
Wang et al. Cybersecurity (2021) 4:38
https://doi.org/10.1186/s42400-021-00102-9

RESEARCH

LSGAN‑AT: enhancing malware detector
robustness against adversarial examples
Jianhua Wang1, Xiaolin Chang1*  , Yixiang Wang1, Ricardo J. Rodríguez2 and Jianan Zhang1 

Abstract 

Adversarial Malware Example (AME)-based adversarial training can effectively enhance the robustness of Machine
Learning (ML)-based malware detectors against AME. AME quality is a key factor to the robustness enhancement.
Generative Adversarial Network (GAN) is a kind of AME generation method, but the existing GAN-based AME genera-
tion methods have the issues of inadequate optimization, mode collapse and training instability. In this paper, we pro-
pose a novel approach (denote as LSGAN-AT) to enhance ML-based malware detector robustness against Adversarial
Examples, which includes LSGAN module and AT module. LSGAN module can generate more effective and smoother
AME by utilizing brand-new network structures and Least Square (LS) loss to optimize boundary samples. AT module
makes adversarial training using AME generated by LSGAN to generate ML-based Robust Malware Detector (RMD).
Extensive experiment results validate the better transferability of AME in terms of attacking 6 ML detectors and the
RMD transferability in terms of resisting the MalGAN black-box attack. The results also verify the performance of the
generated RMD in the recognition rate of AME.

Keywords:  Adversarial malware example, Generative adversarial network, Machine learning, Malware detector,
Transferability

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Malware is being regarded as a severe threat to cyber-
security (Zhou and Jiang 2012; Christodorescu et al.
2005). Up to 2020, more than 1.14 billion malware were
reported and the amount of malware expected will reach
1244.47 million in 2021 (“Malware Statistics Trends
Report | AV-TEST” 2021). As shown in Fig. 1, the histo-
gram chart denotes the scale of malware, the line chart
denotes the increment ratio of malware, the left y-axis
denotes the amount of malware, the right y-axis is the
increment ratio, and the x-axis denotes the year. Machine
Learning (ML) detectors have been explored for malware
detection, and have achieved preferable detection per-
formance (Yuan et al. 2014; Lucas et al. 2021). However,
their capability is challenged by adversarial attacks (Yuan

et al. 2019; Huang et al. 2017), which are based on adver-
sarial examples.

Adversarial examples, proposed by Szegedy et al.
(2014), are generated by adding slight perturbations on
original data and utilized to carry out adversarial attacks
and implement Adversarial Machine Learning (AML)
for enhancing the defense performance of the system
(Biggio and Roli 2018), especially in malware detec-
tion (Chen et al. 2018). In general, there are three major
types of approaches of generating adversarial examples:
gradient-based, optimization-based, and Generative
Adversarial Networks (GAN)-based (Xiao et al. 2018).
The first two types of approaches have three major issues:
(1) need to access the white-box architecture and have
the knowledge of model parameters all the time (Xiao
et al. 2018), (2) their optimization process is slow and
can only optimize perturbation for one specific instance
each time (Xiao et al. 2018), (3) the low perception qual-
ity of the adversarial examples (Wang et al. 2020). There-
fore, because GAN-based methods have advantages in

Open Access

Cybersecurity

*Correspondence: xlchang@bjtu.edu.cn
1 Beijing Key Laboratory of Security and Privacy in Intelligent
Transportation, Beijing Jiaotong University, 3 Shangyuancun,
Beijing 100044, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-2975-8857
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-021-00102-9&domain=pdf

Page 2 of 15Wang et al. Cybersecurity (2021) 4:38

obtaining the data distribution through unsupervised
learning (Gonog and Zhou 2019), carrying out black-box
attacks (Xiao et al. 2018), and generating more realistic/
actual data (Gonog and Zhou 2019), the GAN-based
methods are preferable for generating adversarial exam-
ples. However, the existing GAN-based Adversarial
Malware Example (AME) generation methods need to
be improved in several aspects, such as producing the
higher quality AME by optimizing the boundary samples
(Mao et al. 2017), resolving the problem of mode col-
lapse (Creswell et al. 2018), and improving the stability of
training (Creswell et al. 2018).

The above discussions motivate our work of this paper.
We develop a novel LSGAN-AT for enhancing the
robustness of malware detectors, which contains two
main components including the LSGAN module and AT
module.

The LSGAN module is a GAN-based AME generative
model using least square loss function, which effectively
tackles the aforementioned issues with the traditional
GAN, and then generates smoother and high quality
adversarial examples. Specifically, we utilize a generator,
a discriminator and a trained well union detector with
new structures. The generator combines perturbance and
malware, and discriminator obtains labeled data from the
union detector to update parameter gradients. After con-
tinuous training, LSGAN module outputs more effective
AME.

The other component is the (Adversarial Training) AT
module, which consists of a Feed-Forward Neural Net-
work (FFNN)-based ML detector with new structure.
Trained by original dataset and AME generated by the
proposed LSGAN module, the AT module generates a
Robust Malware Detector (RMD) which achieves a pref-
erable recognition rate for AME and malware. Moreover,

we conduct vast experiments to compare the defense
performance using AME trained by different generative
models.

Our contributions are following:

•	 We propose a new method, LSGAN module, to gen-
erate smoother and high quality adversarial exam-
ples. Two key features contribute to LSGAN’s better
performance, the Least Square (LS) loss function and
a new network structure. LSGAN benefits more from
its new network structure than the LS loss function
to produce better performance. To the best of our
knowledge, it is the first time to use the LS loss func-
tion to solve issues of GAN and design a GAN-based
AME generative model.

•	 We propose a novel LSGAN-AT approach to pro-
duce a RMD against the black-box adversarial attacks
effectively by adversarial training. Meanwhile, our
AME and RMD show commendable transferabil-
ity facing several ML-based detectors and different
AME generative models respectively.

We use dynamic semantic feature Application Pro-
gramming Interface (API) calls, which are extracted by
running a virtual sandbox to preprocess raw dataset, to
carry out extensive fine-grained experiments to evaluate
our designs. Our experimental results indicate that:

•	 Compared with the MalGAN (Hu and Tan 2017),
LSGAN can generate more effective adversarial
examples to carry out adversarial attacks for a vari-
ety of malware detectors. Being attacked by adversar-
ial examples generated by LSGAN, the recognition
rate of detectors shows dramatically drop as shown
in Table 6. Take the Multi-Layer Perceptron (MLP)
as examples, the recognition rate is reduced from
97.81% to 1.09%. Extensive experiments reveal the
effectiveness of our LSGAN.

•	 After being trained by MLP, the AME effective rate
is more than 82.78% in 4 detectors (AdaBoost (AB),
Logistic Regression (LR), Gradient Boosting decision
tree (GB), Support Vector Machine (SVM)) and more
than 69.40% in 6 detectors (AB, K-Nearest Neighbor
(KNN), Decision Tree (DT), LR, GB, and SVM) as
shown in Table 11. It means that AME generated by
LSGAN has good attack transferability to black-box
ML-based detectors.

•	 After being trained with the effective AME, RMD
accomplishes effective defense against more than
65.33% AME. Moreover, after fine-grained compari-
son experiments, RMD achieves higher AME recog-
nition rate than detector trained by AME generated
by MalGAN as shown in Table 14.

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
0.0

3.0x108

6.0x108

9.0x108

1.2x109

1.5x109
 Malware Amount
 Increment Ratio

0%

20%

40%

60%

80%

100%

E

Fig. 1  The situation awareness of malware

Page 3 of 15Wang et al. Cybersecurity (2021) 4:38 	

The rest of this paper is organized as follows. “Related
work” section is the discussions of related works. We
describe the LSGAN-AT and its components as well as
the training steps in ’LSGAN-AT approach”. The numeri-
cal results and the experimental results are presented in
“Experimental analysis and validation” section. “Conclu-
sion” section provides conclusions.

