A Peek Under the Hood of iOS Malware

Laura García[†], **Ricardo J. Rodríguez**[‡]

laura@mlw.re, rjrodriguez@ieee.org

③ All wrongs reversed

[‡]Second University of Naples, Caserta, Italy University of Zaragoza, Spain

September 02, 2016

1st International Workshop on Malware Analysis Salzburg, Austria

Malicious software targeting mobile devices are increasing

- Expected, given the increasing trend of these devices (7.2B in use)
- Criminal though: the more potential victims, the more revenue
- Mobile market is mainly dominated by Android (82.8%) and iOS (13.9%)
- Same trend is followed by threats:
 - 5000 new Android malware files/day were found in 2015 (Kaspersky)
- Consequence: Android malware largely studied in the literature

Malicious software targeting mobile devices are increasing

- Expected, given the increasing trend of these devices (7.2B in use)
- Criminal though: the more potential victims, the more revenue
- Mobile market is mainly dominated by Android (82.8%) and iOS (13.9%)
- Same trend is followed by threats:
 - 5000 new Android malware files/day were found in 2015 (Kaspersky)
- Consequence: Android malware largely studied in the literature

What about iOS malware?

Lack of attention

- Market share: Android is preferred instead of iOS as malware deployment platform
- 2 Different security models, making Android more exposed
 - Both follow permission-based approaches (different granularity)
 - Both have native OS security mechanisms (as DEP, ASLR)
 - Android mainly relies on platform protection, while iOS relies on market protection

Lack of attention

- Market share: Android is preferred instead of iOS as malware deployment platform
- 2 Different security models, making Android more exposed
 - Both follow permission-based approaches (different granularity)
 - Both have native OS security mechanisms (as DEP, ASLR)
 - Android mainly relies on platform protection, while iOS relies on market protection

Some insights on iOS market protection

- Review/vetting process for any app to be published in App Store (official Apple market)
- Not totally effective
 - Example: XCodeGhost, a trojanized SDK, infected (at least) 39 apps
 - Other attack vectors also possible: private APIs, compromised iCloud accounts

Contributions

- Classification of 36 iOS malware families, from 2009 to 2015, according to:
 - Affected devices
 - Distribution channel
 - Infection method
 - Attack goal
 - Attack vector
- iOS malware analysis methodology
 - In-depth analysis of a selected sample (from KeyRaider family)

Contributions

- Classification of 36 iOS malware families, from 2009 to 2015, according to:
 - Affected devices
 - Distribution channel
 - Infection method
 - Attack goal
 - Attack vector
- iOS malware analysis methodology
 - In-depth analysis of a selected sample (from KeyRaider family)

Take-home conclusions

Most of iOS malware are distributed out of official markets

Contributions

- Classification of 36 iOS malware families, from 2009 to 2015, according to:
 - Affected devices
 - Distribution channel
 - Infection method
 - Attack goal
 - Attack vector
- iOS malware analysis methodology
 - In-depth analysis of a selected sample (from KeyRaider family)

- Most of iOS malware are distributed out of official markets
- Jailbreaking an iOS device makes it a potential target

Contributions

- Classification of 36 iOS malware families, from 2009 to 2015, according to:
 - Affected devices
 - Distribution channel
 - Infection method
 - Attack goal
 - Attack vector
- iOS malware analysis methodology
 - In-depth analysis of a selected sample (from KeyRaider family)

- Most of iOS malware are distributed out of official markets
- Jailbreaking an iOS device makes it a potential target
- User interaction is (somehow) required as first infection stage

Related Work (I)

Mainly focused on Android

- Smartphone malware taxonomy (Amamra et al., 2012)
 - Reference behaviour, analysis approach, and malware behaviour
- ANDRUBIS tool (Lindorfer et al., 2014)
- 46 mobile malware samples, from 2009 to 2011 (Felt et al., 2011)
 - Current and future incentives
 - 4 iOS samples (also covered in our study)
- Set of 1200 Android samples (Zhou and Jiang, 2012)
 - Attack type and installation method

Related Work (II)

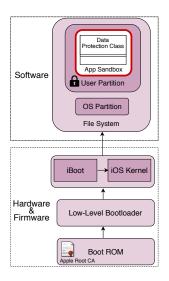
Survey of mobile malware (Suárez-Tangil et al., 2014)

- Attack goals, malware behaviour, distribution and infection, privilege acquisition
- 9 samples target i0S devices
- Our approach is similar, but with some differences:
 - Distribution and infection are separate features
 - Attack vectors also considered

Related Work (II)

