing state machines
o TKUY-ICRA-01
o Java thread per state-chart and Java objects to represent event
queues
o KM-TOOLS-02
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o Design pattern forms implementing state machines
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o Java thread per state-chart and Java objects to represent event
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Interpreter to manage multi-threading and event queues — Erlang
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Other model checkers

@ Branching time model-checking using JACK
o GLM-HASE-99

@ Linear-time model checking using PROMELA
o LMM-FAC-99

@ UML class diagrams, UML-SMs and UML Communication diagrams
verified using Maude LTL

o CEC-1JSEA-12
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Conclusions

o UML: standard as semi-formal modelling language
@ UML-SM: models system dynamics and its interaction

@ Modelling of concurrent and distributed systems

o Erlang: functional language

o Good support for concurrency and distribution

UML-SM — Erlang code

@ Reduce development time
o By automatically generating Erlang skeleton code

@ Enables validation of UML-SMs at an early development stage
@ Erlang-based model checking and testing techniques

@ Also an alternative to Erlang code for “behaviour” pattern
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Conclusions and Future Work (1)

o Extend to additional UML-SM constructs

o Preemptive UML-SM activities
Substates
Entry, exit or alternative potins

¢ ¢ ¢

@ Apply to some real examples
@ Tool support
o Plugin for some UML CASE tool (e.g. Eclipse)
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