Related work
This section introduces the related work of adversarial
machine learning, the methods of adversarial attacks,
and adversarial defenses.

Adversarial machine learning
AML is proposed to resist adversarial examples gener-
ated by adversarial opponents (Huang et al. 2011) and
then protect the ML systems from threatens. There are
several crucial strategies in AML including adversary
introduction, existing adversarial attacks, and how to
protect models (Biggio and Roli 2018). In this subtitle,
we summarize the related work in two aspects: existing
attacks and corresponding defense mechanisms.

According to the attacking occurrence phase, adversar-
ial attacks can be classified into predicting/testing phase
attack and training phase attack (Biggio and Roli 2018;
Wang et al. 2019a). The former type is evasion attack,
in which the original data input slight perturbations to
evade a trained classifier at test time such as modifying
the label to misclassify the test dataset without altering
the decision boundary (as shown in left part of Fig. 2).
The latter type is poisoning attack, in which poisoning
instances contaminate the training dataset by injecting a
small fraction of perturbation (Biggio and Roli 2018) with
altering the model and the decision boundary (as shown
in right part of Fig. 2).

According to adversarial attack types, there are two
main defense mechanisms including proactive defense
such as GAN-based method, and reactive defense such

as data compression (Biggio and Roli 2018; Wang et al.
2019a). Reactive defense mechanisms update ML detec-
tors by suffering some attacks while proactive defense
mechanisms analyze possible vulnerabilities, flaws, and
threatens to develop an ML detector.

In this paper, utilizing the LSGAN module, we imple-
ment an evasion attack by generating AME to avoid ML
malware detection. Furthermore, we conduct a proactive
defense mechanism method trained by AME for obtain-
ing robust malware detectors.

Adversarial malware examples for evasion attack
The evasion attack has extensive applications using
adversarial examples (Suciu et al. 2019). Li and Li (2020)
proposed a mixture of attacks to generate AME without
ruining its malicious functionality using semantic char-
acteristics and byte features. Grosse et al. (2016) con-
structed highly effective AME crafting attacks using an
improved FFNN. Chen et al. (2017) proposed an evasion
attack by misleading malware being classified as benign.
The other research of Grosse et al. (2017) expanded the
original method (Papernot et al. 2016) to handle binary
malware features without discarding the functionality.
Khoda et al. (2019) proposed 2 novel approaches includ-
ing a probability measure kernel-based and distance-
based for selecting AME. Wang et al. (2019b) crafted
AME using JSMA (Jacobian-based Saliency Method
Attack) and trained Neural Network (NN). However,
most of them utilized static features to construct AME
and are vulnerable to code obfuscation techniques. Fur-
ther, it is difficult to evaluate the AME effectiveness with-
out enough AME evaluation.

GAN-based approach as a type of generating adver-
sarial example (Xiao et al. 2019). Researchers have devel-
oped a GAN-based approach to deploy an evasion attack
in the malware detection field. Hu and Tan (2017) pro-
posed MalGAN, using a substitute detector as a basic
malware detector and the basic GAN method in training,

Benign

Malware

AME

Evasion Attack Poisoning Attack

Poisoning
Instance

Fig. 2  Illustration of evasion attack and poisoning attack

Page 4 of 15Wang et al. Cybersecurity (2021) 4:38

to generate adversarial malware examples for attacking
ML detectors. Yuan et al. (2020) inputs discrete malware
binaries to continuous space, then feeds them to the
generator of GAPGAN to generate adversarial payloads.
However, the basic GAN exposes several problems, such
as instability, gradient disappearance, and model collapse
in the training phase (Lugmayr et al. 2020).

In this paper, we focus on the dynamic features such
as API features extracted by using sandbox and improve
the MalGAN using the least square loss function and the
brand-new network of generator and discriminator. After
being compared by experiments, the LSGAN module can
obtain more effective adversarial malware examples and
generating AME has better transferability. Table 1 com-
pares these adversarial attack works in malware detection
from the aspects of four main metrics, namely dynamic
feature, model comparison, model transferability, and
AME evaluation.

Adversarial malware examples for proactive defense
GAN-based methods, as a useful and efficient proactive
defense approach, are frequently used for enhancing the

defense performance of ML detectors or classifiers using
AML. Recently, Zhang et al. (2021) proposed to add per-
turbations noise in bit sequences to generated adversarial
examples and then enhanced the classification ability of
Deep Neural Network (DNN) through adversarial train-
ing. However, bit sequences are malware static features,
so a portion of malware can escape the detection easily
using obfuscated code techniques. Li and Li (2020) pro-
posed mixture attacks by using multiple generative meth-
ods to generate AME and enhance the defense by training
an ensemble DNN model. Grosse et al. (2016) proposed an
improved FFNN to generate AME and reduced the sensitiv-
ity of networks for defense. Chen et al. (2017) exploited the
EvnAttack model to retrain the classifier progressively and
apply evasion cost to regularize the optimization problem.
Grosse et al. (2017) proposed an improved attack model for
generating adversarial examples and investigated defense
mechanisms for malware detection models trained using
DNNs. Khoda et al. (2019) proposed two novel approaches,
including a probability measure kernel-based method and
distance-based method from malware cluster center for
selecting AME and for retraining a classifier to defense the

Table 1  Related work of evasion attacks in malware detection

a SC Semantic characteristic
b The Attack Phase includes during the training phase and during predicting/testing. The Data Type indicates the type of malware datasets such as Android and
Windows malware. The Data Level displays the feature type of data, mainly including semantic characteristic, byte, and pixel. The Model demonstrates the trained
model pattern including DL-based models and conventional ML-based models. The Approach exposes the overview of the specific method. The Dynamic Feature
is used to analyze whether the paper uses dynamic malware features to avoid code obfuscation. The Model Comparison represents whether the paper makes the
comparison. The Model Transferability indicates whether the paper attack other detectors using AME generated by themselves. The AME Evaluation denotes whether
the reference paper makes the adversarial malware example performance analysis

Ref Attack phase Data type Data level Model Dynamic
Feature

Model
Comparison

Model
transferability

AME
evaluation

Hu and Tan 2017) Training Malware by Website
(malwr.com)

SC GAN ● ○ ○ ●

Li and Li 2020) Training Drebin(Arp et al.
2014), Androzoo
(Allix et al. 2016)

SC, Byte Ensemble Methods
(DL-based)

○ ● ● ○

Grosse et al. 2016) Training Drebin SC FFNN ○ ● ● ○
Chen et al. 2017) Testing Windows SC EvnAttack (ML-

based)
○ ● ○ ○

Grosse et al. 2017) Training Drebin SC DNN ○ ● ○ ●
Khoda et al. 2019) Training Drebin SC Ensemble Methods

(ML-based)
○ ● ● ○

Wang et al. 2019b) Training Drebin SC JSMA and NN ○ ● ● ●
Yuan et al. 2020) Training VirusTotal (“VirusTo-

tal”. 2021), Kaggle
2015 (“Microsoft
Malware Classifica-
tion Challenge (BIG
2015), Chocolatey
(“Chocolatey—The
package manager
for Windows” 2021)

Byte GAPGAN ○ ● ● ●

Ours Training VirusShare
(“VirusShare.com”.
2021), Androzoo

SC LSGAN ● ● ● ●

Page 5 of 15Wang et al. Cybersecurity (2021) 4:38 	

attack. Sewak et al. (2020) developed the DOOM system
using the Opcode feature based on deep reinforcement
learning to enhance the intrusion detection system defense
mechanism. Wang et al. (2017) proposed a new adversary
resistant technique that obstructs attackers from construct-
ing impactful AME by randomly nullifying features within
samples. However, most the proactive defense methods lack
components analysis and AME evaluation, so that research-
ers cannot obtain the adequate robustness of the model.

