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R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 2 / 19



Motivation

Outline

1 Motivation

2 A Transformation Approach

3 Related Work

4 Conclusions and Future Work
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Deployment (production): what happens when faults (or changes)
raise?

Were they initially taken into account? Otherwise → need to redesign

Model-Driven Engineering

Increase productivity, simplifying design
Maximise compatibility between systems

Verify correctness BEFORE deployment

How?: Using model-checking

Proofs of correctness

Counter-examples (why not correct)
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We have mixed. . .

UML: standard de facto as modelling language

UML State Machines (UML-SMs): dynamic system behaviour
Assumption: intercommunication through asynchronous channels

Erlang: functional and concurrent programming language

Native support for concurrency, distribution and fault tolerance
Concurrency based on asynchronous message passing
Widely used in the industry: T-Mobile, Ericsson, FB, WhatsApp. . .
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Concurrency based on asynchronous message passing
Widely used in the industry: T-Mobile, Ericsson, FB, WhatsApp. . .

Contributions

Minimise development time

Automatically generate Erlang code from UML-SMs

Detect problems in early stages (save efforts and costs)

Apply Erlang-based model checking techniques into UML-SMs
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A Transformation Approach

A Transformation Approach: The Dining Philosophers (I)

Philosopher

Fork

entry / p.acquired()

acquire / defer

BeingUsedIdle

release

acquire(p)

Please note: thinking time and fork grabbing order
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R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 8 / 19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (II)

Philosopher

do / eatSpaghetti()

exit / fL.release(); fR.release()

Hungry

Eating
Waiting

Thinking

acquired / fR.acquire(self)

[TOUT expired] / fL.acquire(self)

acquired

fL, fR
do / setTimeout(1000)

P = {fL, fR}
E = {acquired}
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receive
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after 1000 ->
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end.
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thinking(FL, FR).

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 8 / 19



A Transformation Approach

A Transformation Approach: The Dining Philosophers (II)

Philosopher

do / eatSpaghetti()

exit / fL.release(); fR.release()

Hungry

Eating
Waiting

Thinking

acquired / fR.acquire(self)

[TOUT expired] / fL.acquire(self)

acquired

fL, fR
do / setTimeout(1000)

P = {fL, fR}
E = {acquired}
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-export([start/2]).

start(FL, FR) ->

spawn(fun() -> thinking(FL, FR) end).

thinking(FL, FR) -> ...

hungry(FL, FR) -> ...

waiting(FL, FR) -> ...

eating(FL, FR) -> ...
A UML instance is an Erlang process
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Fork

entry / p.acquired()

acquire / defer

BeingUsedIdle

release

acquire(p)

P = ∅
E = {acquire, release} -module(fork).

-export([start/0]).

start() ->

spawn(fun() -> idle() end).
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P = ∅
E = {acquire, release}

-module(fork).

-export([start/0]).

start() ->

spawn(fun() -> idle() end).

idle() ->

receive

{acquire, P} -> beingUsed(P);

X -> idle()

end.
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Fork

P = ∅
E = {acquire, release}

-module(fork).

-export([start/0]).

start() ->

spawn(fun() -> idle() end).

idle() -> ...

beingUsed(P) ->

P!acquired(),

receive

release -> idle()

end.
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A Transformation Approach

A Transformation Approach: The Dining Philosophers (IV)

Wait! Explain me about defer. . .

Assume that current state is BeingUsed, and acquire event is received

acquire is received

Something to do?

No. Do nothing.

Event has been discarded!

acquire is received

Something to do?

Yes. Defers it.

Event is (eventually) handled
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A Transformation Approach

A Transformation Approach: The Dining Philosophers (IV)
Example system startup

run(N) ->

Forks = lists:map (fun (_) -> fork:start() end , lists:

lists:foreach

(fun ({L,R}) -> philosopher:start(L, R) end , adjacen

adjacent([]) -> [];

adjacent([X|Xs]) -> lists:zip([X] ++ Xs, Xs ++ [X]).
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Example system startup

run(N) ->

Forks = lists:map (fun (_) -> fork:start() end , lists:

lists:foreach

(fun ({L,R}) -> philosopher:start(L, R) end , adjacen

adjacent([]) -> [];

adjacent([X|Xs]) -> lists:zip([X] ++ Xs, Xs ++ [X]).

Using McErlang to verify correctness

> mce:start

(#mce_opts{program=fun () -> dining:run(2) end ,

monitor=mce_mon_deadlock}).

...

*** Monitor failed

monitor error:

deadlock
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A Transformation Approach

A Transformation Approach: Algorithm (VI)

Input data: UML-SM

Output data: Erlang source code

Algorithm steps (abstractedly)

1 Store parameters of initial transition (P)

2 Create the Erlang header (module, export, start)

3 Create a set of triggered events of current state (E)
4 Iterate for each state in the UML-SM

1 Convert entry, do activities to message passing
2 Special case: timeout activities
3 Iterate in the output transitions

1 Fill a receive Erlang skeleton properly

4 Convert exit activity to message passing

R.J. Rodŕıguez, L. Fredlund, A. Herranz From UML State-Machine Diagrams to Erlang PROLE 2013 12 / 19



Related Work

Outline

1 Motivation

2 A Transformation Approach

3 Related Work

4 Conclusions and Future Work
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UML: standard as semi-formal modelling language
UML-SM: models system dynamics and its interaction

Modelling of concurrent and distributed systems

Erlang: functional language

Good support for concurrency and distribution

UML-SM → Erlang code

Contributions

Reduce development time

By automatically generating Erlang skeleton code

Enables validation of UML-SMs at an early development stage

Erlang-based model checking and testing techniques

Also an alternative to Erlang code for “behaviour” pattern
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Conclusions and Future Work

Conclusions and Future Work (II)

Future Work

Extend to additional UML-SM constructs

Preemptive UML-SM activities
Substates
Entry, exit or alternative potins
. . .

Apply to some real examples

Tool support

Plugin for some UML CASE tool (e.g. Eclipse)
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