From UML State-Machine Diagrams to Erlang

Ricardo J. Rodriguez, Lars-Ake Fredlund, Angel Herranz

(3 All wrongs reversed
{rjrodriguez, Ifredlund, aherranz}@fi.upm.es

Universidad Politécnica de Madrid
Madrid, Spain

September 20th, 2013

X1l Jornadas sobre Programacion y Lenguajes (PROLE)
Facultad de Informatica, Universidad Complutense de Madrid



Agenda

Outline

@ Motivation
© A Transformation Approach
© Related Work

@ Conclusions and Future Work

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 2 /19



Motivation

Outline

@ Motivation

z, L. Fredlund, A. Herranz State-Machine Dia PROLE 2013 3/ 19



Motivation

Motivation (1)

Software Development Life-Cycle

@ Phased involved for developing (and maintaining) software systems
and code

o Deployment (production): what happens when faults (or changes)
raise?

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 4 /19



Motivation

Motivation (1)

Software Development Life-Cycle

@ Phased involved for developing (and maintaining) software systems
and code

o Deployment (production): what happens when faults (or changes)
raise?
o Were they initially taken into account? Otherwise — need to redesign

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 4 /19



Motivation

Motivation (1)

Software Development Life-Cycle

@ Phased involved for developing (and maintaining) software systems
and code

o Deployment (production): what happens when faults (or changes)
raise?

o Were they initially taken into account? Otherwise — need to redesign
o Model-Driven Engineering

@ Increase productivity, simplifying design

@ Maximise compatibility between systems

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 4 /19



Motivation

Motivation (1)

Software Development Life-Cycle

@ Phased involved for developing (and maintaining) software systems
and code

o Deployment (production): what happens when faults (or changes)
raise?
o Were they initially taken into account? Otherwise — need to redesign
o Model-Driven Engineering
@ Increase productivity, simplifying design
@ Maximise compatibility between systems

Verify correctness BEFORE deployment

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013



Motivation

Motivation (1)

Software Development Life-Cycle

@ Phased involved for developing (and maintaining) software systems
and code

o Deployment (production): what happens when faults (or changes)
raise?
o Were they initially taken into account? Otherwise — need to redesign
o Model-Driven Engineering
@ Increase productivity, simplifying design
@ Maximise compatibility between systems

Verify correctness BEFORE deployment

How?: Using model-checking

@ Proofs of correctness

@ Counter-examples (why not correct)

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013



Motivation

Motivation (II)

o UML: standard de facto as modelling language

@ UML State Machines (UML-SMs): dynamic system behaviour
@ Assumption: intercommunication through asynchronous channels

o Erlang: functional and concurrent programming language
o Native support for concurrency, distribution and fault tolerance
@ Concurrency based on asynchronous message passing
o Widely used in the industry: T-Mobile, Ericsson, FB, WhatsApp. ..

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 5/ 19



Motivation

Motivation (II)

o UML: standard de facto as modelling language

@ UML State Machines (UML-SMs): dynamic system behaviour
@ Assumption: intercommunication through asynchronous channels

o Erlang: functional and concurrent programming language
o Native support for concurrency, distribution and fault tolerance
@ Concurrency based on asynchronous message passing
o Widely used in the industry: T-Mobile, Ericsson, FB, WhatsApp. ..

v

Contributions

@ Minimise development time
o Automatically generate Erlang code from UML-SMs

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 5/ 19



Motivation

Motivation (II)

o UML: standard de facto as modelling language

@ UML State Machines (UML-SMs): dynamic system behaviour
@ Assumption: intercommunication through asynchronous channels

o Erlang: functional and concurrent programming language
o Native support for concurrency, distribution and fault tolerance
@ Concurrency based on asynchronous message passing
o Widely used in the industry: T-Mobile, Ericsson, FB, WhatsApp. ..

v

Contributions

@ Minimise development time
o Automatically generate Erlang code from UML-SMs

@ Detect problems in early stages (save efforts and costs)
o Apply Erlang-based model checking techniques into UML-SMs

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 5/ 19



A Transformation Approach

Outline

© A Transformation Approach

R.J. Rodriguez, L. Fredlund, A. Herranz i i PROLE 2013 6 /19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (1)

Philosopher

( Thinking )

[TOUT expired] / fL.acquire(self) (

fL, fR
@ | co/ setTimeout(1000)

- J

Eating )

acquired|/ fR.acquire(self)

Ldo / eatSpaghetti()

exit / fL.release(); fR.reIease9

Waiting
acquired

(_ Hungry ]
—

v

Idle

o —

acquire(p)
e BeingUsed )
entry / p.acquired()
release ecquire / defer

v

Please note: thinking time and fork grabbing order

R.J. Rodriguez, L. Fredlund, A. Herranz From UML

State-Machine Diagrams to Erlang

PROLE 2013 7/ 19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (I1)