Survey of mobile malware (Suárez-Tangil et al., 2014)

- Attack goals, malware behaviour, distribution and infection, privilege acquisition
- 9 samples target i0S devices
- Our approach is similar, but with some differences:
 - Distribution and infection are separate features
 - Attack vectors also considered


iOS attack prevention

- PiOS: detect sensitive information exfiltration
- XiOS: prevents lazy bindings and abuse of private APIs
- iRiS: app vetting system that detect malicious behaviours
- Abuse of iOS sandboxing (Xing et al., CCS'15)

Zaragoza

Background (I)

iOS security model

Low level

 Hardware and firmware digitally signed and verified prior execution

Application level

- Apple-issued certificate: all apps are signed
- Apps are isolated (sandbox)
- Data Protection: feature to protect data based on when it needs to be accessed
- Others: DEP, ASLR

L. García, R.J. Rodríguez

A Peek Under the Hood of iOS Malware

Laiayuza

-

Background (II)

Apple review/vetting process

Any app must comply with Apple Review Guidelines

- Reliable, perform as expected, free of offensive material
- Set over 100 rules, covering different aspects (functionality, meta-data, advertising, etc.)

Not 100% perfect

- Trojanized SDK
- Obfuscation of private API calls
- Abuse of inter-app services

Laragoza

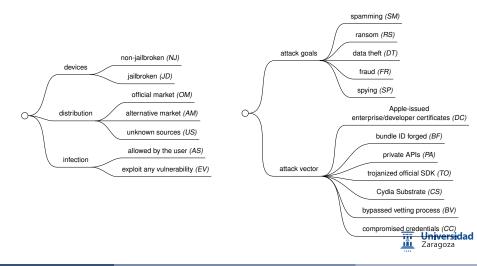
Characterization of iOS malware (I)

- 36 malware families from 2009 to 2015
- Criteria: Who are targeting individuals?
 - On-sale malware: anyone
 - State-sponsored malware: governments, intelligent agencies, ...
 - Underground malware: criminals

Characterization of iOS malware (I)

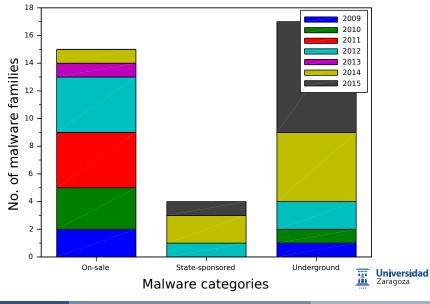
- 36 malware families from 2009 to 2015
- Criteria: Who are targeting individuals?
 - On-sale malware: anyone
 - State-sponsored malware: governments, intelligent agencies, ...
 - Underground malware: criminals

Malware family name(s)	Discovery date
ON-SALE MALWARE	
Trapsms	Jun 2009
MobileSpy	Jul 2009
OwnSpy	Feb 2010
MobiStealth	Oct 2010
FlexiSpy	Dec 2010
iKeyGuard	April 2011
Copy9	Jul 2011
StealthGenie	Nov 2011
mSpy	Oct 2011
iKeyMonitor	Mar 2012
SpyKey	Apr 2012
Copy10	Aug 2012
InnovaSPY	Sept 2012
1mole	Jan 2013
Spy App	Oct 2014
STATE-SPONSORED MALWARE	
FinSpy Mobile	Aug 2012
Hacking Team tools	Jun 2014
Inception/Cloud Atlas	Dec 2014
XAgent/PawnStorm	Feb 2015


Malware family name(s)	Discovery date
UNDERGROUND MALWARE	
Ikee/Eeki and Duh	Nov 2009
LBTM	Sept 2010
Find and Call	Jul 2012
Nobitazzz (packages)	Aug 2012
AdThief/Spad	Mar 2014
SSLCreds/Unflod Baby Panda	Apr 2014
AppBuyer	Sept 2014
WireLurker	Nov 2014
Xsser mRAT	Dec 2014
Lock Saver Free	Jul 2015
KeyRaider	Aug 2015
XcodeGhost	Sept 2015
YiSpecter	Oct 2015
Muda/AdLord	Oct 2015
Youmi Ad SDK	Oct 2015
TinyV	Oct 2015
SantaAPT	Dec 2015

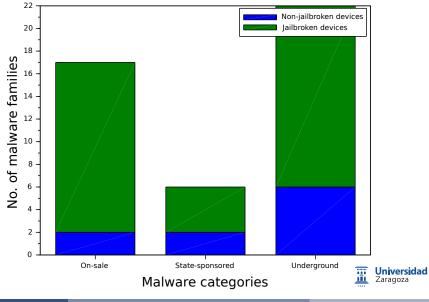
L. García, R.J. Rodríguez

A Peek Under the Hood of iOS Malware


Characterization of iOS malware (II)