In this paper, we propose a proactive RMD, which is
trained by AT module with AME generated by the LSGAN
module. Compared to other robust malware detectors, we
achieve integrated model analysis and evaluation using the
whole metrics. In the experimental section, we conduct
abundant experiments to demonstrate the effectiveness of
our RMD. Table 2 shows the comparison of our work with
the above defense models, we introduce the related work

of adversarial defense in malware detection using four
main metrics, namely, robustness analysis, component
analysis, AME generation, and AME evaluation.

LSGAN‑AT approach
Figure 3 shows the LSGAN-AT structure, composed of
LSGAN and AT modules. The first module consists of a
Generator (G), a Discriminator (D), and a Union Detec-
tor (UD). The training process with ML-based detector
(MD) makes up the AT module. There are three types of
inputs to LSGAN-AT: Malware, Perturbance and Benign
software (Benign). The output of LSGAN-AT is robust
MD (RMD), which distinguishes the malware and AME.
Algorithm 1 shows the LSGAN-AT training details.
Note that we set epoch as iteration times. LSGAN and
AT modules are detailed in “LSGAN module” and “AT
module” sections, respectively.

Table 2  Comparison of the existing adversarial defense approaches in malware detection

a The Defense Mechanism includes proactive and reactive. The Robustness Analysis aims to evaluate whether the defense model can recognize the AME of other
attack models. The Component Analysis is used to evaluate whether the reference paper makes components analysis. The AME generation exposes whether the
defense model can generate AME, and normally, a proactive defense mechanism will generate the AME

Ref Defense
mechanism

Data type Data level Model Robustnes
analysis

Components
analysis

AME
generation

AME
evaluation

Li and Li 2020) Proactive Drebin, Andro-
zoo

SC, Byte Ensemble Meth-
ods (DL-based)

● ○ ● ●

Grosse et al.
2016)

Proactive Drebin SC FFNN ● ● ● ○

Chen et al. 2017) Reactive Windows SC SecDefender
(ML-based)

○ ● ○ ○

Grosse et al.
2017)

Proactive Drebin SC DNN ○ ○ ● ●

Khoda et al.
2019)

Proactive Drebin SC Ensemble Meth-
ods (ML-based)

● ○ ● ○

Sewak et al.
2020)

Proactive MALICIA (Nappa
et al. 2015)

Opcode Deep reinforce-
ment learning

○ ○ ● ○

Wang, et al. 2017) Reactive Window Audit
Log (Berlin et al.
2015), MINST,
CIFAR-10

SC, Pixel (image) DNN ● ○ ● ●

Ours Proactive VirusShare,
Androzoo

SC LSGAN ● ● ● ●

RMD

UD

LSGAN Module

AMEGenerate
Update

Train

Input
Initialize Output

DiscriminateMalware

Perturbance
D

Data Flow

Generate

AT Module
G

LSGAN-AT

MDMalware Benign

Fig. 3  The overall structure of LSGAN-AT

Page 6 of 15Wang et al. Cybersecurity (2021) 4:38

and it update the generation strategy of G for producing
effective AME to avoid the detection of D.
G aims to transform the feature vector into an adver-

sarial example. To be specific, G takes an M-dimensional
malware x and a Z-dimensional vector slightly pertur-
bance z as input. Here, z is a random vector that fol-
lows uniform distribution in range [0, 1) . We adopt batch
normalization to make sure that the input of each layer
has a mean value of 0 and a variance of 1. In addition,
Rectified Linear Units (ReLU) (Nair and Hinton 2010)
will set all negative gradients to zero and lose some gra-
dient information. To overcome the information loss, we
utilize LeakyReLU (Chen et al. 2018) with a confirmed
coefficient ai= 0.2 as in Eq. (1). Furthermore, the G uses
Mean-Square Error (MSE) as a loss function and Adam
optimizer (Kingma and Ba 2014) with a learning rate of
0.0002.

(1)f (x) =

{

xi xi > 0

aixi ai �= 0, xi ≤ 0

LSGAN module
LSGAN firstly initializes the generator G and produces
AME combining malware and several subtle pertur-
bances, and use UD to fit a proven detector by vast
experiments. Then the generator D is utilized to distin-
guish the AME and update the generation strategy of G.
This constitutes an LSGAN iteration (Lines 2–11). Dur-
ing the training, a phased optimization strategy is used,
and both G and D are alternately optimized to reach
equilibrium. After G and D reaching Nash equilibrium
(Nash 2016), we obtain AME generated by LSGAN. The
working processes of G and D are given as follows. Their
structures shown in Table 3. To help the D to classify
malware efficiently, we add a UD using Multi-Layer Per-
ception (MLP) structure. Note that we will demonstrate
the selection standard and experimental results in detail
in “Parameter and component selection strategy” section.

To be specific, firstly, we utilize the G to generate AME
by combining a slight perturbance with malware. Then,
we use the UD to fit a proven detector and obtain the
data label to the D. The D is used to distinguish the AME,

Page 7 of 15Wang et al. Cybersecurity (2021) 4:38 	

The purpose of D is to learn the boundary of malware
and benign applications. To be specific, the D uses an
M-dimensional vector as input. After multi-layer hid-
den layers, the D uses the Sigmoid activation function
to output the predicted probability of malware. In addi-
tion to the output layer, other layers use the LeakyReLU
activation function. Furthermore, we utilize the dropout
layer to prevent D from overfitting. Same as the G, the
discriminator uses MSE as loss function and Adam opti-
mizer with a learning rate of 0.0002.

Note that the goal of GANs is to generate examples
with the close probability distribution of datasets. By
the means of many times iterations, GANs reduce the
distance between the samples distribution and real sam-
ples distribution. There are three methods of adversarial
loss function optimization-based GANs, including f

-Divergence-based methods, Integral Probability Metrics
(IPMs)-based methods, and other loss function methods
(Pan et al. 2020). The Jenson-Shannon divergence, as one
of f -Divergence-based methods, used by regular GAN
and MalGAN (GAN in malware dataset), has the prob-
lem of unstable training and gradient vanishing (Creswell
et al. 2018). The IPMs-based objective functions such as
WGAN (Arjovsky et al. 2017) using Wasserstein distance,
have been verified in solving the problems of regular
GAN. However, the weight clipping could not converge
and may reduce the quality of generated examples (Pan
et al. 2020). In addition, the other loss function such as
Energy-based GAN (EBGAN) (Zhao et al. 2017), they
replaces the discriminator with an energy function and
effectively increases the diversity of generated examples.
However, the result of extensive experiments does not
perform satisfactorily (Pan et al. 2020).

As a result, to tackle the problems of regular GAN,
Least-Square GAN (Mao et al. 2017) as another f

-Divergence-based method, penalizes samples which

are judged correctly but far from the decision boundary.
This approach makes the generated samples more realis-
tic (Pan et al. 2020). Meanwhile, in the Computer Vision
field like facing discrete pixel data, Least-Square GAN
has a realistic performance comparing the other 13 GAN
models (Pan et al. 2020). Similarly, the malware dataset
has the same discrete feature data, thus we believe the
LSGAN will perform better than others. Meanwhile, we
conduct extensive experiments to validate the effective-
ness of LSGAN in “Experimental analysis and validation”
section.

