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Abstract— Deep neural networks (DNNs) can be misclassified by adversarial examples, which are legitimate inputs integrated with 

imperceptible perturbations at the testing stage. Extensive research has made progress for white-box adversarial attacks to craft 
adversarial examples with a high success rate. However, these crafted examples have a low success rate in misleading black-box models 
with defensive mechanisms. To tackle this problem, we design an AdaBelief based iterative Fast Gradient Sign Method (AB-FGSM) to 
generalize adversarial examples. By integrating the AdaBelief optimizer into the iterative-FGSM (I-FGSM), the generalization of 
adversarial examples is boosted, considering that the AdaBelief method can find the transferable adversarial point in the 𝝐 ball around 
the legitimate input on different optimization surfaces. We carry out white-box and black-box attacks on various adversarially trained 
models and ensemble models to verify the effectiveness and transferability of the adversarial examples crafted by AB-FGSM. Our 
experimental results indicate that the proposed AB-FGSM can efficiently and effectively craft adversarial examples in the white-box 
setting compared with state-of-the-art attacks. In addition, the transfer rate of adversarial examples is 4% to 21% higher than that of 
state-of-the-art attacks in the black-box manner. 
 

Index Terms—adversarial examples, deep learning, generalization, optimization, security, transferability 
 

I. INTRODUCTION 
The recent decade has witnessed the growth of artificial intelligence from the advancement of deep learning (DL) technologies. 

The significant success of DL has made it a state-of-the-art performance across multiple domains [1][2][3]. Nevertheless, the 
emergence of adversarial examples [4] poses an obstacle to DL techniques and their practical applications, and then the reliability 
and security of DL techniques challenge their users. In particular, adversarial examples are legitimate inputs along with well-
designed and unnoticeable perturbations that will trick deep neural networks (DNNs) into misclassifications [5][6][7]. 

According to the adversary’s knowledge, there are two types of adversarial example attacks: white-box attacks and black-box 
attacks [8][9][10]. In the white-box manner, the adversary has detailed information about the target model, including the model 
architecture and parameters. In black-box attacks, the adversary does not have information on the target model but can gain support 
from the transferability of adversarial examples to make black-box attacks possible. Transferability refers to adversarial examples 
crafted in a DNN model  that can still fool other DNN models  and thus make adversarial examples more generalizable and 
more aggressive [4][11]. It is essential to learn to craft highly generalizable adversarial examples to increase the robustness of 
DNNs from two aspects. On the one hand, it takes advantage of critical DNN security issues. On the other hand, it can help 
recognize the vulnerability of models and improve their robustness by adversarial training before they are released. 

Previously, researchers proposed first-order optimization-based one-step [12] and iterative [6][7] adversarial attacks to craft 
adversarial examples in the white-box setting, and this has been very successful [14][15]. However, such exposures are 
unsatisfactory, as recent work has demonstrated that these iterative optimization-based adversarial attacks have limited 
transferability [16][17][18]. That is, adversarial examples produced by these attacks have a low transfer rate on adversarially 
trained models, ensemble trained models [16], or models with other defensive mechanisms [17][18] in the black box. Several 
attempts have been made to facilitate the transferability of adversarial examples via optimization technologies [12][19][20]. For 
instance, Dong et al. [19] integrated the Momentum optimizer into the iterative Fast Gradient Sign Method (I-FGSM) [13] 
adversarial attacks. Nevertheless, improvements in these methods are still limited, and these adversarial example attacks do not 
find the most transferable adversarial point around the input. There is still a long way to go to boost transfer rates [15]. 

The specific goal of this paper is to address the low transferability problem mentioned above. Inspired by the fact that the 
adaptive optimizer AdaBelief is currently the best optimizer for convergence and generalization [21], we propose to integrate it 
into the I-FGSM [13] method. We call our proposal as AdaBelief based iterative Fast Gradient Sign Method (AB-FGSM). We 
focus on the effectiveness and efficiency of adversarial examples, studying whether iterative AB-FGSM method can accelerate the 
generation of adversarial examples in the white-box manner and improve the transferability of adversarial examples in the black-
box manner. Our extensive experimental results demonstrate that our proposed method efficiently builds adversarial examples with 
a high white-box success rate and that these crafted adversarial examples achieve the high black-box transfer rate effectively 
compared to the state-of-the-art methods. 
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In summary, the contributions are as follows: 
� We propose a novel adversarial example attack, AB-FGSM, which can efficiently and effectively find the direction to be 

perturbed on any optimization surface and avoid getting stuck in suboptimal areas when generating adversarial examples. 
We give three adversarial examples crafted by AB-FGSM in FIGURE 1. 

� In the white-box manner, AB-FGSM requires the lowest perturbations and the lowest iterations to reach the 100% success 
rate compared to four state-of-the-art attacks (I-FGSM, MI-FGSM, NI-FGSM, and AI-FGSM). In multiple sophisticated 
DNNs (WideResNet, Inc-v3, Inc-v4, IncRes-v2 and Res-101 models), AB-FGSM can achieve the highest success rate 
stably by attacking a single model and ensemble models. More details are provided in Sections IV.C and IV.D. 

� In the black-box manner, the adversarial examples crafted by AB-FGSM have the strongest transferability, which is at least 
4% higher than the state-of-the-art methods compared. They can break defensive DNNs, such as ensemble trained models 
and adversarially trained models, with high success rates. We hope that our method can be the basis for future research. 

We organize the rest of this paper as follows. Section II gives the notations and the background and comparative methods of 
adversarial examples. A more detailed account of AB-FGSM is provided in Section III. Section IV discusses the experimental 
results. Section V concludes the paper and states future work. 

   
Rapeseed (96.98%)  Fireguard (100.00%) 

   
Prayer Rug (97.80%)  Velvet (100.00%) 

   
Mailbox (99.97%)  Projector (100.00%) 

FIGURE 1 THREE ADVERSARIAL EXAMPLES CRAFTED BY AB-FGSM ARE GIVEN. LEFT COLUMN: THE LEGITIMATE IMAGES WITH A PREDICTION LABEL AND 
CONFIDENT PROBABILITY BY THE INC-V3 MODEL SHOWN BELOW. MIDDLE COLUMN: PERTURBATIONS CRAFTED BY AB-FGSM. RIGHT COLUMN: 

ADVERSARIAL EXAMPLES WITH THE CONFIDENCES. 

