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Abstract 
White-box adversarial example (AE) attacks on deep neural networks (DNNs) have a more powerful destructive capacity than 

black-box attacks using AE strategies. However, few studies have been conducted on the generation of low-perturbation adversarial 
examples from the interpretability perspective. Specifically, adversaries who conducted attacks lacked interpretation from the point of 
view of DNNs, and the perturbation was not further considered. To address these, we propose an interpretable white-box AE attack 
approach, DI-AA, which not only explores the application of the interpretable method of deep Taylor decomposition in selecting the 
most contributing features but also adopts the Lagrangian relaxation optimization of the logit output and 𝐿! norm to make the pertur-
bation more unnoticeable. We compare DI-AA with eight baseline attacks on four representative datasets. Experimental results reveal 
that our approach can (1) attack nonrobust models with low perturbation, where the perturbation is closer to or lower than that of the 
state-of-the-art white-box AE attacks; (2) evade the detection of the adversarial-training robust models with the highest success rate; (3) 
be flexible in the degree of AE generation saturation. Additionally, the AE generated by DI-AA can reduce the accuracy of the robust 
black-box models by 16%~31% in the black-box manner. 
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1. Introduction 

The past years have witnessed notable advances in the development of deep neural networks (DNNs), which have led to 
breakthroughs in various areas, including but not limited to bioinformatics [1], language learning [2] and causal inference [3]. 
However, the emergence of adversarial examples (AEs) is threatening the widespread deployment of security-sensitive DNN-
based applications [4,5]. In AE attacks, a clean input with a small and unnoticeable perturbation can mislead a well-trained 
DNN. The vulnerability and counterintuitive behaviors of DNNs toward AE make it difficult for users to trust DNN decisions. 
Therefore, it is urgent and critical to have a deeper understanding of AE attacks and make DNNs more dependable in practice. 

Depending on the ability of adversaries, there are two types of attacks: white-box attacks [4-9] and black-box attacks [10-
12,14,15]. The adversaries have complete knowledge of the target model and data information in white-box settings. In contrast, 
in black-box settings, adversaries can transfer the generated AE to the unknown deployed model based on AE transferability 
[14]. Empirically, white-box attacks are more powerful for attacking a robust model than black-box attacks [9]. 

In terms of white-box attacks, Croce et al. [13] further divided them into two classes. The first is to minimize adversarial 
perturbation [7,13], where complicated approaches are employed to allow the perturbation to be as small as possible in 𝐿! norm 
distances but generally have considerable computational cost. The other is to restrict the perturbation in the -ball around the 
input [8,14,15], where low computational cost is caused with a large perturbation introduced. The common point is both ap-
proaches mentioned above adopt the first-order gradient information. 

However, these white-box approaches still have to address two primary issues: 

� The existing traditional approaches lack interpretation from the point of view of DNNs. The adversaries only look for a 
more optimizable landscape to generate AE by gradients without considering what features the DNN actually learns. It 
is intuitive that if adversaries attack the features learned by the DNN thereby causing misclassification to occur more 
easily. 

� The existing studies on interpretation and adversarial examples have only focused on finding the vulnerabilities of the 
interpretation methods [16,46] by using specific adversarial examples. The quality of adversarial examples is not con-
sidered. For instance, Subramanya et al. [16] tried to create adversarial patches to fool the target model and the Grad-
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CAM interpretation method simultaneously. The perturbation, however, is so large and even recognizable by human 
eyes. 

In summary, few studies have been conducted on the generation of low-perturbation adversarial examples from the per-
spective of interpretability. This motivates the work described in this paper. Here, we propose an interpretable and effective 
adversarial example generation approach, namely, the deep Taylor Decomposition Iterative white-box Adversarial example 
Attack (DI-AA). Unlike the previous approaches, our DI-AA approach uses the interpretable saliency map through the reliable 
deep Taylor decomposition (DTD) method [18]. With the guideline of this interpretable saliency map, our approach applies 
heuristic searches and Lagrangian relaxation of the 𝐿! norm constraint to find the features that should be perturbed and to 
minimize the adversarial perturbation, respectively. 

To the best of our knowledge, we are the first to apply the interpretation method, the deep Taylor decomposition method, 
to low-perturbation AE generation, which makes the attack more transparent and interpretable and makes the perturbation more 
unnoticeable, as shown in Fig. 1. We summarize the key features in DI-AA: 

� DI-AA is interpretable. The deep Taylor decomposition interpretation method is robust to deception by the malicious 
attack [46], which makes its interpretation more reliable. By the reliable deep Taylor decomposition interpretation 
method, DI-AA finds the most contributing features and then perturbs these features. This process is intuitive and easy 
to understand. 

� DI-AA is general. DI-AA can intrinsically be used to generate AE in any scenario, especially in any type of dataset, 
since the deep Taylor decomposition method can interpret different data [18,25]. 

� DI-AA is low in perturbation. It jointly constrains the 𝐿" norm distance explicitly and the 𝐿# norm distance implicitly 
in order to decrease the perturbation and make the perturbation more unnoticeable. 

� DI-AA is flexible in terms of 𝐿#/𝐿$ and 𝐿" norm distances under the 𝐿# and 𝐿" joint constraint. Concretely, when the 
adversarial example generation process is saturated, the consequence is that the 𝐿# and 𝐿$ distance values are de-
creased while the 𝐿" distance values increase. The saturated AE generation process means that when the perturbation 
rate is fixed and the iterations still increase, the crafting rate is always 100%. This can help adversaries generate a 
flexible AE according to their needs. For instance, if the adversary wants a small 𝐿" perturbation, it can implement 
DI-AA that is just saturated. Additionally, if the adversary wants the small 𝐿# perturbation, it can implement DI-AA 
that is oversaturated. 
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Fig. 1. Examples of AE generated by DI-AA in three datasets. The ‘Legitimate’ column denotes the original and legitimate examples in the dataset, and 
‘Adversarial’ denotes the corresponding adversarial examples. The ‘Perturbation’ column is generated by DI-AA to add to the legitimate exam-
ples. The model prediction is at the bottom of each figure. In the CIFAR-10 and ImageNet datasets, the ‘Perturbation’ column is plotted as the 
heatmap for better color separation. 

Extensive experiments were carried out to evaluate our approach. We verified DI-AA on four datasets, namely, NSL-
KDD, MNIST, CIFAR-10 and ImageNet, to ensure its effectiveness in various scenarios. Compared with eight baseline meth-
ods, our proposed approach can attack the nonrobust models with fairly low perturbation, which is lower than that of Au-
toAttack [9] and IWA [19] attacks and is close to the 𝐿"-constrained-only attacks, CW [7] and FAB [13]. Moreover, our ap-
proach dramatically reduces the number of perturbation points in an AE, compared with 𝐿"-constrained-only attacks. In addi-
tion, our approach is more general than the 𝐿#-constrained-only OnePixel method [20]. Furthermore, ours is effective in any 
dataset, whereas the OnePixel method only performs well on the CIFAR-10 dataset. Moreover, the proposed attack evades the 
detection by TRADES [21] adversarial training models with the highest success rate. Finally, the generated AE can reduce the 
robust accuracy of robust black-box models from 16% to 31% in black-box transfer attacks. 