Given that the label of malware is 1 and the label of
benign is 0, the loss function of the improved G is shown
in Eq. (2). M is a malware set and Gθg (x, z) denotes
adversarial examples generated by G. Dθg

(

Gθg (x, z)
)

denotes the probability value of adversarial examples
discriminated by D. We minimize G loss L(G) to reduce
Dθg

(

Gθg (x, z)
)

 . The loss function of the improved dis-
criminator D as Eq. (3). UDBenign is a benign set and

(2)L(G) =
1

2
Ex∼ M,z

[

(

Dθd

(

Gθg (x, z)
))2

]

Table 3  The network structure of the generator and the discriminator in LSGAN

The generator (G) network structure The discriminator (D) network structure

Layer type Output shape Layer type Output shape

Input Layer (Malware) (None, 128) Input Layer (None, 128)

Input Layer (Noise) (None,20) LeakyReLU(Dense) (None,256)

Concatenate (Malware + Noise) (None,148) Dropout(0.05) (None,256)

LeakyReLU (Dense) (None,256) LeakyReLU(Dense) (None,256)

Batch Normalization (None,256) Dropout(0.05) (None,256)

LeakyReLU(Dense) (None,256) LeakyReLU(Dense) (None,256)

Batch Normalization (None,256) Dropout(0.05) (None,256)

LeakyReLU (Dense) (None,256) Sigmoid(Dense) (None,1)

Batch Normalization (None, 256)

Sigmoid (Dense) (None,128)

Maximum (None,128)

Table 4  The malware detector (MD) structure in AT

Layer type Output shape

Input Layer (None,128)

LeakyReLU(Dense) (None,256)

Dropout(0.05) (None,256)

LeakyReLU(Dense) (None,128)

Dropout(0.05) (None,128)

LeakyReLU(Dense) (None,256)

Dropout(0.05) (None,256)

Sigmoid(Dense) (None,1)

Page 8 of 15Wang et al. Cybersecurity (2021) 4:38

UDMalware is a malware set classified by UD. We mini-
mize D-loss L(D) to distinguish between benign and
malware.

AT module
The MD is used to get the prediction of the malware
(including AME and malware) and the benign applica-
tions, and utilizes an FFNN as a basic network structure.
In addition to the output layer, MD uses the ReLU as the
activation function and uses dropout (0.05) to avoid over-
fitting. In the output layer, the Sigmoid, as the activation
function, is used to output the probability of AME. The
network structure of the MD is shown in Table 4. Fur-
thermore, we use adversarial dataset to train AT module
with MD. At last, we obtain a trained well RMD.

Experimental analysis and validation
This section shows our experimental evaluation results
from the aspects of data preprocessing, evaluation met-
rics, LSGAN-AT components evaluation, component
selection strategy, the transferability of LSGAN-AT com-
ponents, and experimental comparison. As investigated
in Damodaran et al. 2017), researchers conducted experi-
ments in malware detection with three approaches includ-
ing static data approaches, dynamic data approaches, and
hybrid approaches, and found a fully dynamic approach
based on API calls was extremely effective across a range
of malware families. Hence, according to the investigation
of Table 1, we select MalGAN as the main comparison
method in adversarial attack and adversarial defense. The
AT module of MalGAN is implemented by training with
the AME generated by MalGAN.

Data preprocessing
The malware dataset (M) used in our experiments is got
from VirusShare (“VirusShare.com”. 2021), and the benign
set (B) is obtained from AndroZoo (Allix et al. 2016). A
total of 3733 malware and 2357 benign are collected. We
use Cuckoo sandbox (“Cuckoo Sandbox—Automated
Malware Analysis”. 2021) to virtually run the malware and
benign and to extract API calls of each M and B, and then
generate a vector �(x) of M and B using Eq. (4). Here, v
denotes a factor of API features V. Then, we rank API calls
according to the API importance using ‘feature_impor-
tances_’ attribute in Scikit-Learn library Random Forest
classifier with 2000 estimators, 0 random state and − 1

(3)

L(D) =
1

2
Ex∼ UDBenign

[

(

Dθd (x)
)2
]

+
1

2
Ex∼ UDMalware

[

(

Dθd (x)− 1
)2
]

jobs. After that, we utilize One-Hot method to obtain the
128 most important and frequently-used API features as
128-dimension vector. Note that the value of each dimen-
sion represents the corresponding API, namely ‘1’ for exist-
ing API in certain malware/benign and ‘0’ for not. We will
demonstrate the selection strategy of API dimension in
“Parameter and component selection strategy” section.

20% data is for the test, 40% data is for training the
LSGAN module and 40% data is for training the AT mod-
ule. Adv is defined to denote the Adversarial dataset (Adv),
which is composed of malware, AME, and benign applica-
tions. Ori is defined to denote the Original dataset (Ori),
which is the set of malware and benign.

Evaluation metrics
Five metrics are used to evaluate the performance of the
model and detectors: ACCuracy (ACC), Adversarial exam-
ple Effectiveness Rate (AER), RECognition rate (REC), True
Positive Rate (TPR), and False Positive Rate (FPR). Given
that True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN), Eq. (5) defines ACC and
Eq. (6) defines TPR and FPR.

REC evaluates the AME recognition performance of
detector and defense model. Compared with ACC, REC
represents the precision which measures the closeness of
each AME and effective AME should have high ACC and
high REC. Note that in order not to confuse ACC with
precision, we use REC to present the detect precision of
detector and defense model. AER is defined to evaluate
the effectiveness of AME. If most adversarial examples
can avoid MD detection, this LSGAN module is thought
as effective. The calculation formulas of AER and REC
are shown in Eq. (7).

(4)� : X → {0, 1}
|v|
,�(x) → (I(x, v))v∈V

(5)ACC =
TP + TN

TP + TN + FP + FN
× 100%

(6)

TPR =
TP

TP + FN
× 100%, FPR =

FP

TN + FP
× 100%

Table 5  Performance of detectors (%)

Component train set Test set

REC ACC​ REC ACC​

UD 98.17 96.54 97.81 96.69

Page 9 of 15Wang et al. Cybersecurity (2021) 4:38 	

LSGAN‑AT evaluation
We first evaluate UD and LSGAN performance, and then
evaluate LSGAN-AT.

1. UD performance

 UD is a crucial component in LSGAN-AT. Only if it can
achieve effective detection, it can be used as the union
training detector in the LSGAN module. In other words,
better performance in malware detection will greatly
enhance the learning ability of LSGAN module. As
shown in Table 5, REC of UD is 97.81% and the ACC of
UD is 96.69%. Obviously, UD has good malware detec-
tion performance.

2. LSGAN performance

 LSGAN module is the most important part of the
LSGAN-AT. It is evaluated from the aspects of training
loss and the effectiveness of AME under various detec-
tors. We utilize D loss as the discriminator training loss
and G loss as the generator training loss. Figure 4 shows
that after 20 epochs, G loss reaches convergence and D
loss varies within a small range. It means that LSGAN
has a preferable convergence ability.

To testify the performance of LSGAN in AME gen-
eration, 7 basic ML malware detectors are tested respec-
tively and then their experimental results are compared
in Ori and Adv. These 7 basic MDs include MLP (with
50 hidden layer sizes, SGD solver, and 0.1 learning rate),
Decision Tree (DT), AdaBoost (AB), Logistic Regression

(7)

REC =
nrecognizedAME

NallAME
× 100% =

TP

TP + FP
,

AER =
nEffectiveAME

NallAME
× 100% = 1− REC

(LR, with L2 regularization), Gradient Boosting decision
tree (GB), K-Nearest Neighbor (KNN, with k = 6), and
Support Vector Machine (SVM). They are from Scikit-
Learn Library (Pedregosa et al. 2011) in Python. Table 6
shows results. Under MLP detector, the REC of Adv is
1.09%, while the REC of Ori is 97.81% and the AER is
96.72%. In addition, the ACC of Ori is 96.14% while the
ACC of Adv is 23.14%. We observe that LSGAN mod-
ule is more effective than the other detectors. Especially,
compared to DT, LR, MLP, and GB, AER of LSGAN is
better by more than 96.35%.