II. BACKGROUND 
This section provides a detailed description of basic notations and Fast Gradient Sign Method (FGSM). We then present the 

sophisticated version of FGSM: I-FGSM and its variants, including MI-FGSM, NI-FGSM, and AI-FGSM. 

A. Notations 
Given a DNN model, , with parameters , generates a prediction label  corresponding to an input 

, and the input has a ground truth label . In the context of adversarial settings, the DNN model is in the test stage and is 
regarded as a function, and the parameters all it has are fixed and not allowed to be modified. With these premises, an adversary 
wants to find an example  (called an adversarial example) that is almost the same as  but has imperceptible differences, e.g., 
the differences are in the  ball in terms of the  norm distance. 

As mentioned in Section I, the adversary generates the adversarial example through the adversarial generation algorithm on the 
DNN model with full knowledge, which is called the white box attack. Black-box attacks mean that the adversary does not know 
the target model but can generate adversarial examples in its substitute model and then transfer these examples to attack the 
unknown target model. According to the adversarial goals, there are two types of adversarial examples: non-targeted and targeted. 
Specifically, the prediction label for non-targeted adversarial examples is . For targeted adversarial examples, the 
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prediction label follows the rule . This paper focuses on the non-targeted white-box and black-box adversarial 
examples. 

B. Fast Gradient Sign Method and Iterative FGSM 
Szegedy et al. [4] were the first to exploit the creation of adversarial examples using first-order gradient information, and the 

proposed white-box attack is called the Fast Gradient Sign Method (FGSM). Its purpose is to find an adversarial example  such 

that the cross-entropy objective function value  is maximized. Notably, the difference between legitimate  and 

adversarial  must be within the  norm radius  ball around , i.e., . More formally: 

 

where  denotes the gradients of the objective function  with respect to  and  is the derivative symbol. The 

function  represents the sign of the function input. The limitation of FGSM is that FGSM only uses one-step gradients to 
craft adversarial examples, leading to a low generation rate. 

To solve the problem of the low generation rate of FGSM, I-FGSM was proposed in [13]. Compared to FGSM, I-FGSM is a 
multistep adversarial attack. The iterative function is expressed as: 

 

This means that the adversary allocates the total perturbations in T iterations.  is the step rate to control the perturbations 
added to the input in one iteration. The  function restricts the input into the  ball around . The experimental results in 
[13] showed that the multistep attack can craft adversarial examples more potentially than the one-step attack. 

C. Optimization-Based I-FGSM Variants 
In the conventional DNN training phase, neural networks are trained with first-order gradient descent optimization algorithms. 

There are two families of gradient descent optimization algorithms: (i) the accelerated stochastic gradient descent (SGD) family, 
such as momentum [22] and Nesterov [23], and (ii) the adaptive learning rate family [21], such as Adam [24] and Adadelta [25]. 
The two families have their own advantages and disadvantages. Specifically, DNNs trained with the SGD family have a strong 
generalizability, but the convergence rate is low. The adaptive family is the opposite of the SGD family: they train DNNs faster at 
the cost of generalizability. 

Since then, researchers have been investigating how to craft adversarial examples with more aggressiveness and transferability 
in I-FGSM, especially from optimization algorithms [19][20][26]. Dong et al. [19] integrated the momentum accelerated gradient 
[22] into I-FGSM to stabilize iterative directions, and the proposed attack (called MI-FGSM) has a stronger transferability for 
adversarial examples. The procedure is formalized as follows: 

 

 

where  denotes the gradient of the cross-entropy loss to the adversarial example , and  is the accumulated 

gradient of the first t iterations with a decay factor .  denotes the 𝐿! norm distance. Then,  is adopted for I-FGSM. 

Shortly thereafter, Lin et al. [20] adapted the Nesterov accelerated gradient [23] to I-FGSM, as Nesterov is better than 
momentum for conventional optimization, which we call NI-FGSM. The update formulas that differ from the momentum are 
shown below: 

 

 

 

Previous work only focused on the view of SGD families. Yin et al. [26] combined the adaptive Adam optimization method 
[24] with I-FGSM, and we call it AI-FGSM. The formulas are shown below: 
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  (II.1) 

  (II.2) 

 

  (II.3) 

  (II.4) 

where  and  denote the exponential moving average (EMA) of  and  in Eq.(II.1) and Eq. (II.2), respectively.  and 
 are exponential decay rates to smooth  and . The perturbation is represented as  and  is a small positive value to 

avoid the divisor being 0. The iterative form in AI-FGSM is a variant of the standard adaptive Adam method. The difference 

focuses on Eq. (II.3). The traditional Adam optimization method does not have the term . The authors added it as it 

can normalize the step size  in the iteration. However, the authors in [26] did not use the  function in Eq. (II.4) when 
crafting adversarial examples, which is unreasonable, and we correct this in the experiments. 

From I-FGSM to AI-FGSM, we conclude that all adversarial example methods to improve the transferability are the combination 
of I-FGSM and a single optimization method. In the model training phase, we cannot optimize a DNN model with two optimizers 
simultaneously. Therefore, it is intuitive to optimize the adversarial examples using one optimization method rather than multiple 
methods. 

In addition, all the previous works have limitations. Momentum and Nesterov are implemented to make DNN models more 
generalizable, but the impact of generalization becomes very limited in adversarial settings. Likewise, the adversarial examples 
crafted by AI-FGSM do not generalize well, as Adam-trained generalize poorly. This is validated with our experiments in Sections 
IV.C and IV.D. To address these limitations, we propose a novel adversarial example attack called AB-IFGSM, which combines 
the AdaBelief optimizer with the iterative Fast Gradient Sign Method. 

III. METHODOLOGY 
This section first describes how to combine the AdaBelief optimizer with the iterative Fast Gradient Sign Method and the 

function of AB-FGSM will be explained in Section III.A. Then, we illustrate how our proposed method attacks single and ensemble 
models in Section III.B. 