The rest of the paper is organized as follows. Section 2 reviews adversarial example attacks, defenses and interpretation 
methods. We introduce the proposed DI-AA and evaluate it in Sections 3 and 4, respectively. Section 5 concludes the paper 
and points to future work. 

2. Related Work 

This section reviews related work on adversarial examples in attacking, defending and interpreting DNNs. 

2.1. Adversarial Attacks 

As mentioned in [47], adversarial examples are generated for two types of attacks: white-box attacks and black-box attacks. 

White-box attacks. Adversarial examples were first proposed by [4], who used the L-BFGS optimizer to find the pertur-
bation. The authors in [5,6] further proposed fast and iterative AE generation approaches, namely, the Fast Gradient Sign 
Method (FGSM) and Basic Iterative Method (BIM/I-FGSM), to substitute the time-consuming L-BFGS. All these methods 
were untargeted attacks, in which the adversary does not assign the target label and their purpose is to misclassify the DNN. 
Subsequently, Carlini et al. [7] proposed a strong targeted attack called CW, which was the first to use the logit outputs to 
generate AE, and the output of AE could be specified to the target label. Since then, white-box attacks have been separated by 
two goals: minimizing perturbation [9,13] and fast AE generation in the -ball around inputs [8,14,15]. The latter is generally 
used in adversarial training for acquiring AE more quickly, and then the adversarial training time can be efficiently reduced. 

However, few researchers have paid attention to the influence of interpretable approaches on the generation of AE directly, 
which we think is a gap to be filled. Specifically, they do not investigate how to generate low-perturbation adversarial examples 
with the aid of the interpretation method. Wang et al. [19] used integrated gradients (IG) [24] to generate AE, but the IG 
approach has some inherent shortcomings for generating AE, which we will discuss in Section 3.3. This paper attempts to 
generate interpretable AEs with low perturbation in the white-box manner, considering the strong white-box attack capability. 

Black-box attacks. A mainstream black-box attack is the transfer attack [14,15,22]. Specifically, the adversary generates 
AE in the local substitute DNN and then transfers the AE to attack the unknown deployed models based on the AE transfera-
bility. Generally, transfer black-box attacks rely on the optimization capability. Concretely, Dong et al. [14] integrated the 
Momentum optimization method into the BIM attack which dramatically boosted the transferability of AE. Then, researchers 
began to explore the possibility of integration between the advanced optimization and the BIM attack. Some successful transfer 
attacks have been proposed, such as NI-FGSM [15] and AI-FGSM [22]. Not only transfer attacks but also other black-box 
attacks exist [10-12], where the adversary estimates the gradient information by querying and collecting the inputs and outputs 
of the ‘oracle’ model and then generates AE by the estimated gradients. One impressive attack is the Zeroth-Order-Optimization 
(ZOO) attack [10], which monitors the changes in the model output when the input is tuned and then estimates the gradient. 
One disadvantage of estimating gradients is the low efficiency rate. Therefore, in this paper, we do not pay attention to esti-
mating the gradients. Instead, we transfer our generated AE to unknown robust models to test its transferability. 

2.2. Adversarial Defenses 

Myriad defensive methods have been proposed to harden the models and defend from the potential threats of AE. Adver-
sarial training (AT) was first proposed in [5] and later improved in [8]. Subsequently, several techniques were proposed to 
boost adversarial training, such as ensemble training [27] and one-step training [28]. Feature denoising methods were also 
proposed to distill the input information and remove the perturbation by a specifically designed model layer. For instance, 
Dhillon et al. [48] pruned a subset of the activations and scaled up the surviving activations to normalize each layer by the 
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proposed Stochastic Activation Pruning (SAP). In addition to modifying the model parameters and/or architectures to make the 
model robust, some pre-processing methods, such as JPEG compression and image quilting, are also effective in defending AE 
[49]. 

However, the emergence of the Expectation over Transformation (EoT) attack [50] broke the pre-processing defensive 
methods and some feature denoising methods, such as SAP [48]. AT, including TRADES AT [21], is still the most effective 
approach to making DNNs robust. TRADES AT was proposed to resolve the trade-off between clean accuracy and robust 
accuracy. In this paper, clean accuracy denotes the accuracy of the nonrobust models, and robust accuracy denotes the accu-
racy of the robust models. TRADES introduced a novel loss function to solve the problem that accuracy does not represent 
robustness [29]. This paper uses TRADES to adversarially train the targeted models, and then the robust models are attacked 
using the proposed approach. 

2.3 Adversarial Examples with Interpretation Methods 

Recently, an enormous amount of work has been devoted to discovering the inner mechanisms of deep networks, espe-
cially state-of-the-art convolutional neural networks [17,23-25]. The mainstream interpretation methods focus on the instance-
wise interpretation. That is, the interpretation methods provide a contributive saliency map corresponding to the input features. 
For instance, Sundararajan et al. [24] focused on interpreting an individual prediction by the proposed integrated gradients. 
Inspired by previous work, researchers have attempted to understand AE through interpretable approaches to robust models 
[26]. 

Meanwhile, researchers found that some interpretation methods are not reliable and can be fooled by specific adversarial 
attacks [16,46]. Concretely, Subramanya et al. [16] used an interpretable approach, Grad-CAM [17], as the loss function to 
generate adversarial image patches. The patches, in turn, fool the interpretable heatmap of Grad-CAM. Zhang et al. [46] pro-
posed the 𝐴𝐷𝑉" attack to fool the model without changing the interpretation saliency map, since general aggressive adversarial 
examples destroy the saliency map. Unfortunately, Section 3.3 shows that 𝐴𝐷𝑉" fails to be effective on the deep Taylor de-
composition method thus empirically validating the deep Taylor decomposition method’s reliability. 

These previous works only paid attention to misclassifying the interpretation method by adversarial examples but did not 
consider the quality of the generated AE from the perspective of perturbation and transferability. This paper uses the reliable 
interpretation method, deep Taylor decomposition, to help generate adversarial examples with low perturbation and high trans-
ferability. 

3. Methodology 

In this section, we first describe the notations and the optimization problems in Sections 3.1 and 3.2, respectively. We 
then explain the motivation for integrating the deep Taylor decomposition method and present the DI-AA approach in Sections 
3.3 and 3.4, respectively. 

3.1. Notation 

In this paper, we follow the notations from [7]. In classification tasks, given an input with n-dimensional features  
with the ground-truth label , a DNN model can be viewed as a sophisticated function  that is stacked together 

by multiple layers and produces the corresponding m-class output , where y has two properties:

; .  is referred to as the prediction label and is also denoted by  in this paper. When the model F 

classifies the input correctly,  is . 

Generally, the activation function of the last layer in  is the SoftMax function, turning the logit output to the proba-

bility distribution: . That is,  is  without the SoftMax activation function. We do not ex-

ploit this probability output in our settings but rather the logit output  to generate AE since the SoftMax function obscures 

the decision boundary [30]. Thus, the classification result of  becomes . 

