
Assessing Anonymous and Selfish Free-rider Attacks

in Federated Learning

Jianhua Wang

Beijing Key Laboratory of

Security and Privacy in

Intelligent Transportation

Beijing Jiaotong University

China

20112051@bjtu.edu.cn

Xiaolin Chang

Beijing Key Laboratory of

Security and Privacy in

Intelligent Transportation

Beijing Jiaotong University

China

xlchang@bjtu.edu.cn

Ricardo J. Rodríguez

Deptment of Computer Science

and Systems Engineering

University of Zaragoza

Spain

rjrodriguez@unizar.es

Yixiang Wang

Beijing Key Laboratory of

Security and Privacy in

Intelligent Transportation

Beijing Jiaotong University

China

18112047@bjtu.edu.cn

Abstract—Federated Learning (FL) is a distributed learning

framework and gains interest due to protecting the privacy of

participants. Thus, if some participants are free-riders who are

attackers without contributing any computation resources and

privacy data, the model faces privacy leakage and inferior

performance. In this paper, we explore and define two free-rider

attack scenarios, anonymous and selfish free-rider attacks. Then

we propose two methods, namely novel and advanced methods, to

construct these two attacks. Extensive experiment results reveal

the effectiveness in terms of the less deviation with conventional

FL using the novel method, and high false positive rate to puzzle

defense model using the advanced method.

Keywords—federated learning, privacy data, free-rider attack

I. INTRODUCTION

Federated Learning (FL) is a kind of distributed learning,
which trains a global model with other remote clients equipped
with localized privacy data, such as individual smartphones,
individual laptops, and computers of different companies [1]. In
the machine learning field, data is critical and full of privacy.
Because of the characteristics of local computing and model
transmission [2], which means lower privacy risks in the central
server than conventional machine learning, FL gains interest
from industry and academies in recent years [3].

However, existing FL systems and model aggregation
algorithms have vulnerabilities, which can be exploited to leak
the privacy of participants [4] and models [5], such as poisoning
attacks, inference attacks, and free-rider attacks [6]–[8] in FL
systems. In free-rider attacks, FL clients benefit from the well-
trained model without contributing any computer resources and
privacy datasets. In addition, the free-riders will steal changed
gradients or update weight vectors which can reconstruct the
model [9]. Even Phong et al. [10] partially recovered the private
data based on the bias of gradients. More importantly, due to
lack of fairness, free-rider attacks might discourage
collaboration among participants with high quality and large
datasets [8]. Thus, the free-rider attack has tremendous threats
in FL.

The existing research on free-rider only focused on
anonymous free-rider. In this paper, we first define two free-
rider scenarios, namely anonymous free-riders who do not
possess any private data and computation power and selfish free-
riders who have their privacy dataset but are unwilling to devote
themselves to model training and unwilling to utilize
their

computation resources. And many researchers focus on
anonymous free-riders. Specifically, Fraboni et al. [6] proposed
a disguised free-rider attack (denotes the vanilla method in this
paper) using the parameters deviation of different rounds and
additive stochastic Gaussian noise multiply several coefficients.
They achieved almost the same accuracy curve as only fair
clients. Despite that, the vanilla method has not provided the
subsequent reasonable update which could be detected by outlier
detectors. In addition, the vanilla method cannot provide a stable
attack due to using stochastic Gaussian noise., which has a
possibility of being identified by the defense model.

To address the problems mentioned above, in this paper we
propose a novel method to improve the vanilla method and
achieve a better pretend ability than vanilla in the similarity with
conventional FL. Moreover, we implement the vanilla method
to attack the state-of-the-art (sota) defensive method RFFL [7].
All free-rider clients will be eliminated from the FL system by
RFFL. Thus, we explore the second free-rider attack scenario,
namely selfish free-rider attack using the advanced method.
After being assigned an initial global model by the central server,
we adopt another public dataset to pre-train the global model.
Then, we upload the changed parameters obtained by the pre-
train model in the first round. At the next training rounds, we use
Adam [11] optimizer to predict the model parameters to update
the global model. After implemented experiments, our advanced
method can confuse the defense model and remove the fair
clients from FL training. In this situation, RFFL may mistakenly
allow selfish free-rider clients to participate in FL. In brief, our
advanced method makes selfish free-rider clients more similar
to fair clients. The main contributions of this paper are
summarized as follows:

⚫ We first explore and define two different free-rider
attack scenarios: anonymous free-rider and selfish free-
rider. Then, we propose a novel method for anonymous
free-rider attacks. To the best of our knowledge, our
novel method achieves a better attack performance in
anonymous free-rider attacks by comparing the vanilla
method, the sota free-rider attack frame.

