Model-based Verification of Safety Contracts

Elena Gómez-Martínez[†], **Ricardo J. Rodríguez**[‡], Leire Etxeberria Elorza^{*}, Miren Illarramendi Rezabal^{*}, Clara Benac Earle[†]

{egomez,cbenac}@babel.ls.fi.upm.es, rj.rodriguez@unileon.es,

 $\{let xeberria, millarramendi\}@mondragon.edu$

universidad ^{de}león

[†]Technical University of Madrid Madrid, Spain [‡]RIASC, University of León León, Spain *Mondragon Unibertsitatea Arrasate-Mondragón, Spain

September 1, 2014

1st International Workshop on Safety & Formal Methods Grenoble (France)

Agenda

- Introduction
- 2 Previous Concepts
- 3 Case Study: Trains Door Controllers
- 4 Safety Contract Fragment to OCL
- 5 From OCL constraints to Petri nets
- 6 Related Work
- Conclusions and Future Work

Agenda

Introduction

- 2 Previous Concepts
- 3 Case Study: Trains Door Controllers
- 4 Safety Contract Fragment to OCL
- 5 From OCL constraints to Petri nets
- 6 Related Work
- 7 Conclusions and Future Work

Introduction (I): Motivation

Safety assessment

- Needed by some systems (e.g. critical systems)
 - Industrial equipment, road vehicles, avionics...
 - Requirements specified by industrial standards (IEC-61508, ISO-26262, DO-178C)
- Later verification induces budget overruns
 - Example: Half of the overall costs in avionics software domain

Model-based Verification of Safety Contracts

Introduction

Introduction (II): Motivation

Safety assessment needs to be incorporated early into software design process

Introduction (II): Motivation

Safety assessment needs to be incorporated early into software design process

Contract-based design

- Popular approach for the design of complex systems
- $\bullet\,$ Safety properties are difficult to guarantee $\rightarrow\,$ use of contracts

Introduction (II): Motivation

Safety assessment needs to be incorporated early into software design process

Contract-based design

- Popular approach for the design of complex systems
- $\bullet\,$ Safety properties are difficult to guarantee $\rightarrow\,$ use of contracts

Contracts

- Commonly used to specify relationships between system components
- Pre- and post-conditions of a system component
- Refinement idea: safety contract
 - Assumptions; Guarantees
 - Aim: to assure a certain level of confidence of a component

UML

- Well-known modelling language in the industry
- Vehicle to integrate safety requirements into software lifecycle

UML

- Well-known modelling language in the industry
- Vehicle to integrate safety requirements into software lifecycle
- Two (current) approaches:
 - Object Constraint Language
 - Specific UML profiles

UML

- Well-known modelling language in the industry
- Vehicle to integrate safety requirements into software lifecycle
- Two (current) approaches:
 - Object Constraint Language
 - Specific UML profiles

Merging two domains...

- UML: Standard engineering practice
 - UML SM and UML SD: Dynamic part of the system
 - $\bullet~$ UML Composite diagram: Static one \rightarrow enriched with safety contracts
 - UML profile (MARTE): Performance system information
 - Representation of safety contracts as OCL constraints

UML

- Well-known modelling language in the industry
- Vehicle to integrate safety requirements into software lifecycle
- Two (current) approaches:
 - Object Constraint Language
 - Specific UML profiles

Merging two domains...

- UML: Standard engineering practice
 - UML SM and UML SD: Dynamic part of the system
 - $\bullet~$ UML Composite diagram: Static one \rightarrow enriched with safety contracts
 - UML profile (MARTE): Performance system information
 - Representation of safety contracts as OCL constraints
- Petri nets: Formal safety analysis
 - Compute probabilities of reaching "safe conditions"

Agenda

Introduction

Previous Concepts

- 3 Case Study: Trains Door Controllers
- 4 Safety Contract Fragment to OCL
- 5 From OCL constraints to Petri nets
- 6 Related Work
- 7 Conclusions and Future Work

UML and UML profiles

• Semi-formal modelling language

Previous Concepts (I)