3.2. Problem Definition 

Before constructing the AE, we first define the problem of finding an AE  for the input . AE generation can be treated 
as an optimization problem, where the optimization goal can vary depending on the attacker’s needs. Specifically, the AE is 
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constructed by maximizing the cross-entropy (CE) loss value between the output of  and the ground-truth label 
: 

  (3.1) 

where  represents the CE function. In this way, the loss value can be maximized by gradient-based ascent iteration since 
a larger CE loss value implies an incorrect classification. In this paper, we propose to use a new optimization objective described 
in [19] and achieve optimization in two aspects simultaneously: 1) minimize the 𝐿! norm distance, , to ensure small 

perturbation; and 2) minimize the logit value of  to cause a misclassification. Hence: 

  (3.2) 

This definition is transparent and easy to interpret. Eq. (3.2) can be viewed as a Lagrangian relaxation version of Eq. (3.1), 
except that Eq. (3.1) is a maximization optimization, and the objective is different. Let us remark why we do not focus on the 
loss value but on the logit value . We believe that in addition to increasing the loss value of , there are other ways to 

cause misclassification. Misclassification  also occurs when the logit value  is reduced to a value that 

is not the maximum of . The way to reduce the logit value  is more intuitive and valid than increasing the loss 

value. The second term  in Eq. (3.2) ensures that the perturbation is as small as possible in the 𝐿! norm distance and 

c is a hyper-parameter to balance these two optimization tasks. The constraint  ensures that the AE is in the valid input 
domain. In addition, Eq. (3.2) is a suitable optimization function that can be solved by using existing gradient descent optimi-
zation algorithms such as Adam [31] and AdaBelief [32]. 

In Eq. (3.2), the decrease in  only achieves the untargeted attack. To further exploit its potential, we extend the 

objective function for the targeted attack, as demonstrated in Eq. (3.3). 

  (3.3) 

The intuition in  of Eq. (3.3) is the opposite of Eq. (3.2). Specifically, we want  to output the desired target 

label  for targeted attacks, and consequently,  should be the maximum of . The form of Eq. (3.3) ensures that 

 will increase iteratively, as  will decrease by the gradient descent optimizer. 

In this section, we present a broad interpretable class of problem definitions about  for attacks in various settings. 
We concentrate on the untargeted attack form and use Eq. (3.2) as our objective instance to propose the DI-AA approach in the 
next section. 

3.3. Advantages of the Deep Taylor Decomposition Method 

As mentioned in Section 2.1, Wang et al. [19] uses the integrated gradients (IG) [24] to generate AE. However, the IG 
approach has some inherent weaknesses: 1) Instability. The IG approach needs to find its corresponding baseline data point 
for each dataset, e.g., a pure black image for the image dataset. Hence, the baseline dramatically impacts the performance of 
the IG approach. 2) Computational cost. The IG approach is designed to sample around the input , and the frequency is 
user-defined. Hence, a lower frequency will affect the performance. 3) Nonconservativeness. The sum of each input feature 
contribution generated by the IG method is not equal to the model output, which we call nonconservativeness. Here, the con-
tribution is defined as the input feature’s importance to the model output and is also called the relevant score. Intuitively, the 
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sum of contributions should coincide with the model output. Otherwise, it will induce unnecessary and irrelevant contributions 
[18]. 4) Unreliability. As introduced in Section 2.3, the 𝐴𝐷𝑉" attack [46] can fool the model while not changing the interpre-
tation heatmap. Fig. 2 shows that 𝐴𝐷𝑉" can fool the IG interpretation method as well as Grad-CAM but not the deep Taylor 
decomposition method. 

 Benign PGD AE 𝐴𝐷𝑉! AE 𝐴𝐷𝑉!-IG AE 𝐴𝐷𝑉!-DTD AE 

Input 
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Fig. 2. The visualization of five images and their corresponding interpretable heatmap images. In the 𝐴𝐷𝑉! setup (last three columns), the greater the 
adversarial heatmap intersects with the benign heatmap ‘lorikeet’, the better 𝐴𝐷𝑉! fools the interpretation method. The interpretable image of the 
PGD adversarial example fails to highlight the most informative part because the traditional AE cannot retain the interpretation area. The nonover-
lapping area between the interpretation heatmap of 𝐴𝐷𝑉!-DTD and ‘lorikeet’ indicates that 𝐴𝐷𝑉! cannot fool the DTD interpretation method. 

To overcome these weaknesses, a more theoretically complete method, namely, the deep Taylor decomposition interpre-
tation method, was proposed in [18]. This method considers the individual neuron in the DNN as a function that can be decom-
posed by Taylor decomposition, and the output of the neuron can be decomposed into the input contribution. This method has 
the following three properties: 

1) Conservativeness: . Compared to the nonconservativeness mentioned above, the conservative-
ness property ensures that no confusing and noisy contributions are generated when the output value is decomposed 
from the last layer to the input variable. The  function refers to the relevant score of the input feature . 

2) Positive: . This property ensures that each input feature  has a nonnegative relevant score. 

3) Reliability: This property ensures that the output of the deep Taylor decomposition is reliable and can resist malicious 
attacks. 

With these three properties, the deep Taylor decomposition method has tighter restrictions than the IG approach. More 
importantly, compared to the IG approach, the decomposition approach does not rely on the baseline input and consequently 
calculates the relevant values more robustly. In what follows, we use Fig. 3 to illustrate the advantages of the decomposition 
approach. As shown in the 1st row of Fig. 3, the relevant map of the IG approach (middle picture) is not appropriate, as the 
background should not contribute to the model outputs. In contrast, the elements in the relevant map of the decomposition 
approach are positive in the area around the number ‘2’. In the 2nd row, the cup texture obtained by the IG approach (middle 
picture) is not as nuanced as the one obtained by the deep Taylor decomposition method (right picture). Therefore, based on 
these distinctive advantages, we adopt this interpretable approach to generate AE. 

Since the deep Taylor decomposition method is complex, we present it briefly here, and more details can be found in [18]. 
Assume that the output of the deep network has been decomposed into one neuron  of the j-th layer and  is the associated 

relevant score.  are the neurons connected with  in the previous i-th layer. We define a root point , and the root point 
is not specified practically since we can always find it implicitly in the intersection of a plane with the help of the 𝑤"-rule. 
Then, the Taylor decomposition of  in terms of  in the previous layer with respect to  is: 
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where  is the weight between the i-th and j-th layers. The decomposition method spreads the above function from the output 
layer to the input layer, and therefore, it is the deep Taylor decomposition. 

 

 

Fig. 3. Contrasting relevant maps between the IG approach and the deep Taylor decomposition in image ‘2’ of the MNIST dataset and ‘espresso’ of the 
ImageNet dataset 

3.4. DI-AA Approach 

In this section, we present a new AE attack approach named DI-AA. DI-AA combines the deep Taylor decomposition 
interpretable method with the conventional AE generation approach. Furthermore, DI-AA reduces perturbation by explicitly 
constraining the 𝐿" norm distance and implicitly constraining the 𝐿# norm distance. The algorithm is described in Algorithm 
1 as follows. 