⚫ We propose an advanced method for selfish free-rider
attacks against the RFFL (sota FL defense model) and
obtain the 61.67% False Positive (FP) rate, which
means under our advanced free-rider attack method,
fair clients are removed by RFFL defense model and
FL training accuracy will be affected and decreased.

Server

Fair Client 1 Fair Client 2 Fair Client n

...
Free-rider

N1. Model Initialization

N2. Model

Training and Upload

N3. Model Aggregation

N4. Model Update

A5. Deviation

Calculation

A2. Stochastic Gaussian

Noise Upload

Optimizer

A6. Parameters Prediction

For Fair Clients:

1 2 3 4

 2 3 4

 2 3 4

...

A7. Model Upload

For Free-riders:

1 2 3 4

 5 6 7 3 4

 5 6 7 3 4

...

Fig. 1. The Schematic Diagram of Federated Learning with Fair Clients and Free-riders

The verification of the novel method is carried out by using
the same experimental settings as in [6] under an anonymous
free-rider attack scenario. After that, we use the advanced
method to attack the defense model RFFL [7]. The extensive
experimental results indicate that:

⚫ We achieve the improvement under MNIST
independent identically distributed (iid) and non-iid
data. The best promotion is 49.81% in the loss curve
variance between our novel method attack and full fair
clients, under MNIST iid and FedProx [12] model
aggregation algorithm.

⚫ We achieve a 61.67% False Positive (FP) rate using
advanced free-rider attack method under MNIST,
37.78% under Cifar10, 19.44% under Cifar10 with pre-
trained dataset MNIST. On the one hand, 61.67% FP
rate indicates that RFFL possibly will not suspect the
mistake of the defense mechanism and extremely
puzzle the defense model. On the other hand, higher FP
rate means more fair clients are removed from FL
training, which tremendously decreases the accuracy of
the FL model.

The rest of the paper is organized as follows. Section 2
presents the preliminary of federated learning and free-rider
attack. Section 3 demonstrates the method description, and
Section 4 introduces the experimental setup and results. Section
5 summarizes the conclusion.

II. PRELIMINARY

In this section, we will introduce the basic concepts of
federated learning. Then we demonstrate the related work of
federated learning and free-rider attack in FL settings.

A. Federated Learning

Federated learning (FL), proposed by [13], is a series of
solutions in training global models over remote data servers
and/or smart devices possessing localized data, for instance,
individual mobile phones, laptops, company servers, and private
computers. The FL opens up new research directions in artificial
intelligence because it can train personalized models without
violating any user privacy data [1].

As shown in the black line in Figure. 1, conventional FL with
fair clients follows the training process. First, the central server
transmits the initialized global model to all remote fair clients

(Step N1 Model Initialization). After that, remote fair clients
complete the model training using their privacy dataset and
upload their changed model parameters to the central server
(Step N2 Model Training and Upload). Then, the central server
collects the model parameters from fair clients and aggregates
them using specific model aggregation algorithms, such as
FedAvg [13] and FedProx [12] (Step N3 Model Aggregation).
At last, the central server assigns an updated model to each fair
client (Step N4 Model Update). Since then, the global model has
achieved FL in one round.

B. Free-rider Attack

In the FL scenario, the free-rider represents a portion of
individuals who benefits from well-trained models from
cooperative learning without contributing any computation
resources and privacy data. In general terms, there are two
categories of free-rider. One is an adversarial client without any
data. The other is a selfish client unwilling to devote their private
data to model training. In this paper, we study the free-rider
attack in two scenarios, anonymous free-rider attack, and selfish
free-rider attack respectively.

As shown in the red line in Fig. 1 and Algorithm 1, we
demonstrate the free-rider attack process in FL settings. The
central server firstly transmits the initialized global model to all
remote fair clients (Step N1 Model Initialization). Free-rider
clients generate stochastic Gaussian noise as changed
parameters in the first round (Step A2 Stochastic Gaussian
Noise Upload). After that, the server completes the model
aggregation using aggregation algorithms (Step N3 Model
Aggregation). Then, the clients receive the assigned parameters
in the next round (Step N4 Model Update) and calculate the
deviation between two changed parameters (Step A5 Deviation
Calculation). Finally, they obtain the prediction generated by the
optimizer (Step A6 Parameters Prediction) and upload the
model parameters to the central server (Step A7 Model Upload).

