
∗Corresponding author: rjrodriguez@unizar.es

Quantifying Paging on Recoverable Data from
Windows User-Space Modules

Miguel Martín-Pérez, Ricardo J. Rodríguez∗

« All wrongs reversed – under CC-BY-NC-SA 4.0 license

Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

December 7, 2021

12th EAI International Conference on Digital Forensics & Cyber Crime
Singapur

rjrodriguez@unizar.es


Outline

1 Introduction

2 Related Work

3 Quantification and Characterization of the Windows Paging Mechanism

4 Detection of Malware in Memory Forensics: Current Problems and
Solutions

5 Conclusions

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 2 / 27



Outline

1 Introduction

2 Related Work

3 Quantification and Characterization of the Windows Paging Mechanism

4 Detection of Malware in Memory Forensics: Current Problems and
Solutions

5 Conclusions

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 3 / 27



Introduction
Memory forensics

Memory dump

Full of data to analyze

Each item that can be analyzed is called memory artifact
Retrieved via appropriate internal structures of the OS or using a pattern-like search

Snapshot of running processes, logged in users, open files, or open network
connections – everything that was running at the time of acquisition

May also contain recently freed system resources
Normally, memory is not zeroed when freed

Volatility: de facto standard tool for analyzing memory dumps
Version 2 vs. version 3⇒ Python2 vs. Python3

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 4 / 27



Introduction
A little more of recap...

Malicious software (malware) analysis

Determine what the heck the malware does as harmful activities

Static analysis: executable files are analyzed without being executed

Dynamic analysis: executable files are analyzed when run

Malware in memory

Unless memory hardware-protection mechanisms are in place, running
malware will leave traces of its nefarious activity in memory

More likely evidence of activity from sophisticated or fileless malware

We focus on Windows, as it is still the most predominant target of attacks

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 5 / 27



Introduction
The Windows memory subsystem

Maps a process virtual address space into physical memory

Manages memory paging: memory pages are...
Paged to disk when the demanding memory of running threads exceeds the available
physical memory; and
Returned to physical memory when needed

Memory page

Contiguous fixed-length block of virtual memory

Small (4 KiB) and large pages (2 MiB [x86 & x64] to 4 MiB [ARM])

Different states: free, reserved, and committed

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 6 / 27



Introduction
The Windows memory subsystem

Maps a process virtual address space into physical memory

Manages memory paging: memory pages are...
Paged to disk when the demanding memory of running threads exceeds the available
physical memory; and
Returned to physical memory when needed

Memory page

Contiguous fixed-length block of virtual memory

Small (4 KiB) and large pages (2 MiB [x86 & x64] to 4 MiB [ARM])

Different states: free, reserved, and committed

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 6 / 27



Introduction

Terminology

Image: executable, shared library, or driver file loaded as part of a process

Image file: the corresponding (on-disk) file

Processes and images are internally represented by a module

Contribution

Analysis of how paging issues affect the user-mode Windows modules

Discussion on the issues to detect malware artifacts in memory forensics

As a side product, residentmem Volatility plugin
Provides information on the amount of binary data that cannot be analyzed correctly

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 7 / 27



Introduction

Terminology

Image: executable, shared library, or driver file loaded as part of a process

Image file: the corresponding (on-disk) file

Processes and images are internally represented by a module

Contribution

Analysis of how paging issues affect the user-mode Windows modules

Discussion on the issues to detect malware artifacts in memory forensics

As a side product, residentmem Volatility plugin
Provides information on the amount of binary data that cannot be analyzed correctly

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 7 / 27



Outline

1 Introduction

2 Related Work

3 Quantification and Characterization of the Windows Paging Mechanism

4 Detection of Malware in Memory Forensics: Current Problems and
Solutions

5 Conclusions

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 8 / 27



Related work

Identify all user allocations and determine their purpose using kernel &
user-space metadata sources via Virtual Address Descriptors (VAD)

Parse of PTE in Linux via a kernel module (PageDumper)

Malware detection in memory forensics
VMI, YARA, machine learning approaches
Detection of hidden malware via PTE or GPU memory