A. AdaBelief Iterative Fast Gradient Sign Method 
Algo. 1. shows the steps of our proposed AB-FGSM attack, which is based on the AdaBelief optimizer. This optimizer is 

proposed to solve the generalization problem of adaptive optimization, as opposed to stochastic gradient descent (SGD) 
optimization methods [21]. The AdaBelief optimizer solved this problem by adding a “belief” coefficient  shown in Eq. 
(III.5), which is easily modified from the Adam optimizer. The detailed formulas of the Adam and Adabelief optimizers are shown 
below: 

  (III.1) 

Adam:  (III.2) 

  (III.3) 

AdaBelief:  (III.4) 
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  (III.5) 

 
Algo. 1. AB-FGSM 
Input: The model learned function  with the cross-entropy objective function ; a legitimate 

input , and its ground-truth label ; the total iterations  with each step ; the size of the 
perturbation ; a fine-tuned step rate ; AdaBelief factors includes exponential decay rates , ; 
a denominator stability parameter . 
Output: An adversarial example  with ; 

1: Initialize  

2: while  do: 
3:   

4:   

5:   

6:   

7:   

8:   

9:   

10:   

11:   

12: end while 
13: return  

 
Here, Eq. (III.1) are the universal basic EMAs of  in the Adam and AdaBelief optimizers. Eq. (III.2) and Eq. (III.3) are the 

Adam update functions, and Eq. (III.4) and Eq. (III.5) are the AdaBelief update functions. The improvement of the Adam optimizer 
in the AdaBelief optimizer is shown in Eq. (III.4), compared with Eq. (III.2) in the Adam optimizer. 

 
FIGURE 2 ILLUSTRATION OF THE OPTIMIZATION SURFACE. 

The term  in Eq. (III.4) promises that the AdaBelief method can constantly update parameters on any objective surface. 

We use FIGURE 2 as an example to illustrate the disadvantage of the Adam method.  represents an imaginary optimization 
surface with respect to parameter . When the surface is steep and t is in the period , the gradient  is large, and we want 

the parameters to update faster. In this case, and  in Eq. (III.1) and (III.2) are large, causing  to be very small in Eq. 
(III.3) and then slowing down the update process. This phenomenon is the shortcoming of the Adam method since the performance 
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of Adam is far from our goals. 
However, in the AdaBelief settings,  in Eq. (III.4) is small since  and  are close on the steep optimization surface, which 

leads to  in Eq. (III.5) and thus promoting an expected rapid convergence. This is why  is called the “belief” term, 

as it can reflect the belief of the gradient prediction: if  is small, then the AdaBelief method believes in taking a small step 
to update parameters; otherwise, AdaBelief takes a large step. 

Intuitively, we integrate the AdaBelief method into I-FGSM to improve the transferability of adversarial examples due to the 
faster convergence rate and stronger generalization performance of the AdaBelief method. We call it AB-FGSM algorithm, the 
procedure of which is shown in Algo. 1. 

Specifically, AB-FGSM takes T iterations to generate adversarial examples, as while function does. In each iteration, we first 
calculate the gradient of the current input , as described in line 4. Then, in lines 6 and 7, we calculate the EMAs of  and 

. In line 9, we compute the bias correction of  and . The reason to perform bias correction is to help correct the 
biased estimation of  and  in the first few iterations. There is no difference with the standard AdaBelief method in these three 
lines. 

The difference between AdaBelief and AB-FGSM is in lines 5, 8, 10, and 11 in Algo.1. In line 5, inspired by the previous work 
of AI-FGSM [26], we also add a normalized term  to further fine-tune the step size. However, our normalized term differs from 
that of AI-FGSM. We only add the normalized values from the first iterations to the current iteration t, but theirs added all 
normalized values initially, which we believe is counterintuitive. The benefit of our proposal is that only the previous normalized 
terms affect the step size, and the normalized terms that have not yet been iterated have no effect on the current step size. We think 
this is more reasonable than theirs. In line 8, the AMSGrad skill [27], the choice of the bigger EMA values, is used in our algorithm 
to help AB-FGSM avoid convergence to the suboptimal point. Lines 10 and 11 are the adaptation of I-FGSM to AB-FGSM. 

B. Attacking Single and Ensemble Models 
We follow the previous experimental pattern [11][12][18] to validate the effectiveness of AB-FGSM: attacking single and 

ensemble models in the white-box and black-box manners. In this section, we will give a detailed description. 
Traditionally, white-box and black-box attacks are merely conducted on a single DNN model. Liu et al. [29] verified that an 

adversarial example remains adversarial for multiple ensemble models, and then it is more likely to transfer to other models as 
well. Dong et al. [19] further emphasized that adversarial examples that can threaten an ensemble model have greater transferability. 
Therefore, an adversarial example is more transferable if it can escape the ensemble model. 

An ensemble model is an approach that combines multiple models to obtain better prediction and boosts the model robustness 
since the prediction of the ensemble model can be seen as voting for the prediction of each submodel. Only when the predictions 
of almost all submodels are the same can the ensemble model output the agreed prediction. Similarly, the adversarial example must 
fool all submodels in an ensemble model, which can cause misclassification. This implicitly reflects the transferability of the 
adversarial example and why it is necessary to test the effectiveness of AB-FGSM on the ensemble model. In the ensemble setup, 
if the submodel is a machine learning model, there are several ways to aggregate the predictions, such as weighted average and 
max voting. If the submodel is the deep learning model, the most useful aggregation of the ensemble prediction is generally fusing 
the weighted logit outputs. For instance, the output of a K-ensemble model is: 
  (III.6) 

where  and  denote the weight and the logit outputs of the i-th model and . In the experiments, we not only attack 
a single DNN model in the white-box and black-box manners but also attack the ensemble models in the black-box manner. 

IV. EXPERIMENTS AND ANALYSIS 
In this section, extensive experiments are carried out to validate the efficiency and effectiveness of our proposed method. We 

first specify the dataset, models and metrics used in the experiments in Section IV.A. Then, in Section IV.B, we investigate the 
effect of hyperparameters on the performance of AB-FGSM attack. The results of single and ensemble model attacks by the 
proposed method and other baseline attacks are discussed in Sections IV.C and IV.D. 

