
From UML State-Machine Diagrams to Erlang

Ricardo J. Rodŕıguez, Lars-Åke Fredlund, Ángel Herranz
« All wrongs reversed

{rjrodriguez, lfredlund, aherranz}@fi.upm.es

Universidad Politécnica de Madrid
Madrid, Spain

September 20th, 2013

XIII Jornadas sobre Programación y Lenguajes (PROLE)
Facultad de Informática, Universidad Complutense de Madrid

Agenda

Outline

1 Motivation

2 A Transformation Approach

3 Related Work

4 Conclusions and Future Work

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 2 / 19

Motivation

Outline

1 Motivation

2 A Transformation Approach

3 Related Work

4 Conclusions and Future Work

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 3 / 19

Motivation

Motivation (I)

Software Development Life-Cycle

Phased involved for developing (and maintaining) software systems
and code

Deployment (production): what happens when faults (or changes)
raise?

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 4 / 19

Motivation

Motivation (I)

Software Development Life-Cycle

Phased involved for developing (and maintaining) software systems
and code

Deployment (production): what happens when faults (or changes)
raise?

Were they initially taken into account? Otherwise → need to redesign

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 4 / 19

Motivation

Motivation (I)

Software Development Life-Cycle

Phased involved for developing (and maintaining) software systems
and code

Deployment (production): what happens when faults (or changes)
raise?

Were they initially taken into account? Otherwise → need to redesign

Model-Driven Engineering

Increase productivity, simplifying design
Maximise compatibility between systems

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 4 / 19

Motivation

Motivation (I)

Software Development Life-Cycle

Phased involved for developing (and maintaining) software systems
and code

Deployment (production): what happens when faults (or changes)
raise?

Were they initially taken into account? Otherwise → need to redesign

Model-Driven Engineering

Increase productivity, simplifying design
Maximise compatibility between systems

Verify correctness BEFORE deployment

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 4 / 19

Motivation

Motivation (I)

Software Development Life-Cycle

Phased involved for developing (and maintaining) software systems
and code

Deployment (production): what happens when faults (or changes)
raise?

Were they initially taken into account? Otherwise → need to redesign

Model-Driven Engineering

Increase productivity, simplifying design
Maximise compatibility between systems

Verify correctness BEFORE deployment

How?: Using model-checking

Proofs of correctness

Counter-examples (why not correct)

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 4 / 19

Motivation

Motivation (II)

We have mixed. . .

UML: standard de facto as modelling language

UML State Machines (UML-SMs): dynamic system behaviour
Assumption: intercommunication through asynchronous channels

Erlang: functional and concurrent programming language

Native support for concurrency, distribution and fault tolerance
Concurrency based on asynchronous message passing
Widely used in the industry: T-Mobile, Ericsson, FB, WhatsApp. . .

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 5 / 19

Motivation

Motivation (II)

We have mixed. . .

UML: standard de facto as modelling language

UML State Machines (UML-SMs): dynamic system behaviour
Assumption: intercommunication through asynchronous channels

Erlang: functional and concurrent programming language

Native support for concurrency, distribution and fault tolerance
Concurrency based on asynchronous message passing
Widely used in the industry: T-Mobile, Ericsson, FB, WhatsApp. . .

Contributions

Minimise development time

Automatically generate Erlang code from UML-SMs

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 5 / 19

Motivation

Motivation (II)

We have mixed. . .

UML: standard de facto as modelling language

UML State Machines (UML-SMs): dynamic system behaviour
Assumption: intercommunication through asynchronous channels

Erlang: functional and concurrent programming language

Native support for concurrency, distribution and fault tolerance
Concurrency based on asynchronous message passing
Widely used in the industry: T-Mobile, Ericsson, FB, WhatsApp. . .