3. LSGAN-AT performance

 We aim to demonstrate the performance of RMD in
terms of the REC rate. As shown in Table 7, with train-
ing deploying, the result of RMD is reaching 65.33%. That

Lo
ss

Epoch

D loss
G loss

Fig. 4  Training loss of discriminator and generator

Table 6  The performance of the LSGAN module (%)

Detector REC AER

Ori Adv

AB 97.08 7.66 89.42

DT 100.00 0.00 100.00

LR 98.54 2.19 96.35

MLP 97.81 1.09 96.72

SVM 98.91 28.47 70.44

KNN 97.45 20.07 77.38

GB 99.64 2.55 97.09

Table 7  The AME recognition Rate OF RMD (%)

Component Train Adv REC Test Adv REC Ori-Mal REC

RMD 65.90 65.33 97.03

Table 8  The top ten API and its importance

API Importance

NtTerminateProcess 0.049898

GetFileType 0.037770

RtlAddVectoredExceptionHandler 0.037261

RegOpenKeyExA 0.035865

NtCreateThreadEx 0.021470

LoadResource 0.020279

RegQueryValueExA 0.018552

NtProtectVirtualMemory 0.018494

WriteConsoleA 0.018434

NtOpenSection 0.018234

Page 10 of 15Wang et al. Cybersecurity (2021) 4:38

means our LSGAN-AT can recognize the proportion of
AME is 65.33% in Adv, and more than 97% of malware
can be identified in Ori.

Parameter and component selection strategy
In this subsection, we will demonstrate the selection
strategy of API dimension and UD component.

1. Why LSGAN is fed by 128 dimension input vector

 As statements in subsection data preprocessing, we
obtain 265 dynamic features APIs using Cuckoo sandbox

and rank API importance using RF classifier. The top ten
important APIs are shown as Table 8.

Based on the above APIs, we select different API
dimensions such as 32, 64, 128, 256, and 265 to com-
pare time consumption and REC as shown in Table 9.
Meanwhile, the other crucial reason why we select 128
as API dimension is that, to control variable, we uti-
lize the same API dimension with MalGAN (Xiao et al.
2019) to reveal the effectiveness of least square loss and
our networks.

2. Why MLP could be used in UD

 A better detector should have higher ACC, higher TPR,
and lower FPR. Because deep learning classifiers are
time-consuming, we select several commonly used tra-
ditional ML classifiers to serve as malware detectors.
Table 10 shows the detection performance of different
detectors. After comparing by experiments, we select the
best detector MLP as the UD. Note that we execute inde-
pendent experiments using malware dataset to select the
best ML detector.

Table 9  The time consumption and REC of different API
dimension

API dimension Time Consumption (s) REC (%)

32 43.13 39.05

64 45.57 40.88

128 48.46 65.33
256 49.70 54.01

265 50.72 38.32

Table 10  The performance of malware detectors (%)

Detector ACC​ TPR FPR

AB 95.04 99.27 17.98

DT 92.28 99.27 29.21

LR 95.31 99.27 16.85

MLP 96.48 99.63 13.48

SVM 92.84 99.27 26.97

KNN 94.49 98.17 16.85

GB 95.59 99.27 15.73

(a) The Recognition Rate (b) ROC Curve

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

R
EC

Epoch
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ROC_Ori Curve (Area = 0.95)
ROC_Adv Curve (Area = 0.51)
ROC Curve (Area = 0.50)

TP
R

FPR

Fig. 5  LSGAN results in MLP detector

Table 11  The performance of adversarial examples in other
detectors (%)

Detector REC Ori REC Adv AER

AB 97.18 7.66 92.70

DT 98.18 20.51 79.67

LR 98.63 7.18 89.75

SVM 97.18 9.52 87.05

KNN 98.91 29.63 69.40

GB 86.64 15.35 82.78

Page 11 of 15Wang et al. Cybersecurity (2021) 4:38 	

LSGAN‑AT transferability
LSGAN-AT transferability is evaluated from the aspects
of the AME transferability of the LSGAN module and the
transferability of the RMD.

1. AME transferability of LSGAN module for attack

 Figure 5 shows LSGAN results in the MLP detec-
tor. In Fig. 5a, after 200 epochs, the REC of the adver-
sarial examples is lower than 0.1. And in Fig. 5b, the
ROC (Receiver Operating Characteristic) area is lower
than that of the original examples 44%. This means
that the AME can effectively attack the detector. In this

experiment, the AER of LSGAN using MLP detector is
98.65%.

To test the transferability of the adversarial examples,
we select MLP as a detector and train the model to gen-
erate adversarial examples. The generated results are
detected in SVM, LR, DT, AB, KNN, and GB to verify
the transferability of adversarial examples. Table 11
shows the transferability. Except for DT and KNN
detectors, adversarial examples generated by LSGAN
and trained by MLP mostly achieve more than 82.78%
AER. It may be due to that DT and KNN have a com-
pletely different structure from the neural networks, so
their transferability is less than that of other detectors.

2. Transferability of RMD

 An excellent transferability of RMD is crucial. The
transferability means that our RMD can recognize the
AME by other generative models. To be specific, we
deploy MalGAN (Hu and Tan 2017) as an attack model
and use RMD to identify the malware and AME gener-
ated by MalGAN. The experimental results are shown in
Table 12. The RMD, proposed by this paper, achieves a
preferable defense transferability. This RMD can recog-
nize more than 50% of adversarial examples generated
by MalGAN. It indicates our RMD is dependable under
MalGAN adversarial attack to some extent.

Experimental comparison
We will use three subtitles to demonstrate the different
models including the convergence of GAN training loss,
different combinations of networks and loss functions in
generating AME, and the comparison of REC.

1. The convergence of training loss fuction

 We can discover that the LSGAN and the MalGAN have
a preferable performance of training, as shown in Fig. 6.

Table 12  The recognition rate of AME generated by MalGAN
and LSGAN (%)

Component REC

Train Adv Test Adv Ori-Mal

RMD (MalGAN) 56.49 52.20 99.64

RMD (LSGAN) 65.90 65.33 97.03

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Epoch

 D1 loss G1 loss
 D2 loss G2 loss

Fig. 6  The convergence of training loss

Table 13  The recognition rate comparison of different combinations (%)

Detector REC

Original Result (LSGAN) s1 + f1 (CE1) s2 + f1 (CE2) s1 + f2 (MalGAN) s2 + f2

Ori Adv Adv Adv Adv

AB 97.08 7.66 10.58 8.03 30.66

DT 100.00 0.00 10.22 0.00 12.41

LR 98.54 2.19 10.95 2.55 14.96

MLP 97.81 1.09 2.19 1.46 36.50

SVM 98.91 28.47 52.92 35.40 65.69

KNN 97.45 20.07 44.16 18.25 73.72

GB 99.64 2.55 22.26 2.19 10.22

Page 12 of 15Wang et al. Cybersecurity (2021) 4:38

The D-loss of LSGAN (D1 loss), the D-loss of MalGAN
(D2 loss), the G-loss of LSGAN (G1 loss), and the G-loss
of MalGAN (G2 loss) have reached convergence after the
training of 20 epochs.