A. Setup 
We choose two datasets to validate the effectiveness of our proposed method: ImageNet [30] and CIFAR-10 [31]. The 

information of each dataset is shown in TABLE I. There is one thing that needs to be stressed, which is that in the ImageNet dataset, 
we select a corresponding data point in 1000 classes that can be correctly classified by the model, considering that the number of 
validation sets in ImageNet is too large, and this setup was also established in previous papers [19], [20], [26]. 
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TABLE I. DATASET INFORMATION 
Dataset Size Class Number 

ImageNet  1000 1000 
CIFAR-10  10 10000 

In the experiments, we consider six models for each dataset, including normal-trained and adversarially-trained models. 
Concretely, in the ImageNet dataset, we study four ImageNet models: Inception v3 (Inc-v3) [32], Inception v4 (Inc-v4), Inception 
Resnet v2 (IncRes-v2) [33] and Resnet v2-101 (Res-101) [34] for normally trained models. For adversarially trained models, we 
consider the  and  models. Here, the suffix adv means the adversarially-trained model, while the suffix ens3 
means an adversarially trained model with three ensemble models. For the CIFAR-10 dataset, four normal-trained CIFAR-10 
models are considered: ResNet-18 (Res-18) [34], VGG-18 [35], DenseNet [36] and GoogleNet [32]. Meanwhile, two adversarially-
trained CIFAR-10 models, WideResNet with adversarial training defensive method [37] ( ) and WideResNet with 
adversarial training by data generated by the GAN model ( ) [38], are also considered. We choose these models 
because they are classic, representative and widely used in image classification [39]. 

For comparison, we compare our method with four iterative FGSM variants: I-FGSM, MI-FGSM, NI-FGSM, and AI-FGSM, 
which are described in Section II. They belong to the FGSM family and are combinations of optimization methods and FGSM 
algorithms. We do not take FGSM into account because previous work demonstrated its weakness in improving the transferability 
of adversarial examples. Meanwhile, other adversarial attacks, especially those which aim to minimize the perturbation, such as 
CW [5] and FAB [42], are not considered since previous work has proven that their transferability is very limited [40]. The 
transferability of PGD attack has been verified to be lower than that of AI-FGSM [26]. Therefore, we compare our approach with 
FGSM families. 

In terms of hyperparameters, we follow the settings described in [19]. That is, the maximum perturbation  is 16, and the 
momentum factor  is 1.0. The maximum number of iterations T in our experiments is set to 10. The value  in both MI-FGSM 
and NI-FGSM is . In AI-FGSM, the exponential decay rates  and  are determined to be 0.99 and 0.999, respectively. 
Finally,  is set to . The setting of hyperparameters of AB-FGSM is discussed in more detail in Section IV.B. 

For the evaluation metric, we use the success rate, which is calculated as: 

  (IV.1) 

where #misclassified samples denote the number of misclassified examples, i.e., adversarial examples. #correctly classified 
samples denotes the number of samples that were classified correctly. It is reasonable to choose the success rate to evaluate our 
experiments since we pay attention to the transferability of adversarial examples and are not concerned with perturbation size. 
From this point, the success rate is certainly an intuitive and appropriate metric. Meanwhile, in the white-box attack, the success 
rate is also called the generation rate. 

In the black-box attack, the success rate is called the transfer rate. However, in the transfer rate, the meanings of the denominator 
and numerator are different compared with Eq. (IV.1). Concretely, the denominator in the transfer rate is the number of adversarial 
examples, and the numerator represents the number of adversarial examples that successfully fool the new model. A high transfer 
rate means better transferability of adversarial examples. 

In hardware settings, we implement our attack in the TensorFlow Python library [41]. We use an Intel Xeon Silver 4114 CPU 
with a single NVIDIA TITAN XP GPU for experiments. 

B. Hyperparameter Analysis of AB-FGSM 
In this section, we investigate the influence of the hyperparameters (the step rate , the iteration , the smooth parameters , 
, the perturbation size  and stability parameter ) on the success rates of the proposed AB-FGSM. It is important to emphasize 

that we only investigate the effect of the above hyperparameters on the ImageNet models instead of the CIFAR-10 models because 
the ImageNet models are more sophisticated and complex than the CIFAR-10 models, and testing hyperparameters on the larger 
and deeper models is more convincing. Moreover, the hyperparameters of sophisticated models are usually effective on small-
scale models. We will directly use the appropriate hyperparameters tested on the ImageNet models to the CIFAR-10 models. 
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1) Influence of the step rate  

 
FIGURE 3 SUCCESS RATES OF AB-FGSM ATTACK ON FOUR IMAGENET MODELS WHEN THE STEP RATE  VARIES FROM 0 TO 1.1. 

This subsection primarily discusses the step rate . It is known that learning rate is a critical element when training a neural 
network. Here, the step rate  in the adversarial methods plays the same role as in the learning rate of the DNN training phase. 
Hence, it is practical to find out the step rates that can make the AB-FGSM attack method efficient. 

FIGURE 3 shows, under different step rates , the success rate curves of the adversarial examples generated by AB-FGSM. 
We preset iteration  on the IncRes-v2 model and  in the other three models, as our extensive experimental results 
indicate that AB-FGSM is empirically sensitive to the iteration settings. For instance, when we attack the IncRes-v2 model by AB-
FGSM with iteration , a modification of the step rate will dramatically change the success rates of the other iterations. 
However, when we set , these changes are not noticeable. Other hyperparameters are the same as those suggested by the 
AdaBelief optimizer [21]. 

As seen in FIGURE 3, each curve follows the trend of fluctuating upward and then downward. Furthermore, we can see that the 
optimal step rate of AB-FGSM is diverse when attacking different models, and all of them are greater than 0.1 and less than 0.5. 
We highlight them by the symbol ‘*’. The optimal step rate can help to achieve the highest success rate with smaller iterations. 
Additionally, a step rate in a reasonable range can still cause the attack to achieve the highest success rate, but at the cost of more 
iterations. We suggest that the step rate be set in the range (0.1, 0.5). We use the optimal step rates to investigate the effect of other 
hyperparameters on AB-FGSM performance. 

2) Influence of the number of iterations T 

  
a) the success rates of adversarial examples 

in the Inc-v3 model. 
b) the success rates of adversarial examples 

in the Inc-v4 model. 

  
c) the success rates of adversarial examples 

in the IncRes-v2 model. 
d) the success rates of adversarial examples 

in the Res-101 model. 
FIGURE 4 SUCCESS RATES OF ADVERSARIAL EXAMPLES GENERATED BY FIVE ATTACKS WITH ITERATIONS T RANGING FROM 1 TO 10. 