First study that quantifies the effect of paging in Windows user-space
modules

Our work is complementary to all those

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 9 / 27



Related work

Identify all user allocations and determine their purpose using kernel &
user-space metadata sources via Virtual Address Descriptors (VAD)

Parse of PTE in Linux via a kernel module (PageDumper)

Malware detection in memory forensics
VMI, YARA, machine learning approaches
Detection of hidden malware via PTE or GPU memory

First study that quantifies the effect of paging in Windows user-space
modules

Our work is complementary to all those

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 9 / 27



Outline

1 Introduction

2 Related Work

3 Quantification and Characterization of the Windows Paging Mechanism

4 Detection of Malware in Memory Forensics: Current Problems and
Solutions

5 Conclusions

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 10 / 27



Characterization of the Windows paging mechanism

Paging issues in user-space modules on a Windows 10 64-bit system
(build 19041) with 4GiB and 8GiB RAM memory

Different memory workloads: 25%, 50%, 75%, 100%, 125%, and 150%
We developed a naif tool that allocates memory and writes a random byte every 4KiB

System memory acquired at various runtimes for each memory workload
First observation moment: every 15 seconds for the first minute, every minute for 4 more
minutes, while allocating memory
Second observation moment: same pattern, after stopping the memory allocator tool

Side product of our research: residentmem
Volatility2 plugin, GNU/GPLv3. https://github.com/reverseame/residentmem
Extracts the number of resident pages (that is, in memory) of each image and each
process within a memory dump
Provides forensic analysts with information on the amount of binary data that cannot be
analyzed correctly

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 11 / 27

https://github.com/reverseame/residentmem


Characterization of the Windows paging mechanism

Paging issues in user-space modules on a Windows 10 64-bit system
(build 19041) with 4GiB and 8GiB RAM memory

Different memory workloads: 25%, 50%, 75%, 100%, 125%, and 150%
We developed a naif tool that allocates memory and writes a random byte every 4KiB

System memory acquired at various runtimes for each memory workload
First observation moment: every 15 seconds for the first minute, every minute for 4 more
minutes, while allocating memory
Second observation moment: same pattern, after stopping the memory allocator tool

Side product of our research: residentmem
Volatility2 plugin, GNU/GPLv3. https://github.com/reverseame/residentmem
Extracts the number of resident pages (that is, in memory) of each image and each
process within a memory dump
Provides forensic analysts with information on the amount of binary data that cannot be
analyzed correctly

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 11 / 27

https://github.com/reverseame/residentmem


Characterization of the Windows paging mechanism

Paging issues in user-space modules on a Windows 10 64-bit system
(build 19041) with 4GiB and 8GiB RAM memory

Different memory workloads: 25%, 50%, 75%, 100%, 125%, and 150%
We developed a naif tool that allocates memory and writes a random byte every 4KiB

System memory acquired at various runtimes for each memory workload
First observation moment: every 15 seconds for the first minute, every minute for 4 more
minutes, while allocating memory
Second observation moment: same pattern, after stopping the memory allocator tool

Side product of our research: residentmem
Volatility2 plugin, GNU/GPLv3. https://github.com/reverseame/residentmem
Extracts the number of resident pages (that is, in memory) of each image and each
process within a memory dump
Provides forensic analysts with information on the amount of binary data that cannot be
analyzed correctly

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 11 / 27

https://github.com/reverseame/residentmem


Characterization of the Windows paging mechanism

Description of the plots

Distributions of two variables
Size of a module file in log-base 10 (x-axis)
Percentage of resident pages (y-axis)

Color intensity: the darker the region, the more data is in that region

Subplots reveal the distribution of resident pages and module file sizes

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 12 / 27



Characterization of the Windows paging mechanism
Results of quantification (4GiB; exe)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Execution time of the allocator process
Initial (before execution)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

75.0% of memory allocated (4GiB; executable images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Execution time of the allocator process
Initial (before execution)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

100.0% of memory allocated (4GiB; executable images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Execution time of the allocator process
Initial (before execution)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

125.0% of memory allocated (4GiB; executable images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Time after the allocator process ended
Initial (before execution)
Initial (just before ending)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

75.0% of memory allocated (4GiB; executable images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Time after the allocator process ended
Initial (before execution)
Initial (just before ending)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