UML and UML profiles

- Semi-formal modelling language
- Tailored for specific domains by profiling
 - Stereotypes: Concepts in the target domain
 - Tagged values: Stereotype attributes
- Enriches UML semantics, commonly used for NFPs specification

Previous Concepts (I)

UML and UML profiles

- Semi-formal modelling language
- Tailored for specific domains by profiling
 - Stereotypes: Concepts in the target domain
 - Tagged values: Stereotype attributes
- Enriches UML semantics, commonly used for NFPs specification
- Profile examples:
 - Modelling and Analysis of RT and Embedded systems (MARTE)
 - Generic Quantitative Analysis Model framework, gaStep stereotype (activity durations)
 - Dependability Analysis and Modelling (DAM)
 - Security Analysis and Modelling (SecAM)

Previous Concepts (II)

- UML + MARTE not suitable for performance evaluation or model-checking
- Formal models may help for this goal
 - UML + MARTE → Petri nets (namely, Generalised Stochastic PN)

Previous Concepts (II)

- UML + MARTE not suitable for performance evaluation or model-checking
- Formal models may help for this goal
 - UML + MARTE → Petri nets (namely, Generalised Stochastic PN)

GSPN

- Bipartite graph
- Places (circles, p_X)
- Transitions (bars, t_X)
 - Immediate (t = 0)
 - Timed (exponential, deterministic firing distributions)
- Arcs (with directions, and weight)
- Tokens

Agenda

- Introduction
- 2 Previous Concepts
- 3 Case Study: Trains Door Controllers
 - 4 Safety Contract Fragment to OCL
 - 5 From OCL constraints to Petri nets
 - 6 Related Work
 - 7 Conclusions and Future Work

Case Study (I): TCMS

Train Control and Management System

- Complex system distributed along the train
- Controls all train subsystems
- Composed of I/O modules plus PLCs and communication buses

Case Study (I): TCMS

Train Control and Management System

- Complex system distributed along the train
- Controls all train subsystems
- Composed of I/O modules plus PLCs and communication buses

Door control management

- Several actors involved: TCMS, Door, Traction, MVB
 - TCMS: Decides whether enabling or disabling the doors
 - Door: Enabled \rightarrow opened; disabled \rightarrow closed
 - Traction: Deals with train movement
 - Multifunction Vehicle Bus: Communicates all components among them

Case Study (II): TCMS UML Composite Diagram

E. Gómez-Martínez et al

Model-based Verification of Safety Contracts

Case Study: Trains Door Controllers

Case Study (III): Door closing UML Sequence Diagram

Case Study: Trains Door Controllers

Case Study (IV): Some remarks

- Model is too complex (but also the life...)
- The TCMS needs to be safety-certified, no matter its complexity...

Case Study (IV): Some remarks

- Model is too complex (but also the life...)
- The TCMS needs to be safety-certified, no matter its complexity...
- Contract-based design methodology
 - Separate components $\mathcal{C}=\langle \mathcal{I},\mathcal{O}\rangle \text{:}$ Safety and non-safety ones
 - They interact with the environment
 - Safety critical components are associated to safety contract fragments (SCF)

Case Study (IV): Some remarks

- Model is too complex (but also the life...)
- The TCMS needs to be safety-certified, no matter its complexity...
- Contract-based design methodology
 - Separate components $\mathcal{C}=\langle \mathcal{I},\mathcal{O}\rangle \text{:}$ Safety and non-safety ones
 - They interact with the environment
 - Safety critical components are associated to safety contract fragments (SCF)

Safety contract fragment $\mathcal{S}_{\mathcal{C}} = \langle \mathcal{A}, \mathcal{G} \rangle$

- \mathcal{A} : Assumptions on the component's environment
- \mathcal{G} : What the component guarantees under such an environment
- A component *implements* its contract if it satisfies the guarantees when the environment meets the assumptions

Safety contract transformed to OCL constraints

Agenda

- Introduction
- 2 Previous Concepts
- 3 Case Study: Trains Door Controllers
- 4 Safety Contract Fragment to OCL
 - 5 From OCL constraints to Petri nets
- 6 Related Work
- 7 Conclusions and Future Work

