Quantifying Paging on Recoverable Data from
Windows User-Space Modules

Miguel Martin-Pérez, Ricardo J. Rodriguez*

©@ All wrongs reversed — under CC-BY-NC-SA 4.0 license

i« Universidad
Al Zaragoza

1542
Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

December 7, 2021

12th EAI International Conference on Digital Forensics & Cyber Crime

}@G)@@I Singapur

*Corresponding author: rjrodriguez@unizar.es

rjrodriguez@unizar.es

Outline

Introduction
Related Work
Quantification and Characterization of the Windows Paging Mechanism

Detection of Malware in Memory Forensics: Current Problems and
Solutions

Conclusions

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 2/27

Outline

Introduction

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 3/27

Introduction
Memory forensics

Memory dump

m Full of data to analyze
m Each item that can be analyzed is called memory artifact

B Retrieved via appropriate internal structures of the OS or using a pattern-like search
m Snapshot of running processes, logged in users, open files, or open network
connections — everything that was running at the time of acquisition
m May also contain recently freed system resources
B Normally, memory is not zeroed when freed
m Volatility: de facto standard tool for analyzing memory dumps

B Version 2 vs. version 3 = Python2 vs. Python3

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 4/27

Introduction
A little more of recap...

Malicious software (malware) analysis

m Determine what the heck the malware does as harmful activities
m Static analysis: executable files are analyzed without being executed

m Dynamic analysis: executable files are analyzed when run

Malware in memory

m Unless memory hardware-protection mechanisms are in place, running
malware will leave traces of its nefarious activity in memory

m More likely evidence of activity from sophisticated or fileless malware

m We focus on Windows, as it is still the most predominant target of attacks

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 5/27

Introduction
The Windows memory subsystem

m Maps a process virtual address space into physical memory
m Manages memory paging: memory pages are...

B Paged to disk when the demanding memory of running threads exceeds the available
physical memory; and
B Returned to physical memory when needed

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 6/27

Introduction
The Windows memory subsystem

m Maps a process virtual address space into physical memory
m Manages memory paging: memory pages are...

B Paged to disk when the demanding memory of running threads exceeds the available
physical memory; and
B Returned to physical memory when needed

Memory page

m Contiguous fixed-length block of virtual memory
m Small (4 KiB) and large pages (2 MiB [x86 & x64] to 4 MiB [ARM])

m Different states: free, reserved, and committed

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 6/27

Introduction

Terminology
m Image: executable, shared library, or driver file loaded as part of a process
m Image file: the corresponding (on-disk) file

m Processes and images are internally represented by a module

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 7/27

Introduction

Terminology
m Image: executable, shared library, or driver file loaded as part of a process
m Image file: the corresponding (on-disk) file

m Processes and images are internally represented by a module

Contribution

m Analysis of how paging issues affect the user-mode Windows modules

m Discussion on the issues to detect malware artifacts in memory forensics
m As a side product, residentmem Volatility plugin

B Provides information on the amount of binary data that cannot be analyzed correctly

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 7/27

Outline

Related Work

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 8/27

Related work

m Identify all user allocations and determine their purpose using kernel &
user-space metadata sources via Virtual Address Descriptors (VAD)

m Parse of PTE in Linux via a kernel module (PageDumper)

m Malware detection in memory forensics

B VMI, YARA, machine learning approaches
B Detection of hidden malware via PTE or GPU memory

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 9/27

Related work

m Identify all user allocations and determine their purpose using kernel &
user-space metadata sources via Virtual Address Descriptors (VAD)

m Parse of PTE in Linux via a kernel module (PageDumper)
m Malware detection in memory forensics

B VMI, YARA, machine learning approaches
B Detection of hidden malware via PTE or GPU memory

m First study that quantifies the effect of paging in Windows user-space
modules

m Our work is complementary to all those

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 9/27

Outline

Quantification and Characterization of the Windows Paging Mechanism

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 10/27

Characterization of the Windows paging mechanism

m Paging issues in user-space modules on a Windows 10 64-bit system
(build 19041) with 4GiB and 8GiB RAM memory

m Different memory workloads: 25%, 50%, 75%, 100%, 125%, and 150%

B We developed a naif tool that allocates memory and writes a random byte every 4KiB

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 11/27

https://github.com/reverseame/residentmem

Characterization of the Windows paging mechanism

m Paging issues in user-space modules on a Windows 10 64-bit system
(build 19041) with 4GiB and 8GiB RAM memory

m Different memory workloads: 25%, 50%, 75%, 100%, 125%, and 150%
B We developed a naif tool that allocates memory and writes a random byte every 4KiB
m System memory acquired at various runtimes for each memory workload

B First observation moment: every 15 seconds for the first minute, every minute for 4 more
minutes, while allocating memory
B Second observation moment: same pattern, after stopping the memory allocator tool