We define the anonymous free-riders who do not possess
any privacy dataset and do not have any training ability of a large
model. They possibly are fake clients and only want to filch the
model parameters. In contrast, we consider that selfish free-
riders who have privacy datasets, are real clients and are
equipped with small computation power. However, the selfish
free-riders are unwilling to devote their privacy dataset to the
global model. In other words, selfish free-riders expect to obtain

a well-trained global model without wasting abundant
computation power and using a private dataset.

Algorithm 1 The Free-Rider Attack in Federated Learning Settings

Input: Learning rate  , Round R , Fair clients K , Free-rider clients

N , Initial Global Model Parameters 0

Output: Update Model Parameters 

Initialize: 0 0 =

1: For r in range(R):

2: /* For Server*/

3: Allocate r to each client

4: To step 10

5: 1r + = ModelAggregation(1r

k + , 1r

n +)

6: Return 1r + , Next loop

7:

8: /* For Clients*/
9: /* For Fair Clients*/

10: For k in range (K):

11: 1r

k + = FairUpdate(r ,)

12: End for

13: Return 1r

k + to Server

14:

15: /* For Free-rider Clients*/

16: For n in range (N):

17: 1r

n + = FreeRiderUpdate(r ,)

18: End for

19: Return 1r

n + to Server

20: To step 4

21: End for

III. METHOD DESCRIPTION

In this section, firstly, for anonymous free-riders, we
improved the vanilla method proposed by [6]. Then, we conduct
the advanced method to carry on selfish free-rider attacks
against RFFL, a reputation mechanism defense method
proposed by [7].

A. Novel Method for Anonymous Free-rider

TABLE I ADAM NOTATIONS IN ALGORITHM 2

()f  : ()f   , d 
f is the loss function, 

is the parameter of Model

() ()
1

2
, arg minM xy M x y = −

The projection of y onto a

convex feasible set

tg
The gradient in optimizing

step t

tm
The exponential moving

average (EMA) of tg

tv The EMA of 2

tg

 = 310− The learning rate

810 −=
The epsilon is a small

value

1 20.9, 0.999 = = The smoothing parameters
in Adam

21 ,t t 

The momentum for tm

and tv respectively at step

t (constant)

For anonymous free-riders, we improve the vanilla method
[6]. Instead of adding stochastic gaussian perturbations, we
implement the novel method by utilizing the optimizer Adam
[11] algorithm to update parameters. In this section, we firstly
demonstrate the details of the novel method in Algorithm 2. As
proposed by [11] and [14], we describe the corresponding
notations in TABLE I . In detail, we use a stochastic Gaussian

perturbation ()20, n  as the first return of the model

parameter 1 . In the subsequent round, we obey the Adam

optimizer to update parameters 1r r

t + = (in lines 8-15). At last,

we upload the varying parameters to the server.

Compared with the novel method, the vanilla method [6]

replaces lines 5-11 by 1r r  + = + , where ()20, n  . Note that

the vanilla method has proven the convergence of expectation
and variance, and we only take full advantage of the Adam
optimizer, the convergence of the novel method is inevitable.

Algorithm 2 The Perturbations Additive of Novel Method

Input:

Adam: Learning rate  , Optimizing Step t , Betas 1 2,  , Epsilon

 , Weight decay  , Loss function f , and Model 

Model: Round R , Initial Global Model Parameters 0 , Free-riders

clients N

Output: Update Model Parameters 

Initialize: 0 0 = , 0 0m = , 0 0v = , 0 0t =

1: /* For Free-Riders Clients*/

2: Obtain the 0 from the Server

3: For r in range (R):

4: For n in range (N):

5: If 0r == :

6: 1 0  = + , where ()20, n 

7: Else:

8: While t not converged:

9: ()1t t tg f  −= 

10: 1 1 1(1)t t tm m g −= + −

11:

12:
11

t
t t

m
m


=

−

13:
21

t
t t

v
v


=

−

14: Update 1, t

t
t tv

t

m

v


 


−

 
 =  −
 + 

15: Return
1r r

t + = to Server

16: End if

17: End for

18: End for

B. Advanced Method for Selfish Free-rider

In general, we define selfish free-riders who truly possess
privacy and public datasets. Therefore, selfish free-riders can
train the allocated global model using public datasets, instead of
privacy datasets. Thus, selfish free-riders will obtain the well-
trained model parameters without devoting their datasets.