100.0% of memory allocated (4GiB; executable images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Time after the allocator process ended
Initial (before execution)
Initial (just before ending)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

125.0% of memory allocated (4GiB; executable images)

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 13 / 27



Characterization of the Windows paging mechanism
Results of quantification (8GiB; exe)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Execution time of the allocator process
Initial (before execution)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

75.0% of memory allocated (8GiB; executable images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Execution time of the allocator process
Initial (before execution)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

100.0% of memory allocated (8GiB; executable images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Execution time of the allocator process
Initial (before execution)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

125.0% of memory allocated (8GiB; executable images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Time after the allocator process ended
Initial (before execution)
Initial (just before ending)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

75.0% of memory allocated (8GiB; executable images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Time after the allocator process ended
Initial (before execution)
Initial (just before ending)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

100.0% of memory allocated (8GiB; executable images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Time after the allocator process ended
Initial (before execution)
Initial (just before ending)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

125.0% of memory allocated (8GiB; executable images)

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 14 / 27



Characterization of the Windows paging mechanism
Discussion on executable modules

Almost 80% of the executable module pages are resident in memory

With 100% and 125%, in 0.5 minutes:
Most modules are expelled
The number of resident pages for retrievable modules is drastically reduced

Modules progressively come back to memory, after memory exhaustion
Ratio of resident pages for retrievable modules ≤ 25%
Significant increases in 0.5 minutes and in 3 minutes are observed

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 15 / 27



Characterization of the Windows paging mechanism
Results of quantification (4GiB; dll)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Execution time of the allocator process
Initial (before execution)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

75.0% of memory allocated (4GiB; shared dynamic library images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Execution time of the allocator process
Initial (before execution)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

100.0% of memory allocated (4GiB; shared dynamic library images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Execution time of the allocator process
Initial (before execution)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

125.0% of memory allocated (4GiB; shared dynamic library images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Time after the allocator process ended
Initial (before execution)
Initial (just before ending)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

75.0% of memory allocated (4GiB; shared dynamic library images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Time after the allocator process ended
Initial (before execution)
Initial (just before ending)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

100.0% of memory allocated (4GiB; shared dynamic library images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Time after the allocator process ended
Initial (before execution)
Initial (just before ending)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

125.0% of memory allocated (4GiB; shared dynamic library images)

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 16 / 27



Characterization of the Windows paging mechanism
Results of quantification (8GiB; dll)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Execution time of the allocator process
Initial (before execution)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

75.0% of memory allocated (8GiB; shared dynamic library images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Execution time of the allocator process
Initial (before execution)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

100.0% of memory allocated (8GiB; shared dynamic library images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Execution time of the allocator process
Initial (before execution)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

125.0% of memory allocated (8GiB; shared dynamic library images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Time after the allocator process ended
Initial (before execution)
Initial (just before ending)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

75.0% of memory allocated (8GiB; shared dynamic library images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Time after the allocator process ended
Initial (before execution)
Initial (just before ending)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

100.0% of memory allocated (8GiB; shared dynamic library images)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Bytes in module file (log base-10)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
en

tp
ag

es
(%

)

Time after the allocator process ended
Initial (before execution)
Initial (just before ending)
0 minutes
0.5 minutes
1 minute
3 minutes
5 minutes

125.0% of memory allocated (8GiB; shared dynamic library images)

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 17 / 27



Characterization of the Windows paging mechanism
Discussion on shared library modules

Modules only have 20% of their pages resident, with a maximum
percentage observed of 75%

With 100% and 125%, in 0.5 minutes the system starts expelling them
Distribution shape is similar in both memory configurations
Aggressive expelling of modules is observed in 8GiB

Most modules have only less than 5% of their pages resident, after
memory exhaustion

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 18 / 27



Outline

1 Introduction

2 Related Work

3 Quantification and Characterization of the Windows Paging Mechanism

4 Detection of Malware in Memory Forensics: Current Problems and
Solutions

5 Conclusions

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 19 / 27



Detection of Malware in Memory Forensics
Inaccuracy of the content of memory artifacts

The content of an image is inaccurate
(relative to its image file)