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 11/27

https://github.com/reverseame/residentmem

Characterization of the Windows paging mechanism

m Paging issues in user-space modules on a Windows 10 64-bit system
(build 19041) with 4GiB and 8GiB RAM memory

m Different memory workloads: 25%, 50%, 75%, 100%, 125%, and 150%
B We developed a naif tool that allocates memory and writes a random byte every 4KiB
m System memory acquired at various runtimes for each memory workload

B First observation moment: every 15 seconds for the first minute, every minute for 4 more
minutes, while allocating memory
B Second observation moment: same pattern, after stopping the memory allocator tool

Side product of our research: residentmem

| | Volatility2 plugin, GNU/GPLv3. https://github.com/reverseame/residentmem

B Extracts the number of resident pages (that is, in memory) of each image and each
process within a memory dump

B Provides forensic analysts with information on the amount of binary data that cannot be
analyzed correctly

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 11/27

https://github.com/reverseame/residentmem

Characterization of the Windows paging mechanism

Description of the plots

m Distributions of two variables

B Size of a module file in log-base 10 (x-axis)
B Percentage of resident pages (y-axis)

m Color intensity: the darker the region, the more data is in that region

m Subplots reveal the distribution of resident pages and module file sizes

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 12/27

Characterization of the Windows paging mechanism
Results of quantification (4GiB; exe)

allocated (4GB; exccutsble images)

Bytes i mocie e log . 1) Byes i e e og s 10) Bytes in modsic il g bae-10)

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 13/27

Characterization of the Windows paging mechanism
Results of quantification (8GiB; exe)

Residens

1

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 14/27

Characterization of the Windows paging mechanism
Discussion on executable modules

m Almost 80% of the executable module pages are resident in memory
m With 100% and 125%, in 0.5 minutes:

B Most modules are expelled
B The number of resident pages for retrievable modules is drastically reduced

m Modules progressively come back to memory, after memory exhaustion

B Ratio of resident pages for retrievable modules < 25%
B Significant increases in 0.5 minutes and in 3 minutes are observed

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 15/27

Characterization of the Windows paging mechanism
Results of quantification (4GiB; d11)

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 16/27

Characterization of the Windows paging mechanism
Results of quantification (8GiB; d11)

b

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 17/27

Characterization of the Windows paging mechanism
Discussion on shared library modules

m Modules only have 20% of their pages resident, with a maximum
percentage observed of 75%

m With 100% and 125%, in 0.5 minutes the system starts expelling them

B Distribution shape is similar in both memory configurations
B Aggressive expelling of modules is observed in 8GiB

m Most modules have only less than 5% of their pages resident, after
memory exhaustion

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 18/27

Outline

Detection of Malware in Memory Forensics: Current Problems and
Solutions

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 19/27

Detection of Malware in Memory Forensics
Inaccuracy of the content of memory artifacts

The content of an image is inaccurate
(relative to its image file)

Everything happens for a reason...
m Paging effect

B Image file mapped into 4KiB aligned memory regions (assuming small pages)
B As a consequence, a zero padding may appear

m Relocation

B Addresses of external functions resolved (e.g., IAT functions)
B PE sections removed (e.g., .reloc or Authenticode signatures)

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 20/27

Detection of Malware in Memory Forensics
Inaccuracy of the content of memory artifacts

The content of an image is inaccurate
(relative to its image file)

Everything happens for a reason...
m Paging effect

B Image file mapped into 4KiB aligned memory regions (assuming small pages)
B As a consequence, a zero padding may appear

m Relocation

B Addresses of external functions resolved (e.g., IAT functions)
B PE sections removed (e.g., .reloc or Authenticode signatures)

Feasible solutions

m Use approximate matching algorithms to calculate similarity

m Constructions of allow-list hash databases

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 20/27

Detection of Malware in Memory Forensics
Incompleteness of images

The content of an image is incomplete
(relative to its image file)

Everything happens for a reason...
m Page swapping

B The OS stores unused memory pages in a secondary source until those pages are
needed again
B Allows us to use more memory than is actually available in RAM

m Demand paging (or lazy page loading)

B The OS does not bring data from files on disk to memory until it is absolutely necessary
B Optimization issue

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 21/27

Detection of Malware in Memory Forensics
Incompleteness of images

The content of an image is incomplete
(relative to its image file)

Everything happens for a reason...
m Page swapping

B The OS stores unused memory pages in a secondary source until those pages are
needed again
B Allows us to use more memory than is actually available in RAM

m Demand paging (or lazy page loading)

B The OS does not bring data from files on disk to memory until it is absolutely necessary
B Optimization issue

Feasible solutions

m Use disk forensics to first recover the page files and then use them together
with the memory dump

m Combine memory forensics with disk forensics

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 21/27

Detection of Malware in Memory Forensics
Incompleteness of images

Virtual address . Virtual address
space of Physical space of
Process A memory Process B

kernel32.d1l

kernel32.dll
system library

system liorary N emeizzan
B system library

Process B ex-
ecutable code

Executable code h Process A ex- Executable code

ecutable code

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©]