Contributions

Minimise development time

Automatically generate Erlang code from UML-SMs

Detect problems in early stages (save efforts and costs)

Apply Erlang-based model checking techniques into UML-SMs

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 5 / 19

A Transformation Approach

Outline

1 Motivation

2 A Transformation Approach

3 Related Work

4 Conclusions and Future Work

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 6 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (I)

Philosopher

Fork

entry / p.acquired()

acquire / defer

BeingUsedIdle

release

acquire(p)

Please note: thinking time and fork grabbing order
R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 7 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (II)

Philosopher

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 8 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (II)

Philosopher

do / eatSpaghetti()

exit / fL.release(); fR.release()

Hungry

Eating
Waiting

Thinking

acquired / fR.acquire(self)

[TOUT expired] / fL.acquire(self)

acquired

fL, fR
do / setTimeout(1000)

P = {fL, fR}
E = {acquired}

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 8 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (II)

Philosopher

do / eatSpaghetti()

exit / fL.release(); fR.release()

Hungry

Eating
Waiting

Thinking

acquired / fR.acquire(self)

[TOUT expired] / fL.acquire(self)

acquired

fL, fR
do / setTimeout(1000)

P = {fL, fR}
E = {acquired}

-module(philosopher).

-export([start/2]).

start(FL, FR) ->

spawn(fun() -> thinking(FL, FR) end).

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 8 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (II)

Philosopher

do / eatSpaghetti()

exit / fL.release(); fR.release()

Hungry

Eating
Waiting

Thinking

acquired / fR.acquire(self)

[TOUT expired] / fL.acquire(self)

acquired

fL, fR
do / setTimeout(1000)

P = {fL, fR}
E = {acquired}

-module(philosopher).

-export([start/2]).

start(FL, FR) ->

spawn(fun() -> thinking(FL, FR) end).

thinking(FL, FR) ->

receive

X -> thinking(FL, FR)

after 1000 ->

FL!{acquire, self()}, hungry(FL, FR)

end.

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 8 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (II)

Philosopher

do / eatSpaghetti()

exit / fL.release(); fR.release()

Hungry

Eating
Waiting

Thinking

acquired / fR.acquire(self)

[TOUT expired] / fL.acquire(self)

acquired

fL, fR
do / setTimeout(1000)

P = {fL, fR}
E = {acquired}

-module(philosopher).

-export([start/2]).

start(FL, FR) ->

spawn(fun() -> thinking(FL, FR) end).

thinking(FL, FR) -> ...

hungry(FL, FR) ->

receive

acquired ->

FR!{acquire, self()}, waiting(FL, FR)

end.

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 8 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (II)

Philosopher

do / eatSpaghetti()

exit / fL.release(); fR.release()

Hungry

Eating
Waiting

Thinking

acquired / fR.acquire(self)

[TOUT expired] / fL.acquire(self)

acquired

fL, fR
do / setTimeout(1000)

P = {fL, fR}
E = {acquired}

-module(philosopher).

-export([start/2]).

start(FL, FR) ->

spawn(fun() -> thinking(FL, FR) end).

thinking(FL, FR) -> ...

hungry(FL, FR) -> ...

waiting(FL, FR) ->

receive

acquired -> eating(FL, FR)

end.

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 8 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (II)

Philosopher

do / eatSpaghetti()

exit / fL.release(); fR.release()

Hungry

Eating
Waiting

Thinking

acquired / fR.acquire(self)

[TOUT expired] / fL.acquire(self)

acquired

fL, fR
do / setTimeout(1000)

P = {fL, fR}
E = {acquired}

-module(philosopher).

-export([start/2]).

start(FL, FR) ->

spawn(fun() -> thinking(FL, FR) end).

thinking(FL, FR) -> ...

hungry(FL, FR) -> ...

waiting(FL, FR) -> ...

eating(FL, FR) ->

eatSpaghetti(),

FL!release, FR!release,

thinking(FL, FR).

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 8 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (II)

Philosopher

do / eatSpaghetti()

exit / fL.release(); fR.release()

Hungry

Eating
Waiting

Thinking

acquired / fR.acquire(self)

[TOUT expired] / fL.acquire(self)

acquired

fL, fR
do / setTimeout(1000)

P = {fL, fR}
E = {acquired}

-module(philosopher).