Everything happens for a reason...
Paging effect

Image file mapped into 4KiB aligned memory regions (assuming small pages)
As a consequence, a zero padding may appear

Relocation
Addresses of external functions resolved (e.g., IAT functions)
PE sections removed (e.g., .reloc or Authenticode signatures)

Feasible solutions

Use approximate matching algorithms to calculate similarity

Constructions of allow-list hash databases

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 20 / 27



Detection of Malware in Memory Forensics
Inaccuracy of the content of memory artifacts

The content of an image is inaccurate
(relative to its image file)

Everything happens for a reason...
Paging effect

Image file mapped into 4KiB aligned memory regions (assuming small pages)
As a consequence, a zero padding may appear

Relocation
Addresses of external functions resolved (e.g., IAT functions)
PE sections removed (e.g., .reloc or Authenticode signatures)

Feasible solutions

Use approximate matching algorithms to calculate similarity

Constructions of allow-list hash databases

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 20 / 27



Detection of Malware in Memory Forensics
Incompleteness of images

The content of an image is incomplete
(relative to its image file)

Everything happens for a reason...
Page swapping

The OS stores unused memory pages in a secondary source until those pages are
needed again
Allows us to use more memory than is actually available in RAM

Demand paging (or lazy page loading)
The OS does not bring data from files on disk to memory until it is absolutely necessary
Optimization issue

Feasible solutions

Use disk forensics to first recover the page files and then use them together
with the memory dump

Combine memory forensics with disk forensics

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 21 / 27



Detection of Malware in Memory Forensics
Incompleteness of images

The content of an image is incomplete
(relative to its image file)

Everything happens for a reason...
Page swapping

The OS stores unused memory pages in a secondary source until those pages are
needed again
Allows us to use more memory than is actually available in RAM

Demand paging (or lazy page loading)
The OS does not bring data from files on disk to memory until it is absolutely necessary
Optimization issue

Feasible solutions

Use disk forensics to first recover the page files and then use them together
with the memory dump

Combine memory forensics with disk forensics

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 21 / 27



Detection of Malware in Memory Forensics
Incompleteness of images

Virtual address
space of

Process A

kernel32.dll
system library

Executable code

Physical
memory

kernel32.dll
system library

Process B ex-
ecutable code

Process A ex-
ecutable code

Virtual address
space of

Process B

kernel32.dll
system library

Executable code

Process A page table

kernel32.dll
code page 0

kernel32.dll
code page 4

kernel32.dll
code page 5

kernel32.dll
data page 0

kernel32.dll
data page 1

Physical memory

kernel32.dll
code page 0

kernel32.dll
code page 5

kernel32.dll
code page 4

kernel32.dll
code page 6

kernel32.dll
data page 1

kernel32.dll
data page 0

kernel32.dll
data page
0 (private)

Process B page table

kernel32.dll
code page 0

kernel32.dll
code page 5

kernel32.dll
code page 6

kernel32.dll
data page 0

kernel32.dll
data page 1

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 22 / 27



Detection of Malware in Memory Forensics
Incompleteness of images

Virtual address
space of

Process A

kernel32.dll
system library

Executable code

Physical
memory

kernel32.dll
system library

Process B ex-
ecutable code

Process A ex-
ecutable code

Virtual address
space of

Process B

kernel32.dll
system library

Executable code

Process A page table

kernel32.dll
code page 0

kernel32.dll
code page 4

kernel32.dll
code page 5

kernel32.dll
data page 0

kernel32.dll
data page 1

Physical memory

kernel32.dll
code page 0

kernel32.dll
code page 5

kernel32.dll
code page 4

kernel32.dll
code page 6

kernel32.dll
data page 1

kernel32.dll
data page 0

kernel32.dll
data page
0 (private)

Process B page table

kernel32.dll
code page 0

kernel32.dll
code page 5

kernel32.dll
code page 6

kernel32.dll
data page 0

kernel32.dll
data page 1

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 22 / 27



Detection of Malware in Memory Forensics
Inaccuracy of a memory dump

Memory is continually updated and acquired non-atomic: page smearing

Particularly relevant when the memory is acquired in a live system

Highly likely to occur:
Pointer inconsistency
Fragment inconsistency

Sophisticated malware can deliberately produce these inconsistencies
(DKOM attacks)