2. Different combinations of networks and loss functions
in generating AME

 We intend to demonstrate the effectiveness of the new
network structure of LSGAN. Hu and Tan (2017) gener-
ated adversarial examples based on GAN, using Sigmoid
Cross-Entropy (SCE) as a loss function and reducing the
accuracy of almost all detectors. As a result, we set a Con-
trol Experiment (CE) to accomplish the structure com-
parison. As shown as Table 13, s1 denotes the structure
of LSGAN, s2 is the structure of MalGAN, f1 denotes the
LS loss, and f2 is the SCE loss. The combinations include
LSGAN using s1 and f1 LS loss, CE1 using s2 and f1 LS
loss, CE2 using s1 and f2 SEC loss, and MalGAN using
s2 and f2 SEC loss. As the result of Table 13, the LSGAN
network structure we proposed shows a better perfor-
mance even though combines different loss functions.
The LSGAN beats MalGAN under the 5 detectors. Fur-
thermore, in the KNN and GB detectors, LSGAN com-
bination shows closed result with s1 + f2 which is best in
KNN and GB.

As shown in Fig. 7, the AERs of different combinations
are computed. Using s1 has better AER performance
than using s2. Furthermore, the s1 + f1 combination has
the best AER in 5 detectors, shown as a red rectangle in
Fig. 7. It means that LSGAN possesses superior struc-
tures, and the LS loss function helps play our structure
maximum performance in the other 5 detectors.

3. Comparision of recognition rate

 In this subsection, we conduct 8 CEs in order to com-
pare the performance of LSGAN-AT. We accomplish the
state-of-the-art adversarial examples generating method
PGD (Madry et al. 2018) and adversarial defense method
TRADES (Zhang et al. 2019). Although classical PGD
was proposed in 2018 ICLR and TRADES was proposed
in 2019 ICML, extensive researches have verified the
effectiveness of PGD-AT (PGD Adversarial Training) and
TRADES in 2020 ICLR (Pang et al. 2021).

At first, we focus on three generative methods. We
deploy 8 CEs using GM1/GM2/GM3 and RMD1/
RMD2/RMD3. GM1 represents the Generating Model
of LSGAN, GM2 represents the Generating Model of
MalGAN, and GM3 represents the Generating Model of
PGD. RMD1 represents AT module trained by LSGAN,
RMD2 represents AT module trained by MalGAN, and
RMD3 represents AT module trained by TRADES.
Notice that, in this paper, we tend to illustrate the effec-
tiveness of the brand-new network and proper activation
function group of LSGAN. Thus, we only use the unique
design of loss function and some optimizer parameters of
PGD and TRADES.

We disclose parameters of CEs. MalGAN uses the
same network structure and parameters with (Hu and
Tan 2017). In the TRADES, we use the default param-
eters including SGD learning rate 0.01, momentum 0.5,
and the robust loss coefficient 1.0. Similarly, in the PGD
attack, we also use the default parameters including SGD
learning rate 0.001, momentum 0.01, and uniform distri-
bution epsilon 0.3. Note that, we all select the mean REC
of 10 times experiments.

The results of REC of different combinations are
shown in Table 14. We use GM1 + RMD1 to repre-
sent the combination of LSGAN and RMD1, namely

AB DT LR MLP RF SVM VOTE KNN GB
0.2

0.4

0.6

0.8

1.0 s1+f1 s2+f1 s1+f2 s2+f2

A
ER

Fig. 7  The AER of different combination

Table 14  The recognition rate comparision of different combinations (%)

Combination GM1 (LSGAN) as Attack Model GM2 (MalGAN) as Attack Model GM3 (PGD) as Attack Model

(Ours)
GM1 + RMD1

GM1 + RMD2 GM1 + RMD3 GM2 + RMD1 GM2 + RMD2 GM2 + RMD3 GM3 + RMD1 GM3 + RMD2 GM3 + RMD3

Train REC 65.90 38.66 52.59 56.49 51.09 52.25 71.27 65.76 68.42

Test REC 65.33 40.88 51.75 52.20 51.46 51.90 69.45 64.89 68.50

Page 13 of 15Wang et al. Cybersecurity (2021) 4:38 	

LSGAN-AT. Meanwhile, GM1 + RMD2, GM1 + RMD3,
GM2 + RMD1, GM2 + RMD2, GM2 + RMD3,
GM3 + RMD1, GM3 + RMD2, and GM3 + RMD3 have
the same meaning. The REC of GM1 + RMD1 is 65.33%
in the test set while the REC of GM1 + RMD2 is 40.88%
and GM1 + RMD3 is 51.75%. It means that GM1 as attack
model, using LSGAN to generate adversarial examples, is
more effective than MalGAN and TRADES and RMD1 is
more effective than RMD2 and TRADES in defense. At
the same time, RMD1, namely LSGAN-AT, has the best
REC testing by the same dataset when GM2 and GM3 as
the attack model.

Like “LSGAN-AT transferability” section, our RMD1
has preferable transferability in each GM. It indicates
RMD1 is available to recognize AME generated by GM2
and GM3 and RMD1 performs better than RMD2 and
RMD3.

Conclusion
In this paper, we propose a LSGAN-AT approach
including the LSGAN module and the AT module. In
the LSGAN module, we deploy a well-designed union
detector to fit Multi-Layer Perceptron (MLP) which has
been selected by employing several experiments. After
that, we utilize Least Square (LS) loss in the Genera-
tive Adversarial Network (GAN) in terms of a generator
and a discriminator with brand-new network structures
for adversarial training to generate Adversarial Mal-
ware Examples (AME). In the AT module, we develop a
malware detector using Feed-Forward Neural Network
(FFNN)-based new structure, trained by AME for gener-
ating Robust Malware Detector.

In the experimental section, we conduct numerous
experiments to carry out LSGAN-AT evaluation, com-
ponent selection analysis, LSGAN-AT transferability
analysis, and model comparison analysis. The abundant
experimental results indicate that the AME, generated
by the LSGAN module, is effective to avoid the detec-
tion of detectors and has preferable transferability to
attack other ML-based detectors. Furthermore, after
trained by Adversarial Training (AT) module with AME
and common dataset, RMD demonstrates the effective-
ness in adversarial defense. In conclusion, LSGAN-AT
can immensely enhance the robustness of malware
detection.

Abbreviations
AB: AdaBoost; DT: Decision tree; DL: Deep learning; DNN: Deep neural net-
work; FFNN: Feed-forward neural network; FGSM: Fast gradient sign method;
GB: Gradient boosting decision tree; JSMA: Jacobian-based saliency method
attack; KNN: K-nearest neighbor; LR: Logistic regression; MLP: Multi-layer
perceptron; ML: Machine learning; NN: Neural network; SVM: Support vector
machine; API: Application programming interface; AME: Adversarial malware
example; AML: Adversarial machine learning; AT: Adversarial training; D:
Discriminator; G: Generator; UD: Union detector; MD: Malware detector; RMD:

Robust malware detector; GAN: Generative adversarial network; LSGAN: Least
square generative adversarial network; MSE: Mean-square error; ReLU: Recti-
fied linear units; LeakyReLU: Leaky rectified linear units.

List of symbols
M: The malware set; B: The benign set; M′: The AME set generated by G; z:
Slight perturbance; L(G): The loss function of the generator; L(D): The loss
function of the discriminator; Gθg: The initialized parameter of G; Dθg: The ini-
tialized parameter of D; Gθg (x, z): AME generated by G; Dθg

(

Gθg (x, z)
)

: The probability value of AME discriminated by D; UDBenign: A benign set
classified by UD; UDMalware: A malware set classified by UD; RECadv: The
recognition rate of AME; RECmal: The recognition rate of malware.

Authors’ contributions
Drafting the manuscript: JW and YW.; Revising the manuscript critically for
important intellectual content: XC and RJR; experiments deployment: JW and
JZ. All authors read and approved the final manuscript.