Algorithm 1: DI-AA 

Input: the legitimate input  with the corresponding label ; the 

model learned function ; the perturbation rate ; the iterations T 

Output: adversarial example  

1.   

2.   

3.   

4.   

5.   

6.    

7.    

8.    

9.   
10.  

Algorithm 1 first initializes the original AE  by cloning the legitimate input , as shown in Line 1. Then, in Line 2, 
the deep Taylor decomposition method is used to obtain the contributive saliency feature map, which is the standard to guide 
the order of the features to be perturbed. In Line 3, the  function sorts the saliency map and returns the feature index in 
descending order. Here, we perturb one feature at a time in the AE generation process, which is what the iterative code in Line 
5 does. To guarantee the individual perturbation point, we introduce a ‘0’ masked matrix  as defined on Line 4. When 
feature i must be perturbed,  (Line 6). Subsequently, a one-feature-perturbation loop is implemented to generate 
AE by Algorithm 2 (Line 7). An obvious advantage of perturbing one feature at a time is that in this way, we can avoid pulling 
the redundant and unnecessary perturbation to the AE and restrict the features to be perturbed. Therefore, the 𝐿# distance is 
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implicitly bounded. When the AE is generated by AEGen (defined in Algorithm 2), the condition in Line 8 checks if it is valid: 
if it can cause a misclassification, it is a suitable AE; otherwise, it will continue to iterate through the loop. 

Algorithm 2: AEGen 
Input: AE ; the legitimate input  and with the corresponding 

ground-truth label ; the model learned function ; the 

perturbation rate ; the iterations T; the masked matrix . 
Output: adversarial example  
1.  

2.   

3.   

4.   

5.   

6.   

7.  
8.  

In Algorithm 2, AEGen takes  iterations to generate an AE. Line 2 represents the objective function given in Eq. (3.2). 
Concretely, the Hadamard product of one-hot encoding of  and  is . Then, the objective function con-

sists of the sum of  and the 𝐿" norm distance. It is noteworthy that in Line 2, we set  to instantiate Eq. (3.2) 

since the previous work [19] found that  is more effective than other p values. When solving the objective function, the 
 function calculates the derivatives of the objective function with regard to . The Hadamard product of the masked 

matrix and the derivatives is manipulated to obtain the perturbation. The step  plays an important role in controlling the 
perturbation in each iteration. The  function restricts each element of  within the legitimate range 

 to satisfy the input domain. In this paper, the legitimate domain is set to  in all datasets. 

From Algorithm 1 and Algorithm 2, we can conclude that the time complexity of DI-AA, , is  since 
the two for loops (Line 5 in Algorithm 1 and Line 1 in Algorithm 2) are nested in DI-AA. The quadratic time complexity 
relies on the number of input features and the iteration numbers, which are the implication of two for loops. When the number 
of input features and/or iterations becomes larger, DI-AA needs more time to generate adversarial examples. 

4. Experimental Results and Analysis 

This section demonstrates the effectiveness of DI-AA through experiments. We first present the datasets, models, base-
lines used in the experiments and hyperparameters of DI-AA. We then introduce the white-box attacks to the nonrobust models 
and robust models. Nonrobust models are the models that are not adversarially trained. Robust models are the models trained 
by the adversarial defensive method (TRADES in this case). Finally, to further investigate the transferability of the AE gener-
ated by DI-AA, we attack robust models in the black-box manner. 

4.1. Setup 
TABLE 1. Dataset information (#Training denotes the number of the training set) 

Dataset #Training #Testing Size #Classes 
NSL-KDD 395345 61388 1×122 5 

MNIST 60000 10000 1×28×28 10 
CIFAR-10 50000 10000 3×32×32 10 
ImageNet - 1000 3×299×299 1000 
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Dataset. We focus on four datasets to comprehensively validate the effectiveness of DI-AA, as we tested our approach not 
only on unstructured datasets such as MNIST [33], CIFAR-10 [34] and ImageNet [35], but also on the structured dataset such 
as NSL-KDD [36]. The dataset information is shown in TABLE 1. One thing to note is that the size of ImageNet validation 
sets is enormous. Therefore, we randomly selected 1000 samples as the test set to verify the effectiveness of DI-AA, and each 
sample corresponds to a unique class, as established in previous papers [14,15]. 

Models. TABLE 2 shows the details of the KDD model and the MNIST model. For the CIFAR-10 model, we used the standard 
ResNet-18 model [37] and omit its structure in TABLE 2. For detailed information about ResNet, please refer to [37]. The 
AdaBelief optimizer [32] was implemented to boost the performance of the models in the CIFAR-10 training phase. In the 
ImageNet dataset, we used the pretrained ResNet-34 model for subsequent experiments. 

TABLE 2. The structure of the KDD and MNIST models 

Layer KDD model MNIST model 

   

   

   
   

   

   

   

   

   

   
 

Model Performance. Based on the normally trained models, the TRADES adversarial training approach was adopted to im-
prove the robustness of the trained KDD, MNIST, and CIFAR-10 models. TRADES hyperparameters are provided by the 
authors’ default settings [21]. The results of the nonrobust (Clean Accuracy) and robust models (Robust Accuracy) are shown 
in TABLE 3. The Robust Accuracy of the ImageNet model is ‘-’ for the following reasons: the hyperparameters of TRADES 
on the robust ImageNet model are not provided in [21]; it is difficult to train a high-dimensional ImageNet model and find the 
best TRADES hyperparameters confined by the equipment resource. 

TABLE 3. Model performance 

Model Clean Accuracy Robust Accuracy 
KDD model 88.18% 86.85% 

MNIST model 99.54% 99.52% 
CIFAR-10 model 94.78% 80.38% 
ImageNet model 90.60% - 

 

Baselines. We compared DI-AA not only with 𝐿"-constrained-only methods, such as CW [7] and FAB [13] but also with the 
𝐿#-constrained-only method, OnePixel (OnePix) [20]. Other conventional methods, FGSM families, and the state-of-the-art 
method, AutoAttack (AutoA) [9], are considered. FGSM families include FGSM [5], BIM [6] and PGD [8]. IWA [19] was also 
considered to verify the effectiveness of the deep Taylor decomposition method. FGSM, BIM, PGD, and CW methods were 
implemented in the Advertorch PyTorch Library [38]. OnePixel attack was implemented in the TorchAttacks PyTorch Library 
[39]. The code of AutoAttack can be found in [9]. 

Evaluation Metrics. To evaluate the effectiveness of DI-AA, we used four metrics: 1) mean running time (MRT) to evaluate 
the mean time required for the generation of one adversarial sample; 2) accuracy score (ACC) to assess the transferability of 
AE in the black-box setting; 3) the 𝐿!, 𝑝 ∈ {0,1,2}, norm metrics to measure the perturbation; and 4) success rate (SR) to 
evaluate effectiveness. The formula is: 
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4.2. Effect of Hyperparameters 

This section investigates the impact of three hyperparameters, perturbation rate , iterations T and constant c in the objec-
tive function, on the attack performance. 