SaFoMe'14 15 / 26

Safety Contract Fragment to OCL

Safety Contract Fragment to OCL (I)

$$\mathsf{SCF}\ \mathcal{S}_\mathcal{C} = \langle \mathcal{A}, \mathcal{G} \rangle$$

- $\mathcal{A} = \mathcal{A}^+ \bigcup \mathcal{A}^*$ (assumptions, input ports)
- $\mathcal{G} = \mathcal{G}^+ \bigcup \mathcal{G}^*$ (guarantees, output ports)

Safety Contract Fragment to OCL

Safety Contract Fragment to OCL (I)

$$\mathsf{SCF}\ \mathcal{S}_\mathcal{C} = \langle \mathcal{A}, \mathcal{G} \rangle$$

- $\mathcal{A} = \mathcal{A}^+ \bigcup \mathcal{A}^*$ (assumptions, input ports)
- $\mathcal{G} = \mathcal{G}^+ \bigcup \mathcal{G}^*$ (guarantees, output ports)

OCL

- Express constraints within UML models
- Defined over a context that describes where constraint is acting
- OCL invariant: $\mathcal{R} = \langle \mathcal{X}, \mathcal{V} \rangle$
 - \mathcal{X} : Context
 - $\mathcal{V} = \langle \textit{ls}, \textit{rs} \rangle$ (joined by a boolean or implies operator)

Safety Contract Fragment to OCL

Safety Contract Fragment to OCL (I)

$$\mathsf{SCF}\ \mathcal{S}_\mathcal{C} = \langle \mathcal{A}, \mathcal{G} \rangle$$

- $\mathcal{A} = \mathcal{A}^+ \bigcup \mathcal{A}^*$ (assumptions, input ports)
- $\mathcal{G} = \mathcal{G}^+ \bigcup \mathcal{G}^*$ (guarantees, output ports)

OCL

- Express constraints within UML models
- Defined over a context that describes where constraint is acting
- OCL invariant: $\mathcal{R} = \langle \mathcal{X}, \mathcal{V} \rangle$
 - \mathcal{X} : Context
 - $\mathcal{V} = \langle \textit{ls}, \textit{rs} \rangle$ (joined by a boolean or implies operator)

Given a component C, and $S_C = \langle A, G \rangle \rightarrow \mathcal{R} = \langle X, \mathcal{V} \rangle$ where $\mathcal{X} = C$ and $\mathcal{V} = \langle A, G \rangle$

- **SR1.** The door opening is not enabled when the traction is on or the train speed is distinct than zero
 - $S_1 = \langle (traction \ OR \ (tractionSpeed \neq 0)), (NOT \ enableOpening) \rangle$ (TCMS)

- **SR1.** The door opening is not enabled when the traction is on or the train speed is distinct than zero
 - $S_1 = \langle (traction OR (tractionSpeed \neq 0)), (NOT enableOpening) \rangle$ (TCMS)

- **SR1.** The door opening is not enabled when the traction is on or the train speed is distinct than zero
 - $S_1 = \langle (traction \ OR \ (tractionSpeed \neq 0)), (NOT \ enableOpening) \rangle$ (TCMS)

- **SR2.** The door must be closed but remains open when some obstacle has been detected
 - $S_2 = \langle obstacle, doorStatus = opening \rangle$ (DoorController)

- **SR1.** The door opening is not enabled when the traction is on or the train speed is distinct than zero
 - $S_1 = \langle (traction \ OR \ (tractionSpeed \neq 0)), (NOT \ enableOpening) \rangle$ (TCMS)

SR2. The door must be closed but remains open when some obstacle has been detected

```
• S_2 = \langle obstacle, doorStatus = opening \rangle (DoorController)
```

```
context DoorController_SR2
inv: obstacle
    implies (doorStatus = opening)
```


- **SR3.** The door is closed when the door opening is enabled and the close event is received
 - $S_3 = \langle (enableOpening \ AND \ close), doorStatus = isClosed \rangle \ (Door)$

SR3. The door is closed when the door opening is enabled and the close event is received