As shown in Algorithm 2, we conduct the novel method to
add perturbation into the parameters of the global model.

However, additive stochastic Gaussian noise (line 5 in
Algorithm 2) in round 0 will mislead the update parameters
which means going too far on the wrong track. For example,
RFFL [7] uses a reputation mechanism to judge whether the
client does possess own dataset during the model training. In this
situation, if we adopt terrible parameters at first and sent them
to the server, RFFL will define a lower reputation value. Once
reputation value is lower than the threshold, these free-rider
clients will be eliminated from the FL system. As a result, we
proposed an advanced method to evade the detection of RFFL.

To implement the advanced method, we improve the
perturbations additive of the novel method in round 0 (which is
described in line 5 of Algorithm 2). To be specific, as shown in
Algorithm 3, we firstly obtain the model structure M and initial

global model parameter 0 . Then we train M using a public

dataset and record the round 0 parameters 0

public . In addition, we

return 0

public as the first response of the global model. After that,

we use Adam optimizer to update the parameters in subsequent
rounds.

Algorithm 3 The Perturbations Additive of Advanced Method

Input:

Adam: Learning rate  , Optimizing Step t , Betas 1 2,  , Epsilon

 , Weight decay  , Loss function f , and Model 

Model: Round R , Initial Global Model Parameters 0 , Free-riders

clients N

Output: Update Model Parameters 

Initialize: 0 0 = , 0 0m = , 0 0v = , 0 0t =

1: /* For Free-Riders Clients*/

2: Obtain the 0 and M from the Server

3: Train M using a public dataset

4: Record parameters 0

public where round 0

5: For r in range (R):

6: For n in range (N):

7: If 0r == :

8: 1 0r

public + =

9: Else:

10: Line 8-15 in Algorithm 2

11: End if

12: End for

13: End for

IV. EXPERIMENT EVALUATION

This section first describes the experimental dependency
including the used dataset and experimental settings. Then, we
introduce the experimental evaluation metrics in the novel
method and advanced method. At last, we demonstrate the
experimental results and analysis.

A. Datasets

We utilize MNIST and Cifar10 as standard classification
baseline datasets. MNIST includes handwritten digits with 10
classes and has become the most known and used dataset in the
classification task. The Cifar10 is made up of 10 classes of
32x32 images with three RGB channels and consists of 50000
training samples and 10000 testing samples.

B. Experimental Settings

For accelerating the experiments, we only create an
independent identically distributed (iid) MNIST dataset and a
non-iid MNIST dataset in the novel method comparison. In
addition, to control the number of variables, we investigate the
different free-rider attack performances under the same settings.
In other words, as shown in [6], we investigate free-rider attacks
with 600 training samples and 300 testing samples for each fair
client in MNIST iid scenario, and 150 training samples and 75
testing samples in the non-iid scenario.

Analogously, in the advanced method comparison, as shown
in [7], we consider three types of data, such as iid data, powerlaw
data (which follows a power law to randomly partition), and
non-iid data. Other experimental settings are shown in TABLE
II and III. In TABLE II, we demonstrate the number of fair
clients and free-rider clients, the type of data, and the number of
samples in training and testing. The last column is the model
aggregation algorithms including FedAvg and FedProx.

TABLE II DATA SPLITS DETAILS

M
et

h
o
d

Fair

Clien

ts

Free-

rider

Clients

Data

Splits

Train

Num

Test

Num

Model

Aggregation

Novel

6 1
MINST

iid
600 300

FedAvg/

FedProx

10 5

20 15

6 1
MINST
non-iid

150 75 10 5

20 15

Advan

ced
10

1
MINST

iid
540 60

FedAvg

5

15

1
MINST

non-iid
540 60 5

15

1
MINST

powerlaw

/a b

*540

/a b

*60
5

15

1
Cifar10

iid
1600 400 5

15

1
Cifar10
non-iid

1600 400 5

15

1
Cifar10

powerlaw

/a b

*160

/a b

*40
5

15

Note: 1) 0.659 0.6591.659 0.01 1.659 0.99a     ， 2) ()b sum a=

In TABLE III, we show the hyper-parameters in novel and
advanced methods, including model parameters update
optimizer, loss function, number of rounds, and the learning rate.
In TABLE IV, we focus on advanced method attacks against
RFFL. The first column denotes the target dataset, namely the
data trained by fair clients in FL. The second column is the pre-
trained dataset trained by free-rider clients, which represents that
selfish free-rider is unwilling to contribute the privacy dataset
into FL model training. Note that, MNIST iid means that we
extend the same MNIST tensor dimension as Cifar10 to simulate
the selfish free-rider. In addition, we implement 3 optimizers,
namely Adam, AdaBelief, and SGD, to compare the selfish free-
rider attack performance.