Features of interest

Discussion (I)


On evolution

A Peek Under the Hood of iOS Malware

Discussion (II)

On affected devices

Discussion (III)

On distribution and infection

Distribution

- On-sale & state-sponsored malware evenly distributed over AM & US
- \approx 14% of underground malware distributed over OM
 - Only one family (Ikee, worm behaviour) comes from *US*, the rest come from *AM*
 - Recall that AM have no vetting process

Discussion (III)

On distribution and infection

Distribution

- On-sale & state-sponsored malware evenly distributed over AM & US
- \approx 14% of underground malware distributed over OM
 - Only one family (Ikee, worm behaviour) comes from *US*, the rest come from *AM*
 - Recall that AM have no vetting process

Infection

- Only 8.3% of malware families exploit any vulnerability (one state-sponsored, two underground)
 - Default passwords in jailbroken devices
 - Compromised enterprise/provisioning certificates
 - Masque attack (bundle ID forged)

....

Universidad

Zaragoza

Discussion (IV)

On attack goals and attack vectors

Attack goals

- Spying and data theft: main goal of on-sale and state-sponsored malware (expected behaviour)
- Underground malware, more sparse (≈ 65% present more than one goal):
 - \approx 50% data thefts; \approx 35% fraudsters
 - $\,\approx\,24\%$ spammers; $\approx\,18\%$ spying activities

Discussion (IV)

On attack goals and attack vectors

Attack goals

- Spying and data theft: main goal of on-sale and state-sponsored malware (expected behaviour)
- Underground malware, more sparse ($\approx 65\%$ present more than one goal):
 - \approx 50% data thefts; \approx 35% fraudsters
 - \approx 24% spammers; \approx 18% spying activities

Attack vectors

- On-sale and state-sponsored malware, focused on Cydia Substrate
- Compromised credentials (two on-sale malware families)
- Other attack vectors used by state-sponsored malware:
 - Bundle ID forged
 - Misuse of enterprise/developer certificates
- Underground malware also use private APIs and trojanized SDK

Discussion (V)

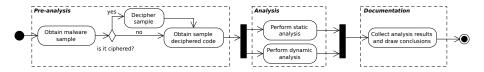
Findings summary

- DO NOT jailbreak your iOS devices
- Keep them updated
- Install only from trusted sources
- Use native iOS mechanisms to grant/revoke permissions

Discussion (V)

Findings summary

- DO NOT jailbreak your iOS devices
- Keep them updated
- Install only from trusted sources
- Use native iOS mechanisms to grant/revoke permissions


www.techrepublic.com/article/update-all-ios-devices-to-9-3-5-immediately-or-risk-a-remote-jailbreak/

Kindly reminder $\ddot{-}$ (update now!)

Case Study: Analyzing a malware sample (I)

Analysis methodology

KeyRaider sample

MD5 hash: 8985ecbc80d257e02c1e30b0268d91e7

Samples available on the web (spread the love ♥):

http://webdiis.unizar.es/~ricardo/software-tools/supplementary-research-material/ios-malware-samples/

Case Study: Analyzing a malware sample (II)

Pre-analysis stage

Load command 10 cmd LC_ENCRYPTION_INFO cmdsize 20 cryptoff 16384 cryptsize 835584 cryptid 0

otool command (option -I)

• $cryptid = 0 \rightarrow it's uncrypted$

Case Study: Analyzing a malware sample (II)

Analysis stage

000b2c10 db "", 0 000b2c11 db "iPhone5.1". 0 db "\xE4\xB8\xAD\xE5\x9B\xBD\xE8\x81\x94\xE9\x80\x9A". 000b2c1b 000b2c28 db "8.1.2", 0 000b2c2e db "11A470a". 0 db "GET /data.php?table=other&game=(game) HTTP/1.1\r\n" 000b2c36 db "Host: www.wushidou.cn\r\n\r\n", 0 000b2c67 000b2c81 db "(game)", 0 000b2c88 db "iappstore". 0 db "www.wushidou.cn", 0 000h2c92 000b2ca2 db "name", 0 000b2ca7 db "pass", 0 000h2cac db "pod", 0

Static analysis

- strings reveals a web domain
 - www.wushidou.cn
 - Resolves to localhost!