• $S_3 = \langle (enableOpening \ AND \ close), doorStatus = isClosed \rangle \ (Door)$

```
context Door_SR3
inv: (enableOpening and close)
    implies doorStatus = isClosed
```


SR3. The door is closed when the door opening is enabled and the close event is received

• $S_3 = \langle (enableOpening \ AND \ close), doorStatus = isClosed \rangle \ (Door)$

```
context Door_SR3
inv: (enableOpening and close)
    implies doorStatus = isClosed
```

So, until here we have expressed safety contracts using OCL within UML. Now, we express these constraints using Petri nets to verify them, check next slide!

Agenda

- Introduction
- 2 Previous Concepts
- 3 Case Study: Trains Door Controllers
- 4 Safety Contract Fragment to OCL
- 5 From OCL constraints to Petri nets
- 6 Related Work
- 7 Conclusions and Future Work

From OCL constraints to Petri nets (I)

- Places representing each condition in the OCL invariant
- $p \Rightarrow q \Leftrightarrow \neg p \lor q$
- Compute the (output) place marking probabilities (by simulating)

From OCL constraints to Petri nets

From OCL constraints to Petri nets (II)

Petri net of the door controller

RIASC

Agenda

- Introduction
- 2 Previous Concepts
- 3 Case Study: Trains Door Controllers
- 4 Safety Contract Fragment to OCL
- 5 From OCL constraints to Petri nets
- 6 Related Work
- Conclusions and Future Work

Related Work (I)

Formal expression of contracts

- Requirements Specification Language, Othello (based on LTL), Modal Transmission Systems
- Advantage: expressiveness
- Disadvantages:
 - Needed to learn a new formalism each time used
 - Lack of verification (some of them)

Related Work (I)

Formal expression of contracts

- Requirements Specification Language, Othello (based on LTL), Modal Transmission Systems
- Advantage: expressiveness
- Disadvantages:
 - Needed to learn a new formalism each time used
 - Lack of verification (some of them)

Our proposal

- Enables to analyse also non-functional properties
- Safety contract fragments expressed as OCL
- Could complement OCRA analysis (non-functional properties)
- Strong, weak assumptions: Weak implicitly described with MARTE

Agenda

- Introduction
- 2 Previous Concepts
- 3 Case Study: Trains Door Controllers
- 4 Safety Contract Fragment to OCL
- 5 From OCL constraints to Petri nets
- 6 Related Work
- Conclusions and Future Work

Conclusions and Future Work

- Contract-based design: Good approach for safety-critical systems
- Safety contracts expressed as OCL, and verified into the PN
- \bullet All this performed at design phase! \rightarrow saves budget overruns

Future Work

- Increase complexity of contracts expressed by OCL
 - Event order? Temporal information?
- Safety assessment methodology + a tool to automatise the process

Conclusions and Future Work

- Contract-based design: Good approach for safety-critical systems
- Safety contracts expressed as OCL, and verified into the PN
- \bullet All this performed at design phase! \rightarrow saves budget overruns

Future Work

- Increase complexity of contracts expressed by OCL
 - Event order? Temporal information?
- Safety assessment methodology + a tool to automatise the process

A last remark

- Final effort must be done in implementation
 - Assure it matches the system model, or otherwise it may lead the system to an unsafe system

Acknowledgements: ARTEMIS JU nSafeCer, n^o 295373

Model-based Verification of Safety Contracts

Elena Gómez-Martínez[†], **Ricardo J. Rodríguez**[‡], Leire Etxeberria Elorza^{*}, Miren Illarramendi Rezabal^{*}, Clara Benac Earle[†]

{egomez,cbenac}@babel.ls.fi.upm.es, rj.rodriguez@unileon.es,

 $\{let xeberria, millarramendi\}@mondragon.edu$

universidad ^{de}león

[†]Technical University of Madrid Madrid, Spain [‡]RIASC, University of León León, Spain *Mondragon Unibertsitatea Arrasate-Mondragón, Spain

September 1, 2014

1st International Workshop on Safety & Formal Methods Grenoble (France)