Feasible solutions

Use other acquisition techniques

Check the temporal consistency of data in a memory dump: temporal
forensics

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 23 / 27



Detection of Malware in Memory Forensics
Inaccuracy of a memory dump

Memory is continually updated and acquired non-atomic: page smearing

Particularly relevant when the memory is acquired in a live system

Highly likely to occur:
Pointer inconsistency
Fragment inconsistency

Sophisticated malware can deliberately produce these inconsistencies
(DKOM attacks)

Feasible solutions

Use other acquisition techniques

Check the temporal consistency of data in a memory dump: temporal
forensics

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 23 / 27



Detection of Malware in Memory Forensics
Stealthy malware

VAD are unreliable source of information
Page permissions are not updated when changed after initial permissions

Deliberately triggering of the paging process for as many pages as
possible

Process hollowing

Feasible solutions

Malware signatures (but not with cryptohashes!)

Robust kernel signatures

Volatility plugins: malfind, malscan, impfuzzy

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 24 / 27



Detection of Malware in Memory Forensics
Stealthy malware

VAD are unreliable source of information
Page permissions are not updated when changed after initial permissions

Deliberately triggering of the paging process for as many pages as
possible

Process hollowing

Feasible solutions

Malware signatures (but not with cryptohashes!)

Robust kernel signatures

Volatility plugins: malfind, malscan, impfuzzy

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 24 / 27



Outline

1 Introduction

2 Related Work

3 Quantification and Characterization of the Windows Paging Mechanism

4 Detection of Malware in Memory Forensics: Current Problems and
Solutions

5 Conclusions

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 25 / 27



Conclusions

Memory dumps are unreliable and partial sources of evidence

Effect of paging in Windows modules of the user-space processes
At first, almost 80% of the executable module pages and 20% of the shared dynamic
library module pages are resident. Drastically reduced when the OS needs memory
Once the memory load is no longer high, the system recovers some of the paged
modules but very slowly, never returning to the initial conditions (25% and 5% for
executable and shared library image files, respectively)

Problems for malware detection in memory forensics
Data in an image differs from its image file and is incomplete, inaccurate, and unreliable
Malware can incorporate features to remain stealthy and hidden from memory forensics

Future work

Study other versions of Windows, apart from Windows 10 (build 19041)

Better characterize paging distributions under different system workloads

Quantify the effects of paging on the kernel space

Investigate new methods to detect stealthy malware in memory forensics

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 26 / 27



Conclusions

Memory dumps are unreliable and partial sources of evidence

Effect of paging in Windows modules of the user-space processes
At first, almost 80% of the executable module pages and 20% of the shared dynamic
library module pages are resident. Drastically reduced when the OS needs memory
Once the memory load is no longer high, the system recovers some of the paged
modules but very slowly, never returning to the initial conditions (25% and 5% for
executable and shared library image files, respectively)

Problems for malware detection in memory forensics
Data in an image differs from its image file and is incomplete, inaccurate, and unreliable
Malware can incorporate features to remain stealthy and hidden from memory forensics

Future work

Study other versions of Windows, apart from Windows 10 (build 19041)

Better characterize paging distributions under different system workloads

Quantify the effects of paging on the kernel space

Investigate new methods to detect stealthy malware in memory forensics

Quantifying Paging on Recoverable Data from Windows User-Space Modules [CC BY-NC-SA 4.0 ©] ICDF2C’21 26 / 27



∗Corresponding author: rjrodriguez@unizar.es

Quantifying Paging on Recoverable Data from
Windows User-Space Modules

Miguel Martín-Pérez, Ricardo J. Rodríguez∗

« All wrongs reversed – under CC-BY-NC-SA 4.0 license

Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

December 7, 2021

12th EAI International Conference on Digital Forensics & Cyber Crime
Singapur

rjrodriguez@unizar.es

	Introduction
	Related Work
	Quantification and Characterization of the Windows Paging Mechanism
	Detection of Malware in Memory Forensics: Current Problems and Solutions
	Conclusions
	