This subsection aims to investigate the influence of iterations on AB-FGSM performance compared to four baseline attacks. 
FIGURE 4 shows the success rate curves of adversarial examples generated by five adversarial attacks in different models when 
the hyperparameter iteration ranges from 1 to 10. Here, the step sizes are optimal depending on the models. 

a

a
a

a

a
4T = 3T =

4T =
3T =
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As seen in FIGURE 4.a, when attacking the Inc-v3 model, each attack method achieves a 100% success rate when . 
However, these attacks require multiple iterations to achieve a 100% success rate. Specifically, when the number of iterations is 
less than 6, there is a gap between each attack. We focus on the condition , as this condition represents the efficiency of five 
attack methods. The most efficient attacks are AB-FGSM and NI-FGSM, and both success rates are almost 100%. The following 
are MI-FGSM and AI-FGSM. I-FGSM has the worst performance, which is expected since I-FGSM is conventional and basal. 

When attacking the Inc-v4 model, the results shown in FIGURE 4.b are similar to those of the Inc-v3 model with little difference. 
More specifically, NI-FGSM is also the first to achieve the best success rate. Our proposed AB-FGSM follows NI-FGSM to 
achieve the second-best success rate. Unlike FIGURE 4.a, the success rates of MI-FGSM and I-FGSM overlap. Surprisingly, AI-
FGSM has the worst performance, and this is unforeseen but reasonable: when the optimization surface in the Inc-v4 model is 
relatively convex, the Adam-based convergence method is slowly optimized on the surface, as discussed in Section III.A. This is 
the reason why AI-FGSM needs more iterations to achieve the best success rate. 

For the success rates in the IncRes-v2 model (shown in FIGURE 4.c), the discussed phenomenon shown in the Inc-v3 and Inc-
v4 models becomes diverse. Specifically, our proposed attack was the first to achieve the best success rate and outperform the 
others. NI-FGSM attack has the lowest success rate in the first three iterations but gradually approaches the AB-FGSM in the 
following iterations. AI-FGSM is as poor as in the Inc-v4 model. As before, MI-FGSM and I-FGSM still overlap. We assume that 
MI-FGSM has limited improvements to I-FGSM in terms of the efficiency of generating adversarial examples in the white-box 
manner. 

In FIGURE 4.d, we can see the trends in the success rates when generating adversarial examples in the Res-101 model using 
the five attacks. Five curves are more difficult to distinguish than before, and it is easy to distinguish five curves when . We 
find that AB-FGSM is also the first to achieve a 100% success rate in four iterations. The second-best performance is MI-FGSM, 
which performs better than the previous three models. The followers are I-FGSM and AI-FGSM since their curves overlap. NI-
FGSM performs poorly in the first three iterations but reaches the best success rate in the subsequent few iterations 

Generally, NI-FGSM works well in the Inc-v3 and Inc-v4 models but not as expected in the IncRes-v2 and Res-101 models. 
The performance of MI-FGSM and I-FGSM overlaps in the Inc-v4 and IncRes-v2 models, and we infer that the momentum skill 
has a minor improvement for I-FGSM in the aspect of the generation efficiency of adversarial examples. Due to the limitation of 
the Adam optimizer, AI-FGSM requires more iterations to achieve the highest success rate in any model. In general, all baselines 
cannot perform stably in the four models. Our proposed AB-FGSM achieves the highest attack success rate with minor iterations 
in four models, indicating that AB-FGSM can generate adversarial examples with high efficiency in any model. 

3) Influence of the hyperparameters  and  

In this subsection, we will investigate how hyperparameters  and  influence the performance of AB-FGSM. As explained 
in Section III.A, the role of  and  is to control the EMA decay rates. 

 

  
a.  b.  

FIGURE 5 SUCCESS RATES OF ADVERSARIAL EXAMPLES GENERATED BY AB-FGSM ATTACK IN FOUR MODELS WITH  VARYING FROM 0 TO 1.0. 

We choose  ranging from 0 to 1.0 (shown in FIGURE 5.a) to see the optimal value for each model. The optimal value of the 
four models is 0.99, which indicates that the different models have no impact on the optimal  value. An interesting phenomenon 

is that when  is in (0.99, 1.0), the success rates drop sharply to 0. It is reasonable that when  approaches 1,  will be too 
large and will add many perturbations when generating adversarial examples. However,  is suggested as a value of 0.9 in the 
Adam and AdaBelief optimizers when training DNNs. Here, we give the optimal  when crafting adversarial examples, and it is 
understandable that  has different optimal values because the tasks differ. 

FIGURE 5.b provides an overview of the success rates when  changes in [0, 1.0). This figure shows that the optimal  
value for all models is 0.999, which is the same as suggested in the Adam and AdaBelief optimizers, and that this optimal  
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value is also independent of the model architecture. We also adjust  to [0.9991, 1), and the success rates continually decrease 
to 0. 

Experimentally,  and  are optimal in the adversarial example optimization problems, regardless of the 
model architecture. 

4) Influence of the size of perturbations  

This subsection mainly verifies the relationship between the perturbation size and the success rate of the adversarial attacks in 
the white-box and black-box manners. Concretely, we use five adversarial attacks to generate adversarial examples in the Inc-v3 
model (solid lines in FIGURE 6). Then, the generated adversarial examples attack the black-box IncRes-v2 model (dotted lines in 
FIGURE 6). 

 
FIGURE 6 SUCCESS RATES OF ADVERSARIAL EXAMPLES GENERATED BY FIVE ATTACK METHODS IN THE INC-V3 MODEL AGAINST THE WHITE-BOX INC-V3 MODEL 

AND THE BLACK-BOX INCRES-V2 MODEL WITH PERTURBATIONS RANGING FROM 0 TO 40. 
As demonstrated in FIGURE 6, our proposed AB-FGSM simply acquires 5 perturbation sizes to achieve a 100% success rate in 

the white-box manner. This phenomenon means that our proposed method can find the best direction to add distortion and take 
full advantage of the perturbations to generate adversarial examples. Meanwhile, other methods obtain a 94% to 98% success rate 
in 5 perturbation sizes. The surprising thing about FIGURE 6 is that NI-FGSM has the worst performance among the five methods, 
completely different from its performance in FIGURE 4. This result strongly verifies the efficiency and effectiveness of our AB-
FGSM and indirectly implies that NI-FGSM cannot find a suitable direction to add effective perturbations. Furthermore, no 
significant difference is evident between AI-FGSM, MI-FGSM, and I-FGSM, and they are all slightly better than NI-FGSM. 