-export([start/2]).

start(FL, FR) ->

spawn(fun() -> thinking(FL, FR) end).

thinking(FL, FR) -> ...

hungry(FL, FR) -> ...

waiting(FL, FR) -> ...

eating(FL, FR) -> ...
A UML instance is an Erlang process

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 8 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (III)

Fork

entry / p.acquired()

acquire / defer

BeingUsedIdle

release

acquire(p)

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 9 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (III)

Fork

entry / p.acquired()

acquire / defer

BeingUsedIdle

release

acquire(p)

P = ∅
E = {acquire, release}

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 9 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (III)

Fork

entry / p.acquired()

acquire / defer

BeingUsedIdle

release

acquire(p)

P = ∅
E = {acquire, release} -module(fork).

-export([start/0]).

start() ->

spawn(fun() -> idle() end).

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 9 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (III)

Fork

entry / p.acquired()

acquire / defer

BeingUsedIdle

release

acquire(p)

P = ∅
E = {acquire, release}

-module(fork).

-export([start/0]).

start() ->

spawn(fun() -> idle() end).

idle() ->

receive

{acquire, P} -> beingUsed(P);

X -> idle()

end.

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 9 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (III)

Fork

P = ∅
E = {acquire, release}

-module(fork).

-export([start/0]).

start() ->

spawn(fun() -> idle() end).

idle() -> ...

beingUsed(P) ->

P!acquired(),

receive

release -> idle()

end.

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 9 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (IV)

Wait! Explain me about defer. . .

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 10 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (IV)

Wait! Explain me about defer. . .

Assume that current state is BeingUsed, and acquire event is received

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 10 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (IV)

Wait! Explain me about defer. . .

Assume that current state is BeingUsed, and acquire event is received

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 10 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (IV)

Wait! Explain me about defer. . .

Assume that current state is BeingUsed, and acquire event is received

acquire is received

Something to do?
acquire is received

Something to do?

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 10 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (IV)

Wait! Explain me about defer. . .

Assume that current state is BeingUsed, and acquire event is received

acquire is received

Something to do?

No. Do nothing.

acquire is received

Something to do?

Yes. Defers it.

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 10 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (IV)

Wait! Explain me about defer. . .

Assume that current state is BeingUsed, and acquire event is received

acquire is received

Something to do?

No. Do nothing.

Event has been discarded!

acquire is received

Something to do?

Yes. Defers it.

Event is (eventually) handled
R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 10 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (IV)
Example system startup

run(N) ->

Forks = lists:map (fun (_) -> fork:start() end , lists:

lists:foreach

(fun ({L,R}) -> philosopher:start(L, R) end , adjacen

adjacent([]) -> [];

adjacent([X|Xs]) -> lists:zip([X] ++ Xs, Xs ++ [X]).

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 11 / 19

A Transformation Approach

A Transformation Approach: The Dining Philosophers (IV)
Example system startup

run(N) ->

Forks = lists:map (fun (_) -> fork:start() end , lists:

lists:foreach

(fun ({L,R}) -> philosopher:start(L, R) end , adjacen

adjacent([]) -> [];

adjacent([X|Xs]) -> lists:zip([X] ++ Xs, Xs ++ [X]).

Using McErlang to verify correctness

> mce:start

(#mce_opts{program=fun () -> dining:run(2) end ,

monitor=mce_mon_deadlock}).

...

*** Monitor failed

monitor error:

deadlock
R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 11 / 19

A Transformation Approach

A Transformation Approach: Algorithm (VI)

Input data: UML-SM

Output data: Erlang source code

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 12 / 19

A Transformation Approach

A Transformation Approach: Algorithm (VI)

Input data: UML-SM

Output data: Erlang source code

Algorithm steps (abstractedly)

1 Store parameters of initial transition (P)

2 Create the Erlang header (module, export, start)

3 Create a set of triggered events of current state (E)
4 Iterate for each state in the UML-SM

1 Convert entry, do activities to message passing
2 Special case: timeout activities
3 Iterate in the output transitions

1 Fill a receive Erlang skeleton properly

4 Convert exit activity to message passing

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 12 / 19

Related Work

Outline

1 Motivation

2 A Transformation Approach

3 Related Work

4 Conclusions and Future Work

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 13 / 19

Related Work

Related Work (I)