Authors’ Information
Jianhua Wang he received the B.S. degree and M.S. degree in Software
engineering from Taiyuan University of Technology in 2017 and 2020. He now
pursues for his Ph.D. degree in Beijing Jiaotong University, major in Cyber-
space Security. His research interests include adversarial machine learning and
federated learning.
Dr. Xiaolin Chang is a Professor at School of Computer and Information
Technology, Beijing Jiaotong University. Her current research interests include
Cloud-Edge computing, network security, secure and dependable machine
learning. She is a senior member of IEEE. She is the corresponding author of
this paper.
Yixiang Wang he received his B.S. (2018) degree from Beijing Jiaotong Univer-
sity, China. He is a Ph.D. candidate at Beijing Key Laboratory of Security and
Privacy in Intelligent Transportation, Beijing Jiaotong University. His research
interests include adversarial examples, and security in machine learning.
Dr. Ricardo J. Rodríguez is an Associate Professor at the University of Zaragoza
(Spain) since April 2021. His current research interests include the binary
analysis of programs, especially applied in memory forensics and malware
analysis.
Jianan Zhang she received the M.S. degree from Beijing Jiaotong University in
2021. Her research interests are mainly in adversarial example and security in
machine learning.

Funding
The research of J. Wang, X. Chang, Y. Wang and J. Zhang was supported in
part by Project supported by Chinese National Key Laboratory of Science and
Technology on Information System Security and National Natural Science
Foundation of China under Grant No. U1836105. The research of R. J. Rod-
ríguez and X. Chang has been supported in part by the University of Zaragoza
and the Fundación Ibercaja under Grant JIUZ-2020-TIC-08. The research of R.
J. Rodríguez has also been supported in part by the University, Industry and
Innovation Department of the Aragonese Government under Programa de
Proyectos Estratégicos de Grupos de Investigación (DisCo research group, ref.
T21-20R).

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
No potential conflict of interest was reported by the authors.

Author details
1 Beijing Key Laboratory of Security and Privacy in Intelligent Transportation,
Beijing Jiaotong University, 3 Shangyuancun, Beijing 100044, China. 2 Depart-
ment of Computer Science and Systems Engineering, University of Zaragoza,
Calle María de Luna 1, Zaragoza 50018, Spain.

Page 14 of 15Wang et al. Cybersecurity (2021) 4:38

Received: 30 July 2021 Accepted: 29 October 2021

References
Allix K, Bissyandé TF, Klein J, Le Traon Y (2016) AndroZoo: collecting millions of

Android apps for the research community. In: Proceedings of the 13th
international conference on mining software repositories, Austin Texas,
May 2016, pp 468–471. https://​doi.​org/​10.​1145/​29017​39.​29035​08

Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial net-
works. In Proceedings of the 34th international conference on machine
learning, Jul. 2017, pp 214–223. Accessed: Sep. 24, 2021. https://​proce​
edings.​mlr.​press/​v70/​arjov​sky17a.​html

Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K, Siemens C (2014)
Drebin: effective and explainable detection of android malware in your
pocket. Ndss 14:23–26

Berlin K, Slater D, Saxe J (2015) Malicious behavior detection using windows
audit logs. In: Proceedings of the 8th ACM workshop on artificial intel-
ligence and security, pp 35–44

Biggio B, Roli F (2018) Wild patterns: ten years after the rise of adversarial
machine learning. Pattern Recognit 84:317–331

Chen S et al (2018) Automated poisoning attacks and defenses in malware
detection systems: an adversarial machine learning approach. Comput
Secur 73:326–344

Chen L, Ye Y, Bourlai T (2017) Adversarial machine learning in malware detec-
tion: arms race between evasion attack and defense. In: 2017 European
intelligence and security informatics conference (EISIC), 2017, pp 99–106

Chocolatey—The package manager for Windows, Chocolatey Software.
https://​choco​latey.​org/ (accessed Jul. 21, 2021)

Christodorescu M, Jha S, Seshia SA, Song D, Bryant RE (2005) Semantics-aware
malware detection. In: 2005 IEEE symposium on security and privacy
(S&P’05), 2005, pp 32–46

Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA
(2018) Generative adversarial networks: an overview. IEEE Signal Process
Mag 35(1):53–65

“Cuckoo Sandbox—Automated Malware Analysis.” https://​cucko​osand​box.​
org/. Accessed April 23, 2021

Damodaran A, Troia FD, Visaggio CA, Austin TH, Stamp M (2017) A comparison
of static, dynamic, and hybrid analysis for malware detection. J Comput
Virol Hacking Tech 13(1):1–12. https://​doi.​org/​10.​1007/​s11416-​015-​0261-z

Gonog L, Zhou Y (2019) A review: generative adversarial networks. In: 2019
14th IEEE conference on industrial electronics and applications (ICIEA),
2019, pp 505–510

Grosse K, Papernot N, Manoharan P, Backes M, McDaniel P (2016) Adversarial
perturbations against deep neural networks for malware classification.
arXiv: http://​arxiv.​org/​abs/​1606.​04435, 2016

Grosse K, Papernot N, Manoharan P, Backes M, McDaniel P (2017) Adversarial
examples for malware detection. In European symposium on research in
computer security, pp 62–79

Hu W, Tan Y (2017) Generating adversarial malware examples for black-box
attacks based on GAN,” ArXiv170205983 Cs, Feb. 2017, Accessed: Apr. 23,
2021. http://​arxiv.​org/​abs/​1702.​05983

Huang L, Joseph AD, Nelson B, Rubinstein BI, Tygar JD (2011) Adversarial
machine learning. In: Proceedings of the 4th ACM workshop on security
and artificial intelligence, 2011, pp 43–58

Huang S, Papernot N, Goodfellow I, Duan Y, Abbeel P (2017) Adversarial attacks
on neural network policies. ArXiv170202284 Cs Stat, Feb. 2017, Accessed:
Jul. 14, 2021. [Online]. Available: http://​arxiv.​org/​abs/​1702.​02284

Khoda ME, Imam T, Kamruzzaman J, Gondal I, Rahman A (2019) Robust mal-
ware defense in industrial IoT applications using machine learning with
selective adversarial samples. IEEE Trans Ind Appl 56(4):4415–4424

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. ArXiv
Prepr. http://​arxiv.​org/​abs/​1412.​6980

Li D, Li Q (2020) Adversarial deep ensemble: evasion attacks and defenses for
malware detection. IEEE Trans Inf Forensics Secur 15:3886–3900. https://​
doi.​org/​10.​1109/​TIFS.​2020.​30035​71

Lucas K, Sharif M, Bauer L, Reiter MK, Shintre S (2021) Malware Makeover:
breaking ML-based static analysis by modifying executable bytes.
In: Proceedings of the 2021 ACM Asia conference on computer and

communications security, New York, NY, USA, May 2021, pp. 744–758.
https://​doi.​org/​10.​1145/​34332​10.​34530​86

Lugmayr A, Danelljan M, Van Gool L, Timofte R (2020) Srflow: learning the
super-resolution space with normalizing flow. In: European conference
on computer vision, 2020, pp 715–732

Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A (2018) Towards deep
learning models resistant to adversarial attacks. https://​openr​eview.​net/​
forum?​id=​rJzIB​fZAb

Malware Statistics & Trends Report | AV-TEST.” https://​www.​av-​test.​org/​en/​stati​
stics/​malwa​re/. Accessed Jul. 14, 2021

Mao X, Li Q, Xie H, Lau RYK, Wang Z, Paul Smolley S (2017) Least squares
generative adversarial networks, 2017, pp. 2794–2802. Accessed: Apr. 23,
2021. https://​opena​ccess.​thecvf.​com/​conte​nt_​iccv_​2017/​html/​Mao_​
Least_​Squar​es_​Gener​ative_​ICCV_​2017_​paper.​html