Philosopher
fiLLfR [ Thinking "\ [TOUT expired]/ fL.acquire(self) (_ Hungry
@ | co/ setTimeout(1000)

- J —

acquired|/ fR.acquire(self)

Eating h

(. Y
do / eatSpaghetti() Waiting
exit / fL.release(); fR.reIease9 acquired

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 8/ 19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (I1)

Philosopher

( Thinking )
do / setTimeout(1000)
J

[TOUT expired] / fL.acquire(self) ( Hungry j
—

acquired|/ fR.acquire(self;]

Eating h
do / eatSpaghetti()
exit / fL.release(); fR.reIease9

Waiting
acquired k

P={

fL, fR}

& = {acquired}

R.J. Rodriguez, L. Fredlund, A. Herranz From UML

State-Machine Diagrams to Erlang PROLE 2013 8/ 19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (I1)
Philosopher
Thinking ") [TOUT expired] / fL.acquire(self) (_ Hungry )
_

I
.%Ldo / setTimeout(1000) J
acquired|/ fR.acquire(self]

( Eating A V
do / eatSpaghetti() (__Waiting
exit / fL.release(); fR.reIease9 acquired L
P = {fL, R}
& = {acquired}
-module (philosopher).
-export ([start/2]).

start(FL, FR) ->
spawn(fun() -> thinking(FL, FR) end).

PROLE 2013 8/ 19

From UML State-Machine Diagrams to Erlang

Herranz

R.J. Rodriguez, L. Fredlund, A.



A Transformation Approach

A Transformation Approach: The Dining Philosophers (I1)

Philosopher

acquired|/ fR.acquire(self;]

( Eating ) V
do / eatSpaghetti() Waiting
exit / fL.release(); fR.reIease9 acquired

P = {f, R}

€ = {acquired} thinking(FL, FR) ->
receive

-module (philosopher) . X X

-export ([start/2]). X -> thlnklng (FL s FR)

start(FL, FR) -> after 1000 ->

spawn(fun() -> thinking(FL, FR) end).

FL!{acquire, self ()}, hungry(FL, FR)
end.
From UML State-Machine Diagrams to Erlang PROLE 2013 8/ 19

R.J. Rodriguez, L. Fredlund, A. Herranz



A Transformation Approach

A Transformation Approach: The Dining Philosophers (I1)

Philosopher

( Thinking ) [TOUT expired] / fL.acquire(se

fiL, fR
HLdo / setTimeout(1000) )I

~

( Eating -

do / eatSpaghetti()

exit / fL.release(); fR.reIease9 acquired k
P = {fL, fR}
& = {acquired}

hungry(FL, FR) ->
-module (philosopher) . receive
-export ([start/2]). .
start(FL, FR) -> acquired ->
£ - hinki FL, FR d) . . . .
sty nking( ) end) FR!{acquire, self()}, waiting(FL, FR)
end.

PROLE 2013 8/ 19

From UML State-Machine Diagrams to Erlang

R.J. Rodriguez, L. Fredlund, A. Herranz



A Transformation Approach

A Transformation Approach: The Dining Philosophers (I1)

Philosopher

fiLLfR [ Thinking ) [TOUT expired] / fL.acquire(self) (
@ {0/ sefTimeout(1000)
G J
acquired|/ fR.acquire(self;]
Eating

exit / fL.release(); fR.release(

Ldo / eatSpaghetti()

P = {fL, R}
& = {acquired}
waiting(FL, FR) ->
-module (philosopher) . i
-export([start/2]). receilve
start(FL, FR) -> . .
spawn(fun() -> thinking(FL, FR) end). acquired -> eating(FL, FR)
thinking(FL, FR) -> ... end

hungry(FL, FR) —> ...

From UML State-Machine Diagrams to Erlang PROLE 2013 8/ 19

R.J. Rodriguez, L. Fredlund, A. Herranz



A Transformation Approach

A Transformation Approach: The Dining Philosophers (I1)

Philosopher

LR _ [ Thinking ") [TOUT expired]/ fL.acquire(self) (_ Hungry
@ > o/ setTimeout(1000)
—

acquired|/ fR.acquire(self;]

Waiting
acquired

P
&

{fL, fR}
{acquired}

-module (philosopher) . .
—export ([start/2]) . eating(FL, FR) —->

start(FL, FR) -> .
spavn(fun() -> thinking(FL, FR) end). €atSpaghetti(),
thinking(FL, FR) -> ... | |
by (oL, Ry > FL!release, FR!release,
thinking(FL, FR).

waiting(FL, FR) —> ...