In the black-box attacks, the dotted lines in FIGURE 6 show that there has been a steady increase in all adversarial attacks except 
NI-FGSM when the perturbation increases. Significantly, the success rate curve of MI-FGSM is slightly higher than that of AB-
FGSM, but when the size of perturbation is greater than 17, AB-FGSM gradually outperforms MI-FGSM. The performance of AI-
FGSM is inferior to that of MI-FGSM by an average of 6%. The worst performance is achieved by I-FGSM, which implies that 
although the momemtum skill has limited improvement in I-FGSM in the white-box manner, it dramatically improves the 
transferability of the adversarial examples generated by I-FGSM in the black-box manner. 

Interestingly, what can be seen in the figure is the trend of NI-FGSM. First, it increases when the size of the perturbation is less 
than 15. After that, it levels off regardless of whether the size of the perturbation increases. This phenomenon experimentally 
confirms the above inference: NI-FGSM has limited ability to find the direction to add perturbation. 

In summary, our proposed AB-FGSM can generate adversarial examples with minimal perturbations and simultaneously 
improve the transferability of adversarial examples. 

5) Influence of the denominator stability parameter  

The term  in Algo.1. plays a role in making the divisor not 0. Therefore, it should be as small as possible mathematically. We 
run  in [10-20, 0.1] and find that if  is sufficiently small, it has less influence on the performance of AB-FGSM in any model, 
so we deliberately omit it to show it graphically. 

6) Discussion 

Here, we summarize each optimal hyperparameter of AB-FGSM as follows: the convenient hyperparameter range is in (0.1, 
0.5), and in this range, the iteration T assigned as 10 is sufficient. The optimal hyperparameters  and  are 0.99 and 0.999, 
respectively, regardless of the model architecture. In terms of the size of the perturbation, it is sufficient to establish , but for 
the convenience of later experimental comparison, we set . These hyperparameters are also directly used in the CIFAR-10 
models to generate adversarial examples except  since  is set to 8 in the CIFAR-10 dataset. 
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C. Analysis of Attacking the Single Model 

1) ImageNet dataset 

This section aims to investigate the transferability of adversarial examples generated by five methods. TABLE II compares the 
results of attacking six models with five adversarial attacks. The symbol ‘*’ denotes the results of the white-box attacks, and normal 
numbers are the results of the black-box attacks. The best score is in bold, and the second-best score is in italics to highlight the 
results. 

What stands out in the table is that in the Inc-v3 model, the generation rate of all the methods is 100%, but the transfer rates are 
different from each other. Specifically, I-FGSM has the lowest transfer rate among the five methods, which meets expectations 
since the vanilla optimization method only finds a point among the  ball vicinity around  to fool the model. The  ball space 
contains the points that can fool the model, but this vanilla iterative method cannot find the best transferability points. The other 
sophisticated optimization methods not only consider the generation rate but also guarantee transferability. Therefore, the results 
of the other methods work better than I-FGSM. Among them, to our surprise, NI-FGSM performs worse than MI-FGSM, where 
the transfer rates of NI-FGSM on IncRes-v2~  models are 1%~4% lower than those of MI-FGSM. Notably, our AB-
FGSM method works best in terms of both the generation rate and transfer rate. The transfer rate is almost 10%~38% higher than 
that of I-FGSM and 3%~6% higher than that of the second-best MI-FGSM. 

Regarding the Inc-v4 model, the results are different from those of Inc-v3. In this case, the adversarial examples generated by 
I-FGSM have limited transferability, and the generation rates of all the methods are almost the same. However, the transfer rates 
of the five methods gradually increase from I-FGSM to AB-FGSM, except for the IncRes-v2 and  models. In these two 
models, our method achieves the second-best scores. NI-FGSM performs better than MI-FGSM, contrary to the Inc-v3 model, and 
implies that NI-FGSM performs well in complicated models. 

TABLE II. SUCCESS RATES (%) OF FIVE ADVERSARIAL ATTACK METHODS AGAINST SIX SINGLE MODELS IN THE WHITE-BOX AND BLACK-BOX MANNERS ON THE 
IMAGENET DATASET 

 Method Inc-v3 Inc-v4 IncRes-v2 Res-101   

Inc-v3 

I-FGSM 100.0* 24.7 17.5 21.4 26.1 19.5 
MI-FGSM 100.0* 51.4 46.0 44.1 35.3 33.8 
NI-FGSM 100.0* 53.7 43.7 42.3 34.4 30.5 
AI-FGSM 100.0* 44.7 38.5 37.4 33.2 28.8 
AB-FGSM 100.0* 55.2 51.2 47.3 34.6 39.0 

Inc-v4 

I-FGSM 38.5 99.8* 18.8 24.2 28.5 21.4 
MI-FGSM 65.7 99.8* 51.4 49.9 37.5 36.4 
NI-FGSM 70.1 99.9* 54.4 51.8 38.7 36.8 
AI-FGSM 71.8 99.7* 56.9 54.6 37.1 43.9 
AB-FGSM 72.2 99.9* 56.0 53.2 37.8 44.3 

IncRes-v2 

I-FGSM 40.0 35.8 98.5* 29.7 30.8 24.1 
MI-FGSM 69.3 61.5 98.6* 52.5 39.1 40.1 
NI-FGSM 71.9 65.5 99.7* 55.6 41.6 40.6 
AI-FGSM 64.4 58.1 98.6* 49.7 38.6 38.2 
AB-FGSM 76.6 68.5 100.0* 58.6 41.0 45.0 

Res-101 

I-FGSM 36.7 29.5 23.5 99.5* 29.0 22.7 
MI-FGSM 61.4 55.3 46.2 99.5* 40.9 35.7 
NI-FGSM 62.2 55.8 47.0 99.6* 38.9 34.9 
AI-FGSM 58.2 50.7 42.8 99.5* 38.7 32.7 
AB-FGSM 69.3 62.8 55.7 99.5* 36.2 41.6 

 
Another intriguing point is that the performance of AI-FGSM is slightly worse than ours, suggesting that AI-FGSM is not as 

stable as our AB-FGSM method. Surprisingly, our AB-FGSM achieves acceptable performance. Our method achieves the best 
transferability in the Inc-v3, Res-101, and  models. Compared to the second-best AI-FGSM, the improvement is only 1%, 
which is limited, but ours is still better than MI-FGSM and NI-FGSM. 