Case Study: Analyzing a malware sample (III)

Analysis stage

	10, 17	
bl	Z14getProcessNamev	; getProcessName()
MOVW	r1, #0xf754	: "itunesstored", :lower16:(0xb405e - 0x1490a)
mov	r0, r4	
movt	r1, #0x9	; "itunesstored", :upper16:(0xb405e - 0x1490a)
movs	r2, #0x0	,,,,,,,
add	r1, pc	: "itunesstored"
auu	ri, pc	; Ituliesstoreu
movw	r1, #0xf51d	; "/System/Library/Frameworks/Security.framewow
movs	r0, #0×4	
movt	r1, #0x9	; "/System/Library/Frameworks/Security.framewor
str	r0. [sp. #0x78 + var 48]	
	- 1 + 0 + - + 0 +]
movw	r1, #0xed9d	; :lower16:(0x1378d - 0x149f0)
movs	r0, #0x9	
movt	r1, #0xffff	; :upper16:(0x1378d - 0x149f0)
movw	r2, #0xf2a6	; :lower16:(_o_SSLWrite - 0x149f2)
movt	r2, #0xc	; :upper16:(_o_SSLWrite - 0x149f2)
add	r1 pc	: 0x1378d
add	r2, pc	o SSLWrite
str	r0, [sp, #0x78 + var_48]	/
ldr	r0, [sp, #0x78 + var_74]	
blx	<pre>impsymbolstub1MSHookFunction</pre>	
DLA	Tillh SAUDO CS CODTUSHOOKEOUCCTOU	

Dynamic analysis

- Uses Mobile Substrate Framework to hook SSLRead, SSLWrite functions in itunesstored
 - Enables it to get username, password, and device GUID very easily
 - Once retrieved, exfiltrated to the C&C server

Case Study: Analyzing a malware sample (IV)

Analysis stage

blx	imp symbolstub1 Unwind SjLj Register	
movw		<pre>nce.woa/wa/authenticate HTTP/</pre>
movt	r2, #0xa ; "POST /WebObjects/MZFinar	<pre>ice.woa/wa/authenticate HTTP/</pre>
add	r2, pc ; "POST /WebObjects/MZFinar	<pre>ice.woa/wa/authenticate HTTP/</pre>
addw	r0, sp, #0x624	
add.w	r1, sp, #0x6d8	
blx	impsymbolstub1ZNSt3_1plIcNS_11char_traitsIcEENS_9allocatorIcEEEENS_12bas	ic_stringIT_T0_T1_EERKS9_PKS
movw	r2, #0xba8f ; "Host: p(pod)-buy.itunes.	apple.com\\r\\n", :lower16:(
movs	r0, #0x2	
movt	r2, #0xa ; "Host: p(pod)-buy.itunes.	apple.com\\r\\n", :upper16:(
str.w	r0, [sp, #0x738 + var_48]	
add	r2, pc ; "Host: p(pod)-buy.itunes.	apple.com\\r\\n"
add.w	r0, sp, #0×630	
addw	r1, sp, #0x624	
blx	<pre>impsymbolstub1ZNSt31plIcNS_11char_traitsIcEENS_9allocatorIcEEEENS_12bas</pre>	ic_stringIT_T0_T1_EERKS9_PKS
movw	r2, #0xba97 ; "User-Agent: AppStore/2.0	iOS/(os) model/(phone) (4;
movs	r0, #0x3	
movt		iOS/(os) model/(phone) (4;
str.w	r0, [sp, #0x738 + var_48]	
add		iOS/(os) model/(phone) (4;
addw	r0, sp, #0x63c	
add.w	r1, sp, #0×630	
blx	<pre>impsymbolstub1ZNSt31plIcNS_11char_traitsIcEENS_9allocatorIcEEEENS_12bas</pre>	ic_stringIT_T0_T1_EERKS9_PKS
		The set of the The The The set of The

Dynamic analysis

Emulate App Store login protocol with compromised accounts

🚊 Zaragoza

Case Study: Analyzing a malware sample (V)