   
Fig. 4. The trend of  when T varies from 

1 to 21 
Fig. 5. The effect of  to the SR metrics Fig. 6. The relationship between 𝐿" mean met-

rics in a saturation 

   
Fig. 7. 𝐿" stacked error bars of NSL-KDD dataset when iteration T varies from 1 to 21 (𝐿#, 𝐿$, 𝐿!	from left to right) 

   
Fig. 8. 𝐿" stacked error bars of MNIST dataset when iteration T varies from 1 to 21 

   
Fig. 9. 𝐿" stacked error bars of CIFAR-10 dataset when iteration T varies from 1 to 21 
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Fig. 10. 𝐿" stacked error bars of ImageNet dataset when iteration T varies from 1 to 21 

4.2.1.  and  

We investigated the impact of  and T in the objective function on the attack capability in terms of the 𝐿! norm metrics. 
The first 10% of the test set samples of the four datasets were used to run the proposed approach on the nonrobust models. 
When the SR score reached 100%, we recorded the statistics of the 𝐿! evaluation metrics with the corresponding  and T. 
Evaluation metrics are plotted by stacked error bars to show trends, as shown in Figs. 7~10 for the four datasets. A stacked 
error bar contains the four statistical values: mean, standard deviation (std), minimum and maximum, which correspond to the 
dot in the middle, two squares around the dot, and the highest and lowest points in a vertical line, respectively. 

We first examine the NSL-KDD dataset. Fig. 7 and the blue curve in Fig. 4 indicate that when the iteration increases, the 
declining trend appears in the three 𝐿! figures and  curve. Of these, the  and 𝐿$ mean curves show the smoothest declining 
trend. The 𝐿# and 𝐿" mean curves fluctuate slightly. For the standard deviation, all 𝐿! std values gently decrease. The maxi-
mum trends of 𝐿1 and 𝐿2 decrease with random fluctuation. However, the 𝐿# maximum trend fluctuates irregularly, and we 
cannot find any useful information. Additionally, the three 𝐿! minimum trends are close to 0, which indicates that AE does 
exist around the legitimate input. Empirically, when  and , DI-AA performs the best with 𝐿! metrics 
comprehensively considered. 

In the MNIST dataset, the  curve (the red curve) trend in Fig. 4 is similar to that of the NSL-KDD datasets, but the 
trends of the 𝐿' statistical values differ from those of the NSL-KDD dataset. Fig. 8 shows that the 𝐿# and 𝐿$ mean curves show 
downward trends with slight fluctuations. In contrast, the 𝐿# mean curve on the NSL-KDD dataset fluctuates more. One unex-
pected finding is that the 𝐿" mean trend rises at first and then declines, but the difference in the 𝐿" mean value is only 0.3 
numerically when  and , which we think is still reasonable. Changes in the trend of the 𝐿' std values in the MNIST 
dataset are not different from those in the NSL-KDD dataset. Nevertheless, the 𝐿! maximum trends fluctuate more than those 
of the NSL-KDD dataset. In summary, when  and , the proposed approach performs best. 

For the CIFAR-10 dataset, Fig. 9 reveals that there is a steady drop in the 𝐿# and 𝐿$ mean curves. It is striking for the 𝐿" 
mean curve to drop at first but rise at . The 𝐿$ and 𝐿" std trends drop steadily, while the 𝐿# std trend fluctuates more 
than the 𝐿$ and 𝐿" std trends. In terms of the 𝐿! maximum trends, the 𝐿$ and 𝐿" trends are similar to each other, and both drop 
steadily with fluctuations and rise when . However, the 𝐿# maximum trend is haphazard, and no clue can be summarized. 
What can be seen in Fig. 4 is that the  curve (the green curve) steadily declines with slight fluctuations. Empirically, when 

 and , the proposed DI-AA performs best on the CIFAR-10 dataset. 

In the ImageNet dataset, the  curve (the purple curve) in Fig. 4 shows that DI-AA always reaches a 100% success rate 
when . This means that the AE generation process is saturated. To discover how 𝐿! changes when the generation 
process is saturated, we further increase the number of iterations. The results are shown in Fig. 10. 

Interestingly, the 𝐿$ mean curve decreases slowly with increasing T. The 𝐿# mean curve decreases sharply and obviously 
at the beginning and flattens afterward. Both the 𝐿# and 𝐿$ mean curves show a decreasing trend. Instead, the trend of the 𝐿" 
mean curve diverges from the 𝐿#/𝐿$ mean trends. Concretely, the 𝐿" mean curve rises steadily with iteration growth. The op-
posite trends of 𝐿#/𝐿$ and 𝐿" reveal that when the success rate is saturated, the perturbation points (𝐿#) and the total perturba-
tion (𝐿$) decrease, and the Euclidean distances (𝐿") increase with increasing iteration. Similarly, the 𝐿# and 𝐿$ std trends de-
crease when saturated, while the 𝐿" std trends continue to increase. 
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To better illustrate the opposing trends, we plot Fig. 6 to show the opposite variations. From Fig. 6 and Fig. 10, we can 
see that when 𝐿# increases, 𝐿" increases concurrently, but 𝐿$ decreases inversely. From the viewpoint of AE, the two figures 
directly reveal that when the generation process is saturated, DI-AA adds more perturbation at a point. When a point is given 
more perturbation, DI-AA requires fewer perturbation points to reach misclassification. Then, the total perturbation is implicitly 
decreased since there are fewer perturbation points. However, because the changes in a perturbation point are larger, the Eu-
clidean distance is larger than before. Hence, we can infer that DI-AA is a flexible AE generation approach according to the 
adversaries’ demands: if the adversary wants the small 𝐿" perturbation, it can implement DI-AA whose process is just saturated. 
Alternatively, if the adversary wants the small 𝐿# perturbation, it can implement DI-AA whose process is oversaturated. 

By comparison with baselines, we choose the same iterations as IWA (i.e., ). Since there are no experiments on the 
ImageNet dataset in the IWA setup, we run this attack on the ImageNet dataset and find that when , IWA performs best. 

4.2.2. Constant c 

The four curves in Fig. 5 show that our approach is effective for a constant c in  in all datasets. When , the 

objective function in Eq. (3.2) focuses on minimizing the 𝐿! distance rather than , which implicitly affects the AE 

generation.  is critical to generating AE, and when  is sufficiently small, AE can be generated. Therefore, 

 has a negative effect on AE generation. We also observe that the negative effect decreases as the input size becomes 
large. Empirically, a larger input size implies a larger , and the value of  is relatively steady. In this way, 

when the input size becomes larger, the negative effect of a larger c decreases. 

4.2.3. Summary 

In summary, based on the conclusions in Sections 4.2.1 and 4.2.2, the hyperparameters (iteration T, perturbation size  
and constant c) that work best on the four datasets are shown in TABLE 4. Specifically, the hyperparameter c is in the range 

 on the four datasets, and T on the NSL-KDD dataset is in the positive integer range [17, 21]. 

TABLE 4. Hyperparameters in four datasets 

Dataset T  c 
NSL-KDD  0.001 

 MNIST 21 0.003 
CIFAR-10 17 0.001 
ImageNet 7 0.001 

4.3. White-box Attack on Nonrobust and TRADES-robust Models 
TABLE 5. Comparison of eight AE white-box attacks to the nonrobust model on the NSL-KDD dataset 

Attacks 
𝐿# 𝐿$ 𝐿! 