The performance of the five methods in the IncRes-v2 and Res-101 models is relatively consistent. In particular, NI-FGSM 
outperforms MI-FGSM, further validating our observation: NI-FGSM performs better than MI-FGSM as the model becomes 
complex. AI-FGSM performs poorly in these two models and is even worse than MI-FGSM, further illustrating the unreliability 
of AI-FGSM. Our proposed method achieves a 100% generation rate and the strongest transferability, whose scores are between 
3% and 5% higher than those of the second-best NI-FGSM method. For the Res-101 model, the generation rates of the five methods 
are almost the same. Our approach achieves the best transferability scores among the four models in the black-box manner, which 
are approximately 7% higher than the second-best NI-FGSM. 

In summary, our proposed method, AB-FGSM, can maintain a high generation rate, and the adversarial examples generated by 
it have strong transferability when attacking a single model. We also found an intriguing phenomenon from the experimental 
results: the adversarial examples generated by AI-FGSM are not transferable all the time. 
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2) CIFAR-10 dataset 

TABLE III is the comparison of baselines on the CIFAR-10 dataset. We use the hyperparameters discussed in Section IV.Error! 
Reference source not found. to attack these CIFAR-10 models. In the white-box manner, a straightforward phenomenon is that 
our proposed AB-FGSM can always reach the best generation rate, where we obtain the 100% generation rate on VGG-13, 
DenseNet and GoogleNet and the best generation rate on the Res-18 model. I-FGSM obtains the second-best generation rate, 
whose generation rate is merely lower than ours. The generation rates of MI-FGSM and AI-FGSM are almost the same and lower 
than ours. Surprisingly, NI-FGSM performs poorly, and it obtains the lowest generation rate. Considering the excellent generation 
rate of AI-FGSM and the poor generation rate of NI-FGSM, we infer that the adaptive optimizer can achieve remarkable 
performance on the small-size dataset, and NI-FGSM is not stable and reliable on all the datasets. 

In terms of black-box transfer attacks, our adversarial examples are still the most transferable. Concretely, whether our AB-
FGSM generates adversarial examples on the Res-18, DenseNet, and GoogleNet models, these adversarial examples can always 
obtain the best transfer rate on the Res-18, VGG-13, DenseNet, GoogleNet and  models and the second-best 
transfer rate on the  model. When AB-FGSM generates adversarial examples on the VGG-13 model, the transfer 
rate of adversarial examples is generally the second-best. The overall transfer rate of AB-FGSM is 1% larger than that of the 
second-best baseline. The improvement is limited since the tested model becomes small; therefore, the optimization surface 
becomes smooth, and the most transferable point is easy to find. The performance of MI-FGSM and AI-FGSM is almost the same 
but lower than ours. NI-FGSM is slightly better than I-FGSM, which indicates that NI-FGSM is sensitive to the dataset size and 
not reliable and stable. It is noticeable that the transfer rates of  and  are relatively low. This is 
reasonable since their defensive methods play a role and are effective in the small-size dataset compared with the large-scale 
ImageNet dataset. Although the two models have effective defensive methods, our AB-FGSM can still obtain the best transfer rate 
in the  model and the second-best transfer rate in the  model. 

In conclusion, our AB-FGSM can generate adversarial examples on any model and dataset with high generation rates and 
transfer rates. Other baselines, especially AI-FGSM and NI-FGSM, are not reliable and stable for generating high transferability 
adversarial examples. 

 
TABLE III. SUCCESS RATES (%) OF FIVE ADVERSARIAL ATTACK METHODS AGAINST SIX SINGLE MODELS IN THE WHITE-BOX AND BLACK-BOX MANNERS ON THE 

CIFAR-10 DATASET 

 Method Res-18 VGG-13 DenseNet GoogleNet   

Res-18 

I-FGSM 97.96* 50.82 54.00 56.93 9.09 10.61 
MI-FGSM 95.81* 62.80 60.83 65.06 9.63 11.00 
NI-FGSM 94.99* 56.60 56.97 61.34 9.63 10.93 
AI-FGSM 95.99* 62.73 60.87 65.19 9.73 11.04 
AB-FGSM 98.51* 63.85 61.87 66.35 9.68 11.14 

VGG-13 

I-FGSM 70.36 99.99* 61.48 60.63 9.05 10.65 
MI-FGSM 80.19 99.86* 70.86 71.11 9.82 11.05 
NI-FGSM 68.22 99.09* 60.39 60.10 9.55 10.82 
AI-FGSM 77.42 99.65* 68.96 68.88 9.72 11.17 
AB-FGSM 78.19 100.00* 69.66 69.69 9.91 11.08 

DenseNet 

I-FGSM 56.94 45.32 100.00* 63.99 8.84 10.55 
MI-FGSM 72.70 63.99 100.00* 78.02 9.52 10.68 
NI-FGSM 60.98 52.50 99.90* 67.13 9.16 10.48 
AI-FGSM 73.03 64.15 100.00* 77.58 9.25 10.65 
AB-FGSM 74.30 64.03 100.00* 79.14 9.33 10.73 

GoogleNet 

I-FGSM 75.30 57.63 73.17 100.00* 9.47 10.88 
MI-FGSM 82.37 69.52 80.14 100.00* 9.86 11.13 
NI-FGSM 71.51 60.22 70.55 99.96* 9.72 11.07 
AI-FGSM 82.37 69.18 80.21 100.00* 9.91 11.10 
AB-FGSM 83.26 69.31 80.87 100.00* 9.86 11.15 

 

D. Analysis of Attacking Ensemble Models 

1) ImageNet dataset 

In this section, we analyze the performance of the five methods attacking ensemble models. TABLE IV gives the success rates 
of the five adversarial attack methods against ensemble models in white-box and black-box manners. In the column ‘-Inc-v3’, 
‘Ensemble’ denotes that a multiple model containing the other five models except the Inc-v3 model are merged by Eq. (III.6). 
‘Hold-out’ indicates that the adversarial examples generated by one method on the previous ensemble model are transferred to the 
Inc-v3 model. 
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TABLE IV. SUCCESS RATES (%) OF FIVE ADVERSARIAL ATTACK METHODS AGAINST ENSEMBLE MODELS IN THE WHITE-BOX AND BLACK-BOX MANNERS ON THE 
IMAGENET DATASET 

 Method -Inc-v3 -Inc-v4 -IncRes-v2 -Res-101   Avg. 