Analysis stage

blx	imp symbolstub1 Unwind SiLj Register	
movw	r2. #0xa470 : "POST /Web0bjects/MZBuv.woa/wa/buvProduct HTTP/	/1 1\\r'
movt	r2, #0xa ; "POST /WebDbjects/MZBuy.woa/wa/buyProduct HTTP,	
add	r2, pc ; "POST /WebDbjects/MZBuy.woa/wa/buyProduct HTTP,	
add.w	r0, sp, #0x488	/
add.w	r1, sp, #0x578	
blx	<pre>impsymbolstub1ZNSt3_1plIcNS_11char_traitsIcEENS_9allocatorIcEEEENS_12basic_stringIT_T0_T1_EERP</pre>	KSQ PKS
movw	r2, #0x9ef5 ; "Host: p(pd)-buy, itunes, apple, com\r/r\n", : loo	
movs	r0, #0x2	
movt	r2, #0xa ; "Host: p(pod)-buy.itunes.apple.com\\r\\n", :upp	ner16 · (i
str.w	r0, [sp, #0x5d8 + var 48]	per 101 (
add	r2, pc ; "Host: p(pod)-buy.itunes.apple.com\\r\\n"	
addw	r0, sp, #0x494	
add.w	r1, sp, #0x488	
blx	<pre>impsymbolstub1ZNSt31plIcNS_11char_traitsIcEENS_9allocatorIcEEEENS_12basic_stringIT_T0_T1_EERI</pre>	KS9 PKS
movw	r2, #0x9efd ; "User-Agent: AppStore/2.0 i0S/(os) model/(phone	
movs	r0, #0x3	
movt	r2, #0xa ; "User-Agent: AppStore/2.0 iOS/(os) model/(phone	e) (4; (
str.w	$r0, [sp, #0x5d8 + var_48]$	
add	r2, pc ; "User-Agent: AppStore/2.0 iOS/(os) model/(phone	e) (4; (
add.w	r0, sp, #0x4a0	
addw	r1, sp, #0x494	
blx	imp symbolstub1 ZNSt3 1plicNS 11char traitsIcEENS 9allocatorIcEEEENS 12basic stringIT_T0_T1_EERI	KS9_PKS
movw	r2, #0x9f1e ; "Accept: */*\\r\\n", :lower16:(0xb2e90 - 0x8f72	2)
movs	r0, #0×4	
movt	r2, #0xa ; "Accept: */*\\r\\n", :upper16:(0xb2e90 - 0x8f72	2)
str.w	r0, [sp, #0x5d8 + var_48]	
add	r2, pc ; "Accept: */*\\r\\n"	
addw	r0, sp, #0x4ac	
add.w	r1, sp, #0x4a0	

Dynamic analysis

Forge purchases requests

Conclusions

- Classification of 36 iOS malware families, from 2009 to 2015
 - Affected devices, distribution channels, infection, attack goals, and attack vector
- Methodology for iOS malware analysis
 - Same as PC malware analysis

Conclusions

- Classification of 36 iOS malware families, from 2009 to 2015
 - Affected devices, distribution channels, infection, attack goals, and attack vector
- Methodology for iOS malware analysis
 - Same as PC malware analysis

Take-home conclusions

• Few of them target non-jailbroken devices

Conclusions

- Classification of 36 iOS malware families, from 2009 to 2015
 - Affected devices, distribution channels, infection, attack goals, and attack vector
- Methodology for iOS malware analysis
 - Same as PC malware analysis

- Few of them target non-jailbroken devices
- Few of them exploit iOS vulnerabilities

Conclusions

- Classification of 36 iOS malware families, from 2009 to 2015
 - Affected devices, distribution channels, infection, attack goals, and attack vector
- Methodology for iOS malware analysis
 - Same as PC malware analysis

- Few of them target non-jailbroken devices
- Few of them exploit iOS vulnerabilities
- Data theft and spying are most common goals

Conclusions

- Classification of 36 iOS malware families, from 2009 to 2015
 - Affected devices, distribution channels, infection, attack goals, and attack vector
- Methodology for iOS malware analysis
 - Same as PC malware analysis

- Few of them target non-jailbroken devices
- Few of them exploit iOS vulnerabilities
- Data theft and spying are most common goals

Conclusions

- Classification of 36 iOS malware families, from 2009 to 2015
 - Affected devices, distribution channels, infection, attack goals, and attack vector
- Methodology for iOS malware analysis
 - Same as PC malware analysis

Take-home conclusions

- Few of them target non-jailbroken devices
- Few of them exploit iOS vulnerabilities
- Data theft and spying are most common goals

Future work

- Analyze (in-depth) more samples
 - Identify the underlying attack concepts (get fingerprints for detection)
 - Develop a iOS malware detection tool

A Peek Under the Hood of iOS Malware

Laura García[†], **Ricardo J. Rodríguez**[‡]

laura@mlw.re, rjrodriguez@ieee.org

③ All wrongs reversed

[‡]Second University of Naples, Caserta, Italy University of Zaragoza, Spain

September 02, 2016

1st International Workshop on Malware Analysis Salzburg, Austria