SR 
Mean Std Mean Std Mean Std 

Abl-𝐿# 20.41 21.67 18.07 19.51 3.14 2.72 94.91% 
Abl-𝐿! 70.31 18.13 18.22 5.64 2.34 0.58 90.15% 
Ours 18.94 6.83 6.71 2.63 1.76 0.49 100.00% 

FGSM 109.92 11.96 91.53 20.12 12.24 7.39 17.10% 
BIM 101.90 12.15 31.80 17.00 7.73 8.93 31.08% 
PGD 122.00 0.00 119.12 5.13 10.86 0.35 70.91% 

OnePix 4.98 0.14 6.17 4.79 3.30 3.81 64.71% 
CW 121.58 3.49 11.40 10.56 3.60 6.52 100.00% 
FAB 103.85 18.17 19.85 13.23 4.75 6.46 95.68% 
IWA 10.19 5.95 8.79 5.09 2.90 1.27 93.83% 

AutoA 100.87 10.42 31.33 15.74 6.64 7.87 44.55% 
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TABLE 6. Comparison of eight AE white-box attacks to the nonrobust model on the MNIST dataset 

Attacks 
𝐿# 𝐿$ 𝐿! 

SR 
Mean Std Mean Std Mean Std 

Abl-𝐿# 93.70 30.89 27.01 10.87 3.25 0.83 100.00% 
Abl-𝐿! 493.30 28.23 61.80 12.79 3.11 0.68 99.98% 
Ours 100.03 28.12 27.67 9.82 3.14 0.74 100.00% 

FGSM 469.91 30.73 131.38 9.11 6.24 0.22 87.21% 
BIM 474.97 23.66 131.65 5.35 6.24 0.13 93.55% 
PGD 475.42 23.05 131.84 5.13 6.25 0.12 93.27% 

OnePix 29.26 0.84 15.78 1.36 3.22 0.22 47.89% 
CW 781.67 4.32 11.42 4.11 1.09 0.34 100.00% 
FAB 535.17 31.24 12.65 4.19 1.12 0.32 100.00% 
IWA 177.29 111.86 62.78 45.01 5.08 2.08 99.00% 

AutoA 727.70 105.21 124.33 5.88 5.42 0.33 100.00% 

 

TABLE 7. Comparison of eight AE white-box attacks to the nonrobust model on the CIFAR-10 dataset 

Attacks 
𝐿# 𝐿$ 𝐿! 

SR 
Mean Std Mean Std Mean Std 

Abl-𝐿# 458.97 330.85 39.14 33.90 1.88 1.00 94.60% 
Abl-𝐿! 3053.40 71.79 98.73 29.63 1.97 0.71 99.10% 
Ours 485.51 382.57 31.38 25.97 1.57 0.74 99.94% 

FGSM 3053.55 72.24 823.77 63.38 15.35 0.74 87.82% 
BIM 3053.27 71.97 823.73 63.17 15.34 0.73 98.45% 
PGD 3053.23 72.31 823.67 63.31 15.35 0.74 98.24% 

OnePix 15.00 0.11 6.13 1.25 1.80 0.31 73.73% 
CW 3071.86 0.96 4.88 4.23 0.14 0.11 99.98% 
FAB 3054.75 65.95 5.21 4.30 0.14 0.11 99.89% 
IWA 182.07 252.17 85.03 101.86 10.11 7.12 98.98% 

AutoA 3066.01 24.31 66.55 3.34 1.32 0.05 100.00% 

 

TABLE 8. Comparison of eight AE white-box attacks to the nonrobust model on the ImageNet dataset 

Attacks 
𝐿# 𝐿$ 𝐿! 

SR 
Mean Std Mean Std Mean Std 

Abl-𝐿# 4375.11 3488.27 295.90 246.50 4.39 2.00 100.00% 
Abl-𝐿! 264844.27 9796.20 1932.51 276.62 3.78 0.60 100.00% 

Ours ( ) 4246.85 3407.10 279.19 233.42 4.23 1.95 100.00% 
Ours ( ) 8631.26 6248.76 309.30 261.07 3.08 1.56 100.00% 

FGSM 264844.81 9816.32 68862.34 6365.00 139.56 7.88 99.45% 
BIM 229348.09 9047.41 15554.36 387.23 36.38 0.76 100.00% 
PGD 267611.77 1694.58 35879.61 2731.85 82.76 4.26 100.00% 

OnePix 104.91 0.52 35.54 4.50 4.18 0.46 17.68% 
CW 268176.31 53.27 149.01 131.10 0.38 0.31 100.00% 
FAB 264975.19 8733.16 52.34 38.97 0.16 0.11 100.00% 
IWA 1667.83 1629.75 221.24 234.70 4.80 3.13 76.28% 

AutoA 267394.50 3198.85 46672.36 7117.65 103.02 11.91 100.00% 
 

We used the hyperparameters obtained in Section 4.2 to perform a white-box attack on the nonrobust and TRADES-robust 
models. We take the first look at the ablation experiments. Then, we analyze the efficiency comparisons and the results of 
white-box attacks. 
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4.3.1. Ablation Analysis 

In the first three rows of TABLE 5~TABLE 8, we show the results of ablation experiments conducted to verify whether 
the deep Taylor decomposition method and 𝐿! norm are effective. Specifically, Abl-𝐿# denotes that DI-AA has no 𝐿! norm 
constraint. That is, the objective function of DI-AA in Eq. (3.2) does not include . Abl-𝐿" denotes that DI-AA does 

not have the deep Taylor decomposition method as the guideline to help select the perturbation points. This implies that Algo-
rithm 1 should not include Lines 2~5. ‘Ours’ denotes the complete DI-AA attack. 

From the first three rows of the four tables, we observe three phenomena: 1) without the 𝐿" norm constraint, the 𝐿$ and 
𝐿" norm distances of Abl-𝐿# are larger than that of DI-AA; 2) without the deep Taylor decomposition method, the 𝐿# norm 
distance of Abl-𝐿" is much larger than that of DI-AA; 3) Abl-𝐿# and Abl-𝐿" sometimes can lead to the loss of SR scores, 
especially in the structured NSL-KDD dataset. In contrast, our DI-AA can finely balance the SR score and 𝐿! norm distances. 
In particular, DI-AA implicitly minimizes the 𝐿# value and constrains the 𝐿$ and 𝐿" values at the same time in the four datasets. 