Ensemble 

I-FGSM 96.7 97.0 98.7 95.8 96.5 98.2 97.2 
MI-FGSM 96.3 96.5 98.6 96.2 96.3 97.3 96.9 
NI-FGSM 97.9 98.2 98.0 98.1 99.5 98.7 98.4 
AI-FGSM 96.2 96.7 98.4 95.6 95.2 97.9 96.7 
AB-FGSM 98.6 98.2 98.5 98.0 99.4 99.1 98.6 

Hold-out 

I-FGSM 55.0 45.8 39.4 36.1 25.6 24.8 37.8 
MI-FGSM 76.3 73.6 68.8 64.0 34.5 37.3 59.1 
NI-FGSM 52.7 50.6 56.1 44.6 32.9 30.4 44.6 
AI-FGSM 67.2 63.6 58.5 53.2 29.9 37.9 51.7 
AB-FGSM 85.2 82.2 85.2 69.7 36.5 38.7 66.3 

 
As shown in TABLE IV, there is not much difference in the performance of the five methods in the ensemble white-box manner. 

Of the average generation rates, the best generation rate is only 1.9% higher than the worst. Specifically, our method achieves the 
best generation rate in the ‘-Inc-v3’, ‘-Inc-v4’ and ‘ ’ ensemble models and the second-best in the ‘-Res-101’ and 
‘ ’ ensemble models, where the two second-best generation rates are only 0.1% lower than those of the best. Our method 
works relatively well in the ‘-IncRes-v2’ ensemble model, where the generation rate is the third best and only 0.2% lower than the 
best I-FGSM generation rate. The performance of NI-FGSM is close to that of our proposed AB-FGSM. Their performance on 
average is only 0.2% lower than ours. And our method in the ‘-Inc-v3’ ensemble performs almost 1% better than NI-FGSM. Other 
methods, such as MI-FGSM and AI-FGSM, are inferior to ours, and their average performance is 3% less than that of AB-FGSM. 
I-FGSM performs at the medium level, whose generation rate is 1.4% lower than ours. 

However, the transfer rates of the five methods in ensemble models are highly divergent. Specifically, the transfer rate of our 
proposed AB-FGSM is 7.2%~28.5% higher than that of other methods on average across all models, which strongly verifies the 
transferability of the adversarial examples generated by AB-FGSM. NI-FGSM exceeds our expectations and only performs better 
than I-FGSM and 21.7% lower than ours on average. This can be explained because the optimization surface of the ensemble 
model is more complex than that of a single model. The Nesterov method cannot find the most transferable adversarial point on 
the complex surface. In contrast, the momentum method is theoretically as simple as the Nesterov method, but it can better handle 
the complex optimization surface and thus achieve the second-best performance. This is why the momentum method is used more 
often than the Nesterov method in training models. The performance of AI-FGSM is generally good, with a transfer rate that is 
7.4% lower than MI-FGSM and 14.6% lower than ours. The worst performance is obtained with I-FGSM, which is in line with 
expectations. 

In conclusion, our proposed AB-FGSM can consistently generate adversarial examples, either in single or ensemble models. In 
addition, the adversarial examples generated by our approach can be transferred to other models with a high attack success rate. 

2) CIFAR-10 dataset 
TABLE V. SUCCESS RATES (%) OF FIVE ADVERSARIAL ATTACK METHODS AGAINST ENSEMBLE MODELS IN THE WHITE-BOX AND BLACK-BOX MANNERS ON THE 

CIFAR-10 DATASET 

 Method -Res-18 -VGG-13 -DenseNet -GoogleNet -  -  Avg. 

Ensemble 

I-FGSM 99.79 99.69 99.69 99.68 99.90 99.79 99.75 
MI-FGSM 99.79 99.48 99.27 99.37 99.79 99.79 99.54 
NI-FGSM 96.45 96.44 95.31 96.11 98.43 98.64 96.55 
AI-FGSM 99.79 99.37 99.27 99.37 99.79 99.79 99.52 
AB-FGSM 99.79 99.58 99.79 99.47 99.79 99.79 99.68 

Hold-out 

I-FGSM 95.62 84.73 93.74 90.55 8.81 11.33 74.69 
MI-FGSM 97.70 92.05 94.99 94.43 9.65 11.54 77.76 
NI-FGSM 87.79 77.30 80.92 79.41 9.76 12.28 67.04 
AI-FGSM 97.39 91.42 94.79 94.43 9.76 11.65 77.56 
AB-FGSM 97.81 91.84 94.89 95.06 10.07 11.65 77.93 

 
This section verifies the transferability of adversarial examples against the ensemble models on the CIFAR-10 dataset, as shown 

in TABLE V. When attacking the ensemble models, I-FGSM performs best, and its generation rates are the largest. However, our 
generation rate is only 0.1% lower than that of I-FGSM. MI-FGSM and AI-FGSM perform the same, and their generation rate is 
0.2% lower than ours. NI-FGSM performs poorly throughout, and its generation rates are 3% lower than those of other attacks. 
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For the transferability, our AB-FGSM achieves the best transfer rates on the ‘-Res-18’, ‘-GoogleNet’, ‘- ’, and 
‘ ’ models and is 4% higher than other baselines on average. MI-FGSM is close to ours, whose transfer rate is 0.2% 
lower than ours. AI-FGSM generally performs well, with transfer rates 0.4% lower than ours and 0.2% lower than MI-FGSM. 
Although I-FGSM’s generation rate is high, its transfer rate is limited compared with ours and MI-FGSM since no optimization 
skills are used to help find the transferable adversarial point. NI-FGSM performs poorly, and its transfer rates are almost 11% 
lower than ours. Specifically, its performance on the CIFAR-10 dataset is as poor as that on the ImageNet dataset. We infer that 
the ability of the Nesterov method to find the most transferable adversarial point is limited. 

In brief, our AB-FGSM can consistently and stably generate adversarial examples on different datasets by the single or ensemble 
models. And the transferability of the generated adversarial examples is the best among the baselines in most cases. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we propose an iterative method to generate adversarial samples dubbed AB-FGSM. This method efficiently finds 

the transferable adversarial point in a legitimate input on different optimization surfaces. The extensive experimental results 
presented in this paper demonstrate that our method can efficiently and effectively generate adversarial examples with a higher 
generation rate in the white-box manner and higher transfer rates in the black-box manner. The transfer rate is 4% and 22% higher 
than those of the state-of-the-art attack methods. 

In future work, we aim to investigate the adaptation of AB-FGSM to defensive methods such as adversarial training to increase 
the robustness of DNNs. 
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