ICDF2C’21 22/27

Detection of Malware in Memory Forensics

Incompleteness of images

Virtual address
space of Physical
Process A memory

Virtual address
space of
Process B

kernel32.dll e

system library kernel3z.dil
A system library

kernel32.d1l
system library

Process B ex-
ecutable code

Executable code Process A ex-

RRES ecutable code

Process A page table

kernel32.d11
code page 0

kernel32.d1l
code page 4

kernel32.d1l
code page 5

kernel32.d1l
data page 0

code

kernel32.d1l
data page 1

Physical memory

kernel32.d11
code page 0

kernel32.d11
code page 5

kernel32.d1l
code page 4

kernel3z.d1l
code page 6

kernel32.dll
data page 1

kernel32.dll
data page 0

Process B page table

kernel32.d11
code page 0

kernel32.d1l

code page 5
kernel32.d11

code page 6

kernel32.d11
data page 0

kernel32.dll
data page 1

kernel32.d11
data page
0 (private)

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©]

ICDF2C’21

22/27

Detection of Malware in Memory Forensics
Inaccuracy of a memory dump

m Memory is continually updated and acquired non-atomic: page smearing

B Particularly relevant when the memory is acquired in a live system
m Highly likely to occur:

B Pointer inconsistency
B Fragment inconsistency

m Sophisticated malware can deliberately produce these inconsistencies
(DKOM attacks)

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 23/27

Detection of Malware in Memory Forensics
Inaccuracy of a memory dump

m Memory is continually updated and acquired non-atomic: page smearing

B Particularly relevant when the memory is acquired in a live system
m Highly likely to occur:

B Pointer inconsistency
B Fragment inconsistency

m Sophisticated malware can deliberately produce these inconsistencies
(DKOM attacks)

Feasible solutions

m Use other acquisition techniques

m Check the temporal consistency of data in a memory dump: temporal
forensics

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 23/27

Detection of Malware in Memory Forensics
Stealthy malware

m VAD are unreliable source of information

B Page permissions are not updated when changed after initial permissions

m Deliberately triggering of the paging process for as many pages as
possible

m Process hollowing

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 24/27

Detection of Malware in Memory Forensics
Stealthy malware

m VAD are unreliable source of information

B Page permissions are not updated when changed after initial permissions

m Deliberately triggering of the paging process for as many pages as
possible

m Process hollowing

Feasible solutions

m Malware signatures (but not with cryptohashes!)
m Robust kernel signatures

m Volatility plugins: malfind, malscan, impfuzzy

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 24/27

Outline

Conclusions

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 25/27

Conclusions

m Memory dumps are unreliable and partial sources of evidence

m Effect of paging in Windows modules of the user-space processes

B At first, almost 80% of the executable module pages and 20% of the shared dynamic
library module pages are resident. Drastically reduced when the OS needs memory

B Once the memory load is no longer high, the system recovers some of the paged
modules but very slowly, never returning to the initial conditions (25% and 5% for
executable and shared library image files, respectively)

m Problems for malware detection in memory forensics

B Data in an image differs from its image file and is incomplete, inaccurate, and unreliable
B Malware can incorporate features to remain stealthy and hidden from memory forensics

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 26/27

Conclusions

m Memory dumps are unreliable and partial sources of evidence

m Effect of paging in Windows modules of the user-space processes

B At first, almost 80% of the executable module pages and 20% of the shared dynamic
library module pages are resident. Drastically reduced when the OS needs memory

B Once the memory load is no longer high, the system recovers some of the paged
modules but very slowly, never returning to the initial conditions (25% and 5% for
executable and shared library image files, respectively)

m Problems for malware detection in memory forensics

B Data in an image differs from its image file and is incomplete, inaccurate, and unreliable
B Malware can incorporate features to remain stealthy and hidden from memory forensics

m Study other versions of Windows, apart from Windows 10 (build 19041)
m Better characterize paging distributions under different system workloads
m Quantify the effects of paging on the kernel space

m Investigate new methods to detect stealthy malware in memory forensics

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 26/27

Quantifying Paging on Recoverable Data from
Windows User-Space Modules

Miguel Martin-Pérez, Ricardo J. Rodriguez*

©@ All wrongs reversed — under CC-BY-NC-SA 4.0 license

i« Universidad
Al Zaragoza

1542
Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

December 7, 2021

12th EAI International Conference on Digital Forensics & Cyber Crime

}@G)@@I Singapur

*Corresponding author: rjrodriguez@unizar.es

rjrodriguez@unizar.es

	Introduction
	Related Work
	Quantification and Characterization of the Windows Paging Mechanism
	Detection of Malware in Memory Forensics: Current Problems and Solutions
	Conclusions
	