Microsoft Malware Classification Challenge (BIG 2015). https://​kaggle.​com/c/​
malwa​re-​class​ifica​tion (accessed Jul. 21, 2021)

Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann
machines

Nappa A, Rafique MZ, Caballero J (2015) The MALICIA dataset: identification
and analysis of drive-by download operations. Int J Inf Secur 14(1):15–33

Nash JF (2016) 8. Two-person cooperative games. Princeton University Press,
Princeton

Pan Z et al (2020) Loss functions of generative adversarial networks (GANs):
opportunities and challenges. IEEE Trans Emerg Top Comput Intell
4(4):500–522. https://​doi.​org/​10.​1109/​TETCI.​2020.​29917​74

Pang T, Yang X, Dong Y, Su H, Zhu J (2021) Bag of tricks for adversarial training.
https://​openr​eview.​net/​forum?​id=​Xb8xv​rtB8Ce

Papernot N, McDaniel P, Jha S, Fredrikson M, Celik ZB, Swami A (2016) The
limitations of deep learning in adversarial settings. In: 2016 IEEE European
symposium on security and privacy (EuroS&P), 2016, pp 372–387

Pedregosa F et al (2011) Scikit-learn: machine learning in Python. J Mach Learn
Res 12:2825–2830

Sewak M, Sahay SK, Rathore H (2020) DOOM: a novel adversarial-DRL-based
op-code level metamorphic malware obfuscator for the enhancement
of IDS. In: Adjunct proceedings of the 2020 ACM international joint
conference on pervasive and ubiquitous computing and proceedings of
the 2020 ACM international symposium on wearable computers, 2020,
pp 131–134

Suciu O, Coull SE, Johns J (2019) Exploring adversarial examples in malware
detection. In: 2019 IEEE security and privacy workshops (SPW), 2019, pp
8–14

Szegedy C et al (2014) Intriguing properties of neural networks.
ArXiv13126199 Cs, Feb. 2014, Accessed: Apr. 23, 2021. [Online]. http://​
arxiv.​org/​abs/​1312.​6199

VirusTotal. https://​www.​virus​total.​com/​gui/ (accessed Jul. 21, 2021)
VirusShare.com.” https://​virus​share.​com/​resea​rch (accessed Apr. 23, 2021)
Wang X, Li J, Kuang X, Tan Y, Li J (2019a) The security of machine learning in an

adversarial setting: a survey. J Parallel Distrib Comput 130:12–23
Wang D, Dong L, Wang R, Yan D, Wang J (2020) Targeted speech adversarial

example generation with generative adversarial network. IEEE Access
8:124503–124513

Wang Y, Liu J, Chang Z (2019) Assessing transferability of adversarial examples
against malware detection classifiers. In: Proceedings of the 16th ACM
international conference on computing frontiers, 2019, pp 211–214

Wang Q et al. (2017) Adversary resistant deep neural networks with an appli-
cation to malware detection. In: Proceedings of the 23rd ACM sigkdd
international conference on knowledge discovery and data mining, 2017,
pp 1145–1153

Xiao C, Li B, Zhu J, He W, Liu M, Song D (2018) Generating adversarial examples
with adversarial networks. In: Proceedings of the twenty-seventh inter-
national joint conference on artificial intelligence, IJCAI-18, Jul. 2018, pp
3905–3911. https://​doi.​org/​10.​24963/​ijcai.​2018/​543

Xiao C, Li B, Zhu J-Y, He W, Liu M, Song D (2016) Generating adversarial exam-
ples with adversarial networks. Accessed: Apr. 29, 2021. http://​arxiv.​org/​
abs/​1801.​02610

Yuan X, He P, Zhu Q, Li X (2019) Adversarial examples: attacks and defenses
for deep learning. IEEE Trans Neural Netw Learn Syst 30(9):2805–2824.
https://​doi.​org/​10.​1109/​TNNLS.​2018.​28860​17

Yuan Z, Lu Y, Wang Z, Xue Y (2014) Droid-Sec: deep learning in android
malware detection. In: Proceedings of the 2014 ACM conference on

https://doi.org/10.1145/2901739.2903508
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://chocolatey.org/
https://cuckoosandbox.org/
https://cuckoosandbox.org/
https://doi.org/10.1007/s11416-015-0261-z
http://arxiv.org/abs/1606.04435
http://arxiv.org/abs/1702.05983
http://arxiv.org/abs/1702.02284
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/TIFS.2020.3003571
https://doi.org/10.1109/TIFS.2020.3003571
https://doi.org/10.1145/3433210.3453086
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://openaccess.thecvf.com/content_iccv_2017/html/Mao_Least_Squares_Generative_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Mao_Least_Squares_Generative_ICCV_2017_paper.html
https://kaggle.com/c/malware-classification
https://kaggle.com/c/malware-classification
https://doi.org/10.1109/TETCI.2020.2991774
https://openreview.net/forum?id=Xb8xvrtB8Ce
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://www.virustotal.com/gui/
https://virusshare.com/research
https://doi.org/10.24963/ijcai.2018/543
http://arxiv.org/abs/1801.02610
http://arxiv.org/abs/1801.02610
https://doi.org/10.1109/TNNLS.2018.2886017

Page 15 of 15Wang et al. Cybersecurity (2021) 4:38 	

SIGCOMM, New York, NY, USA, Aug. 2014, pp. 371–372. https://​doi.​org/​10.​
1145/​26192​39.​26314​34

Yuan J, Zhou S, Lin L, Wang F, Cui J (2020) Black-box adversarial attacks against
deep learning based malware binaries detection with GAN, ECAI 2020,
pp 2536–2542. https://​doi.​org/​10.​3233/​FAIA2​00388

Zhang H, Yu Y, Jiao J, Xing E, El Ghaoui L, Jordan M (2019) Theoretically
principled trade-off between robustness and accuracy. In: International
conference on machine learning, pp 7472–7482

Zhang Y, Li H, Zheng Y, Yao S, Jiang J (2021) Enhanced DNNs for malware classi-
fication with GAN-based adversarial training. J Comput Virol Hacking Tech
17(2):153–163. https://​doi.​org/​10.​1007/​s11416-​021-​00378-y

Zhao J, Mathieu M, LeCun Y (2017) Energy-based generative adversarial
networks: 5th international conference on learning representations, ICLR

2017. Accessed: Sep. 24, 2021. http://​www.​scopus.​com/​inward/​record.​
url?​scp=​85087​51843​5&​partn​erID=​8YFLo​gxK

Zhou Y, Jiang X (2012) Dissecting android malware: characterization and
evolution. In: 2012 IEEE symposium on security and privacy, May 2012, pp
95–109. https://​doi.​org/​10.​1109/​SP.​2012.​16

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1145/2619239.2631434
https://doi.org/10.1145/2619239.2631434
https://doi.org/10.3233/FAIA200388
https://doi.org/10.1007/s11416-021-00378-y
http://www.scopus.com/inward/record.url?scp=85087518435&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85087518435&partnerID=8YFLogxK
https://doi.org/10.1109/SP.2012.16

	LSGAN-AT: enhancing malware detector robustness against adversarial examples
	Abstract
	Introduction
	Related work
	Adversarial machine learning
	Adversarial malware examples for evasion attack
	Adversarial malware examples for proactive defense

	LSGAN-AT approach
	LSGAN module
	AT module

	Experimental analysis and validation
	Data preprocessing
	Evaluation metrics
	LSGAN-AT evaluation
	Parameter and component selection strategy
	LSGAN-AT transferability
	Experimental comparison

	Conclusion
	References