To further verify the effectiveness of DI-AA, we plot the process to demonstrate how DI-AA attacks an MNIST image ‘1’ 
by the specific contributing features provided by the deep Taylor decomposition method. The attack flow is shown in Fig. 11. 
From the top of Fig. 11, we can see the legitimate image ‘1’ and its corresponding SoftMax output of the MNIST model. We 
only plot the top-best and second-best class probabilities of the output since the sum of these two class probabilities is almost 
99%. We thus omit 1% probabilities of the other 8 classes for clarity and brevity. There is 75% confidence that the model thinks 
the image is ‘1’ from the output probabilities shown in the top right of the figure. When the image is fed into DI-AA, DI-AA 
implicitly produces the relevant map of the input by the deep Taylor decomposition method. With the guideline of the relevant 
map, DI-AA heuristically perturbs the single feature with the highest contribution score. To better visualize the attack process, 
we plot the variation of the model SoftMax output when DI-AA perturbs different numbers of high contributing features, as 
the bottom of Fig. 11 shows. From the figure, we observe that when the more contributing features are perturbed, the probability 
of class ‘1’ decreases, and the probability of the wrong class ‘3’ grows larger; therefore, misclassification occurs. 

 
Fig. 11. Visualization of DI-AA attacking one image ‘1’ 
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4.3.2. Analysis of White-box Attacks on Nonrobust Models 

TABLE 5~TABLE 8 are the comparisons between our approach and eight baselines on four datasets. We show the best 
performance results in bold, and if our result is second-best, it is italicized. An ideal adversarial attack requires fewer perturba-
tion points (𝐿# metric), less total perturbation (𝐿$ metric), and less Euclidean distance (𝐿" metric) with a high success rate (SR 
score). We follow this criterion to evaluate the attack performance. The 100% SR score denotes that all the samples that are 
classified correctly by the nonrobust model are changed to adversarial examples via attack methods. 

On the NSL-KDD dataset, as shown in TABLE 5, our approach achieves the best SR score with the least perturbation and 
outperforms the other eight baselines. Specifically, the total perturbation and the Euclidian distance are the lowest. The pertur-
bation points are the second least. The IWA attack reaches the third-best SR score, but its perturbation is the second-least 
among baselines. In particular, the perturbation points are the lowest. CW also reaches the 100% SR score with the third-least 
perturbation. The SR score of the FAB attack is 4% lower than ours, and its perturbation is slightly larger than that of CW. The 
poor performance of the AutoAttack and OnePixel methods indicates that researchers should test the proposed method on 
different scenarios, such as the types of datasets, to verify the effectiveness of the approach. Specifically, OnePixel overly 
concentrates on the 𝐿# constraint, which causes its 𝐿" distance to be larger and the SR score to be lower. Other baselines, such 
as the FGSM family, do not perform well in the structured dataset. 

On the MNIST dataset, TABLE 6 shows that our approach achieves the best SR score with the third-least perturbation 
and the fewest perturbation points. CW, FAB and AutoAttack also reach the best SR score, but their perturbation increases 
progressively. Specifically, the perturbation points of CW and FAB are larger than ours. In the CW setup, they project the 
inputs to the new space, which always causes their perturbation points to be the largest. The IWA reaches the second-best SR 
score and perturbation points. Its total perturbation and Euclidean distance are lower than those of AutoAttack but larger than 
ours. The comparison between IWA and ours implies that the deep Taylor decomposition method effectively guides adversarial 
generation. In terms of the OnePixel method, its larger 𝐿" distance and lower SR score are as poor as those in the NSL-KDD 
dataset. The performance of FGSM families is consistent with that in the NSL-KDD dataset. 

The results of the CIFAR-10 dataset are shown in TABLE 7. Our method achieves the third-best SR score, which is merely 
0.04% lower than the second-best SR score of CW and 0.06% lower than the best SR score of AutoAttack. CW and FAB 
attacks achieve the lowest perturbation equally, but CW is more stable than FAB since the SR score of FAB is 0.09% lower 
than that of CW. AutoAttack, although it achieves the best SR score, has a total perturbation that is quite large compared with 
ours and CW. IWA does not perform as well as it does in the MNIST dataset since its perturbation is large, but the SR score is 
trivial. The OnePixel method performs well on the CIFAR-10 dataset compared with NSL-KDD and MNIST. However, its 
performance is still not good. Although its 𝐿# and 𝐿$ values are smaller than others, its SR score is the lowest, and the 𝐿" values 
are larger than ours. 

We also tested our method on the large-scale ImageNet dataset, whose results are shown in TABLE 8. We show the results 
for  and . These two results can explicitly reflect the phenomenon mentioned in Section 4.2.1: the Euclidean dis-
tance increases while the perturbation points and the total perturbation decrease oppositely when the generation process is 
saturated and the iteration still increases. Our method achieves the best SR score and the third-least perturbation. FAB performs 
best among baselines, whose perturbation is the least and the SR score is the best. This is followed by CW. Although Au-
toAttack obtains a 100% SR score, its perturbation is even larger than that of PGD and BIM, which is not effective. IWA has 
the same perturbation as ours ( ), but its SR score is lower, indicating that the IG method has a limited guideline in the 
large-scale dataset. OnePixel performs poorly in the large-scale images, whose SR score is only 17.68%. Only restricting the 
𝐿# distance is not proper since its success rate reflects that this attack is not effective. FGSM families perform well, and the 
disadvantage is that the perturbation is large. 

In summary, when attacking nonrobust models, the interpretable method can help generate adversarial examples. Gener-
ally, DI-AA can generate adversarial examples with a high success rate in any scenario. The perturbation of DI-AA is lower 
than the baselines in the structured dataset. Additionally, in the unstructured datasets, the perturbation of DI-AA is close to CW 
and FAB attacks and lower than AutoAttack and IWA attacks. 

4.3.3. Efficiency Analysis 

As emphasized in Section 3.3, the computational cost of the IG method is very high, and if used to generate adversarial 
examples, it would be more time-consuming. To test this claim, the mean running time (MRT) indicator is used to compare the 
efficiency between ours and eight baselines, including IG-based IWA. The results are shown in TABLE 9. We only record the 
MRT on the nonrobust models since the running time of attacks on the nonrobust model is more realistic. We also omit the 
MRT of the ablation experiments since the ablation types of DI-AA are not deployed practically. 
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One clear conclusion from the extensive experiments is that FGSM families are the most time-efficient. AutoAttack is the 
second-best time-efficient. Our method is not as time-efficient as FGSM families and AutoAttack but is still more time-efficient 
than IWA in three datasets. This implicitly reflects the computational cost of the IG method. The FAB attack is efficient in 
small-size datasets but takes much more time in the large-size ImageNet dataset. OnePixel attack, although, is efficient in four 
datasets, its SR values in TABLE 5~TABLE 8 are unqualified. CW attack is generally stable and time-consuming in the four 
datasets. We infer that there is no early stopping mechanism in the CW setup and thus CW must run a fixed number of iterations. 

In conclusion, our DI-AA can generate one adversarial example in a relatively efficient time on four datasets and the results 
are in accord with the time complexity  in Section 3.4: when the number of input features and/or iterations grows 
larger, DI-AA requires more time to generate an adversarial example. 