PROLE 2013 8/ 19

From UML State-Machine Diagrams to Erlang

R.J. Rodriguez, L. Fredlund, A. Herranz



A Transformation Approach

A Transformation Approach: The Dining Philosophers (I1)

Philosopher

fiLLfR [ Thinking ")  [TOUT expired] / fL.acquire(self)

do / setTimeout(1000)

acquired|/ fR.acquire(self;

(__Waiting
acquired
4
P = {fL, fR}
& = {acquired}
-module (philosopher) .
-export([start/2]).

start (FL, FR) ->
spawn(fun() -> thinking(FL, FR) end).
thinking(FL, FR) -> ...
hungry(FL, FR) -> ... ) )
waiting(FL, FR) -> ... A UML instance is an Erlang process

eating(FL, FR) -> ...

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 8/ 19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (111)

acquire(p)
Idle d P BeingUsed )
. entry / p.acquired()
release Kacquire [/ defer

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 9 /19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (111)

acquire(p)
Idle d P BeingUsed )
entry / p.acquired()J

release Kacquire / defer

= {acquire, release}

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 9 /19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (111)

acquire(p)

Idle BeingUsed
entry / p.acquired()
release Kacquire / defer
2'):: ?acquire, release’} -module (fork) .
-export ([start/0]).
start() ->

spawn(fun() -> idle() end).

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 9 /19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (111)

BeingUsed )

entry / p.acquired()
acquire / defer

P=0
& = {acquire, release}

-module (fork) .
-export ([start/0]).

start() ->
spawn(fun() -> idle() end).

idle() —>
receive
{acquire, P} -> beingUsed(P);

X -> idle()

end.

PROLE 2013

From UML State-Machine Diagrams to Erlang

R.J. Rodriguez, L. Fredlund, A. Herranz



A Transformation Approach

A Transformation Approach: The Dining Philosophers (111)

o —

P=0 s -

& = {acquire, release} belngUsed(P) >
Placquired(),

-module (fork) . receive

-export ([start/0]). .

start() -> release -> idle()

spawvn(fun() -> idle() end).
idle() -> ... end.

PROLE 2013

R.J. Rodriguez, L. Fredlund, A. Herranz L State-Machine Diagrams to Erlang



A Transformation Approach

A Transformation Approach: The Dining Philosophers (1V)

Wait! Explain me about defer. ..

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 10 / 19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (1V)

Wait! Explain me about defer. ..

Assume that current state is BeingUsed, and acquire event is received

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 10 / 19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (1V)

Wait! Explain me about defer. ..

Assume that current state is BeingUsed, and acquire event is received

(BeingUsed ( BeingUsed

Lentry / p.acquired()J entry / p.acquired()
Lacquire / defer J

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 10 / 19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (1V)

Wait! Explain me about defer. ..

Assume that current state is BeingUsed, and acquire event is received

( BeingUsed .
Lentry / p.acquired()J (entrnylprng;Sic:ed()j

acquire / defer

@ acquire is received

S thine to do? @ acquire is received
@ Something to do?

@ Something to do?

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 10 / 19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (1V)

Wait! Explain me about defer. ..

Assume that current state is BeingUsed, and acquire event is received

( BeingUsed .
Lentry / p.acquired()J (entrnylprng;Sic:ed()j

acquire / defer

@ acquire is received
@ Something to do?
@ No. Do nothing.

@ acquire is received
@ Something to do?
@ Yes. Defers it.

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 10 / 19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (1V)

Wait! Explain me about defer. ..

Assume that current state is BeingUsed, and acquire event is received

( BeingUsed .
Lentry / p.acquired()J (entrnylprng;Sic:ed()j

acquire / defer

@ acquire is received
@ Something to do?
@ No. Do nothing.

@ acquire is received
@ Something to do?
@ Yes. Defers it.

Event has been discarded! Event is (eventually) handled

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 10 / 19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (1V)

Example system startup

run(N) ->
Forks = lists:map (fun (_) -> fork:start() end, lists:
lists:foreach
(fun ({L,R}) -> philosopher:start(L, R) end, adjacen

adjacent ([]) -> [1;
adjacent ([X|Xs]) -> lists:zip([X] ++ Xs, Xs ++ [X]).

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 11 /19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (1V)

Example system startup

run(N) ->
Forks = lists:map (fun (_) -> fork:start() end, lists:

lists:foreach
(fun ({L,R}) -> philosopher:start(L, R) end, adjacen

adjacent ([]) -> [1;
adjacent ([X|Xs]) -> lists:zip([X] ++ Xs, Xs ++ [X]).

Using McErlang to verify correctness

> mce:start
(#mce_opts{program=fun () -> dining:run(2) end,
monitor=mce_mon_deadlock}).