Automatic code generation
(multi-threaded behaviour and asynchronous communication)

Translator compiler

C code from finite state machines with a synchronous semantics

PM-FORMS-03,AFLTY-ISORC-10

Aynchronous semantics with a state table to reacts to events

NT-SEA-03,KNNZ-ICSE-00

Design pattern forms implementing state machines

TKUY-ICRA-01

Java thread per state-chart and Java objects to represent event
queues

KM-TOOLS-02

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 14 / 19

Related Work

Related Work (I)

Automatic code generation
(multi-threaded behaviour and asynchronous communication)

Translator compiler

C code from finite state machines with a synchronous semantics

PM-FORMS-03,AFLTY-ISORC-10

Aynchronous semantics with a state table to reacts to events

NT-SEA-03,KNNZ-ICSE-00

Design pattern forms implementing state machines

TKUY-ICRA-01

Java thread per state-chart and Java objects to represent event
queues

KM-TOOLS-02

Interpreter to manage multi-threading and event queues → Erlang

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 14 / 19

Related Work

Related Work (II)

Other model checkers

Branching time model-checking using JACK

GLM-HASE-99

Linear-time model checking using PROMELA

LMM-FAC-99

UML class diagrams, UML-SMs and UML Communication diagrams
verified using Maude LTL

CEC-IJSEA-12

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 15 / 19

Conclusions and Future Work

Outline

1 Motivation

2 A Transformation Approach

3 Related Work

4 Conclusions and Future Work

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 16 / 19

Conclusions and Future Work

Conclusions and Future Work (I)

Conclusions

UML: standard as semi-formal modelling language
UML-SM: models system dynamics and its interaction

Modelling of concurrent and distributed systems

Erlang: functional language

Good support for concurrency and distribution

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 17 / 19

Conclusions and Future Work

Conclusions and Future Work (I)

Conclusions

UML: standard as semi-formal modelling language
UML-SM: models system dynamics and its interaction

Modelling of concurrent and distributed systems

Erlang: functional language

Good support for concurrency and distribution

UML-SM → Erlang code

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 17 / 19

Conclusions and Future Work

Conclusions and Future Work (I)

Conclusions

UML: standard as semi-formal modelling language
UML-SM: models system dynamics and its interaction

Modelling of concurrent and distributed systems

Erlang: functional language

Good support for concurrency and distribution

UML-SM → Erlang code

Contributions

Reduce development time

By automatically generating Erlang skeleton code

Enables validation of UML-SMs at an early development stage

Erlang-based model checking and testing techniques

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 17 / 19

Conclusions and Future Work

Conclusions and Future Work (I)

Conclusions

UML: standard as semi-formal modelling language
UML-SM: models system dynamics and its interaction

Modelling of concurrent and distributed systems

Erlang: functional language

Good support for concurrency and distribution

UML-SM → Erlang code

Contributions

Reduce development time

By automatically generating Erlang skeleton code

Enables validation of UML-SMs at an early development stage

Erlang-based model checking and testing techniques

Also an alternative to Erlang code for “behaviour” pattern

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 17 / 19

Conclusions and Future Work

Conclusions and Future Work (II)

Future Work

Extend to additional UML-SM constructs

Preemptive UML-SM activities
Substates
Entry, exit or alternative potins
. . .

Apply to some real examples

Tool support

Plugin for some UML CASE tool (e.g. Eclipse)

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 18 / 19

From UML State-Machine Diagrams to Erlang

Ricardo J. Rodŕıguez, Lars-Åke Fredlund, Ángel Herranz
« All wrongs reversed

{rjrodriguez, lfredlund, aherranz}@fi.upm.es

Universidad Politécnica de Madrid
Madrid, Spain

September 20th, 2013

XIII Jornadas sobre Programación y Lenguajes (PROLE)
Facultad de Informática, Universidad Complutense de Madrid

	Motivation
	A Transformation Approach
	Related Work
	Conclusions and Future Work