TABLE 9. Mean running time of attacks in four datasets on the nonrobust models 

Attacks NSL-KDD MNIST CIFAR-10 ImageNet 

Ours 0.8 5.17 11.03 
123.98 ( )/ 
47.16 ( ) 

FGSM 0.003 0.003 0.01 0.02 
BIM 0.03 0.03 0.12 0.2 
PGD 0.03 0.03 0.11 0.2 

OnePix 4.22 4.41 12.95 53.41 
CW 46.15 53.22 39.08 67.84 
FAB 1.98 3.59 10.67 414.66 
IWA 1.46 7.94 7.65 127.69 

AutoA 0.58 0.64 1.17 2.58 

4.3.4. Analysis of White-box Attacks on Robust Models 

This section reports on the results of our method and baselines attacking the TRADES-robust models, and the results are 
shown in TABLE 10, TABLE 11 and TABLE 12. As before, the best performance results are in bold. Note that if our result is 
the second-best, it will be in italics. One common result is that all the SR scores are low. This is reasonable since all the robust 
models are trained by the TRADES defensive method and the AE attacks have difficulty generating AE on the robust models. 
A relatively high SR score implies that the attack has the ability to evade the defense. 

In TABLE 10, we can see that ours and CW achieve 100% SR scores on the NSL-KDD robust model, indicating that both 
have a strong evasion ability and that TRADES defensive methods do not perform well in the structured dataset. Defensive 
methods suitable for structured data should be considered for future work. Meanwhile, ours only needs the least perturbation 
to reach a 100% SR score, which is much better than other baselines. 

TABLE 11 lists the results of the MNIST robust model. All the SR scores are lower than 10%, indicating that the TRADES 
method makes the MNIST model robust. Nevertheless, ours still reaches the best SR score with the second-least perturbation. 
IWA obtains the second-best SR score, but its perturbation is much higher than ours. Although CW receives the least pertur-
bation, its SR score is low. Other baselines, such as FAB and AutoAttack, have a larger perturbation with an improper SR score. 

TABLE 10. Comparison of eight AE white-box attacks to the TRADES-robust model on the NSL-KDD dataset 

Attacks 
𝐿# 𝐿$ 𝐿! 

SR 
Mean Std Mean Std Mean Std 

Ours 26.11 8.96 9.42 3.44 2.15 0.55 100.00% 
FGSM 109.67 11.02 88.44 21.47 11.59 6.91 15.84% 
BIM 105.29 10.71 29.91 16.16 7.06 8.22 25.40% 
PGD 104.62 7.30 29.41 14.07 5.76 6.87 60.28% 

OnePix 4.98 0.14 6.10 5.26 3.25 4.66 38.81% 
CW 121.20 3.85 11.53 10.91 3.45 6.44 100.00% 
FAB 107.90 12.45 21.14 12.85 4.64 6.28 96.83% 
IWA 15.76 9.06 11.32 6.98 3.08 1.47 88.54% 

AutoA 117.33 2.43 31.79 11.88 9.47 9.06 9.24% 
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TABLE 11. Comparison of eight AE white-box attacks to the TRADES-robust model on the MNIST dataset 

Attacks 
𝐿# 𝐿$ 𝐿! 

SR 
Mean Std Mean Std Mean Std 

Ours 167.02 68.39 27.52 13.99 3.58 1.24 9.08% 
FGSM 445.46 32.07 121.51 6.53 5.99 0.16 1.31% 
BIM 483.09 40.41 133.61 11.15 6.29 0.27 1.76% 
PGD 483.22 35.02 133.37 10.31 6.28 0.25 1.79% 

OnePix 29.32 0.86 15.70 1.43 3.17 0.23 7.25% 
CW 783.79 0.52 4.70 2.99 1.02 0.53 4.26% 
FAB 618.06 52.66 94.37 35.58 4.28 1.48 5.69% 
IWA 626.02 210.33 130.16 46.69 7.28 2.39 8.64% 

AutoA 646.51 31.13 140.49 8.69 6.15 0.28 6.53% 

 

TABLE 12. Comparison of eight AE white-box attacks to the TRADES-robust model on the CIFAR-10 dataset 

Attacks 
𝐿# 𝐿$ 𝐿! 

SR 
Mean Std Mean Std Mean Std 

Ours 439.17 324.10 86.42 70.03 5.48 2.76 100.00% 
FGSM 3060.37 44.64 858.40 49.19 15.82 0.59 85.37% 
BIM 3057.13 61.81 830.48 60.11 15.43 0.71 98.49% 
PGD 3056.44 65.18 829.40 61.36 15.42 0.73 98.53% 

OnePix 15.00 0.00 7.63 1.50 2.12 0.36 33.21% 
CW 3071.88 0.52 19.94 13.42 0.89 0.58 99.99% 
FAB 3057.96 59.95 120.44 79.99 2.25 1.53 99.99% 
IWA 247.02 354.67 78.53 105.31 5.84 5.63 98.52% 

AutoA 3060.38 50.06 332.65 20.61 6.20 0.25 98.46% 
 

Unexpectedly, TABLE 12 shows that TRADES defensive methods have a limited effect on boosting the robustness of the 
CIFAR-10 model. From these three subtables, it can be inferred that the TRADES defensive method is not stable and cannot 
always effectively improve the model robustness on any DL model. Nevertheless, our method achieves the best SR score with 
the third-least perturbation. 

In summary, the TRADES defensive method is not stable and generalized to boost the robustness of the DL model. When 
the model has boosted the robustness marginally, our method can evade the defense with a 100% success rate. When the model 
has greatly boosted the robustness, our method can still evade it with the least perturbation and the highest success rate. 

4.4. Black-box Attack on Robust Models 

To verify the transferability of AE, we transferred CIFAR-10 adversarial examples generated by DI-AA in Section 4.3.2 
to attack unknown models with other new unknown defensive methods [40-45]. The results are shown in TABLE 13. We note 
that we only compare three methods since AutoAttack and CW perform well in the black-box manner. Clearly, our approach 
and AutoAttack can successfully transfer AE to attack the black-box models. Moreover, our approach can decrease accuracy 
by approximately 16%~31% on robust models, which is generally larger compared with AutoAttack. 

TABLE 13. Accuracy decrease (%) of the three methods in the black box manner 

Defensive Approach Robust Accuracy ours AutoA CW 
[40] 88.02 -30.54 -30.41 - 
[41] 89.69 -20.01 -16.55 - 
[42] 88.51 -19.36 -12.09 - 
[43] 92.41 -15.69 -23.83 - 
[44] 89.05 -24.37 -13.68 - 
[45] 89.36 -23.03 -18.61 - 
[21] 84.92 -16.94 -31.84 -6.99 



5. Conclusion 

In this paper, we have taken a step in investigating how to integrate the interpretable method of deep Taylor decomposition 
with adversarial example generation algorithms to explore the effectiveness of the interpretable method for adversarial example 
generation. Extensive experimental results indicate that the saliency map generated by the interpretable method can be the 
criterion to guide the generation of AE. Moreover, our proposed white-box adversarial example generation approach, DI-AA, 
can attack the nonrobust and robust models with a high success rate and low perturbation. The perturbation is closer to or lower 
than that of the previous state-of-the-art methods. In addition, the AE generated by DI-AA can reduce the accuracy of the robust 
black-box models by 16%~31% in the black-box manner. 

In future work, adversarial example generation that can fool the model and the interpretation method while maintaining 
low perturbation and high transferability will be considered. Furthermore, a more mathematical adversarial example generation 
method and reality simulation will be carried out. 
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