**x*%x Monitor failed
monitor error:
deadlock

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 11 /19



A Transformation Approach

A Transformation Approach: Algorithm (VI)

@ Input data: UML-SM
@ Output data: Erlang source code

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 12 /19



A Transformation Approach

A Transformation Approach: Algorithm (VI)

o Input data: UML-SM

@ Output data: Erlang source code

Algorithm steps (abstractedly)

© Store parameters of initial transition (P)
@ Create the Erlang header (module, export, start)

© Create a set of triggered events of current state (&)
@ lterate for each state in the UML-SM

@ Convert entry, do activities to message passing
@ Special case: timeout activities
@ lterate in the output transitions

@ Fill a receive Erlang skeleton properly

@ Convert exit activity to message passing

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013



Related Work

Outline

© Related Work

z, L. Fredlund, A. Herranz State-Machine Dia PROLE 2013 13 /19



Related Work

Related Work (1)

Automatic code generation
(multi-threaded behaviour and asynchronous communication)

Translator compiler

o C code from finite state machines with a synchronous semantics
o PM-FORMS-03,AFLTY-ISORC-10
@ Aynchronous semantics with a state table to reacts to events
o NT-SEA-03,KNNZ-ICSE-00
o Design pattern forms implementing state machines
o TKUY-ICRA-01
o Java thread per state-chart and Java objects to represent event
queues
o KM-TOOLS-02

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 14 /19



Related Work

Related Work (1)

Automatic code generation
(multi-threaded behaviour and asynchronous communication)

Translator compiler

o C code from finite state machines with a synchronous semantics
o PM-FORMS-03,AFLTY-ISORC-10

@ Aynchronous semantics with a state table to reacts to events
o NT-SEA-03,KNNZ-ICSE-00

o Design pattern forms implementing state machines
o TKUY-ICRA-01

o Java thread per state-chart and Java objects to represent event
queues
o KM-TOOLS-02

Interpreter to manage multi-threading and event queues — Erlang

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 14 /19



Related Work

Related Work (1)

Other model checkers

@ Branching time model-checking using JACK
o GLM-HASE-99

@ Linear-time model checking using PROMELA
o LMM-FAC-99

@ UML class diagrams, UML-SMs and UML Communication diagrams
verified using Maude LTL

o CEC-1JSEA-12

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 15 /19



Conclusions and Future Work

Outline

@ Conclusions and Future Work

z, L. Fredlund, A. Herranz State-Machine Dia PROLE 2013 16 / 19



Conclusions and Future Work

Conclusions and Future Work (1)

Conclusions

o UML: standard as semi-formal modelling language
@ UML-SM: models system dynamics and its interaction

@ Modelling of concurrent and distributed systems
o Erlang: functional language
o Good support for concurrency and distribution

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013



Conclusions and Future Work

Conclusions and Future Work (1)

Conclusions

o UML: standard as semi-formal modelling language
@ UML-SM: models system dynamics and its interaction

@ Modelling of concurrent and distributed systems
o Erlang: functional language
o Good support for concurrency and distribution

UML-SM — Erlang code

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013



Conclusions and Future Work

Conclusions and Future Work (1)

Conclusions

o UML: standard as semi-formal modelling language
@ UML-SM: models system dynamics and its interaction

@ Modelling of concurrent and distributed systems

o Erlang: functional language

o Good support for concurrency and distribution

UML-SM — Erlang code

@ Reduce development time
o By automatically generating Erlang skeleton code

@ Enables validation of UML-SMs at an early development stage
@ Erlang-based model checking and testing techniques

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 17 / 19



Conclusions and Future Work

Conclusions and Future Work (1)

Conclusions

o UML: standard as semi-formal modelling language
@ UML-SM: models system dynamics and its interaction

@ Modelling of concurrent and distributed systems

o Erlang: functional language

o Good support for concurrency and distribution

UML-SM — Erlang code

@ Reduce development time
o By automatically generating Erlang skeleton code

@ Enables validation of UML-SMs at an early development stage
@ Erlang-based model checking and testing techniques

@ Also an alternative to Erlang code for “behaviour” pattern

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 17 / 19



Conclusions and Future Work

Conclusions and Future Work (1)

o Extend to additional UML-SM constructs

o Preemptive UML-SM activities
Substates
Entry, exit or alternative potins

¢ ¢ ¢

@ Apply to some real examples
@ Tool support
o Plugin for some UML CASE tool (e.g. Eclipse)

R.J. Rodriguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013



From UML State-Machine Diagrams to Erlang

Ricardo J. Rodriguez, Lars-Ake Fredlund, Angel Herranz

(3 All wrongs reversed
{rjrodriguez, Ifredlund, aherranz}@fi.upm.es

Universidad Politécnica de Madrid
Madrid, Spain

September 20th, 2013

X1l Jornadas sobre Programacion y Lenguajes (PROLE)
Facultad de Informatica, Universidad Complutense de Madrid



	Motivation
	A Transformation Approach
	Related Work
	Conclusions and Future Work