TABLE III HYPER-PARAMETERS

Method Optimizer Loss Round Learning Rate

Novel
Adam (ours)/

SGD [6] Cross-
Entrop

y Loss

MNIST iid:200
Non-iid:300

0.001

Advan
ced

Adam (ours)/

AdaBelief [14]/

SGD

MNIST:100
Cifar10:200

MNIST: 0.15/

Cifar10 :0.015

(decay: 0.997)

Note: 1) Decay = Learning Rate Decay, which means slowly reducing or

decaying the learning rate after each round. 2) Optimizer utilizes the default

setting.

TABLE IV DATA TRAINED IN ADVANCED METHOD

Target Dataset Trained

by Fair Clients

Pre-train Dataset Trained

by Free-rider Client
Optimizer

MNIST

iid non-iid / powerlaw

Adam/

AdaBelief/

SGD

non-iid iid / powerlaw

powerlaw iid / non-iid

Cifar 10

iid
non-iid / powerlaw

MNIST non-iid / powerlaw

non-iid
iid / powerlaw

MNIST iid / powerlaw

powerlaw
iid / non-iid

MNIST iid / non-iid

C. Evaluation Metrics

In this section, we utilize Variance deviation (Var) and
Euclidean Distance Deviation (EDD) as the evaluation metrics
of comparison of the novel method and vanilla method [6]. Note
that, the deviation represents the difference value of accuracy
and loss in each round between the novel method or vanilla
method and the only fair client model. To be specific, lower
deviation in accuracy and loss value have more probability to
evade the detection of outlier detector, so that we can carry on a
successful free-rider attack. In other words, better attack
performance means the lower AccVar , LossVar , AccEDD , and LossEDD .

Note that fr means the free-rider.

() ()
2 2

1 1

1 R R
r r

fair frAcc fair fr

r r v Acc

Var v v v v
R = = =

= − − −  ()

() ()
2 2

1 1

1 R R
r r

fair frLoss fair fr

r r v Loss

Var v v v v
R = = =

= − − −  ()

() ()
2 2

1 1
,

R R
r r r r

Acc fair fr fair fr

r r
x y Acc

EDD x x y y
= =

=

= − + −  ()

() ()
2 2

1 1
,

R R
r r r r

Loss fair fr fair fr

r r
x r Loss

EDD x x y y
= =

=

= − + −  ()

Apart from the four metrics in the novel method, we propose
False Positive (FP) rate to evaluate the performance of attacking
RFFL using advanced methods. The FP rate denotes the
removing ratio of fair clients in the detection of RFFL. We
assume that the FL server assigns several absolute fair clients so
that higher FP rate will be prone to puzzle servers to remove fair
clients from the training process. Moreover, adversarial free-
rider clients will benefit from the training process until they are
removed from FL training. In other words, a better free-rider
attack means higher FP rate.

Number of Removing Fair Clients

Number of All Fair Clients
FP = ()

D. Experimental Results and Analysis

In this section, we follow the experimental settings as shown
in Section 4.2. We implement anonymous free-rider attacks and
selfish free-rider attacks to verify the attack performance of the
novel method and advanced method.

1) Anonymous Free-rider Attack Comparison
We utilize Var and EDD to evaluate the difference between

full fair clients and anonymous free-rider clients in FL settings.
To evade the detection of outlier detectors, we need to obtain
deviation as small as possible. We conduct a comparison
including the vanilla method [6] and the novel method.

TABLE V ANONYMOUS FREE-RIDER ATTACK AVERAGE INCREASE

COMPARISON IN MNIST IID DATA (%)

Model

Aggregati

on

Data

Splits AccVar LossVar AccEDD LossEDD

FedAvg
iid +20.55 +49.81 +3.27 +6.25

Non-iid +28.53 +35.33 +9.61 +9.88

FedProx
iid +20.93 +49.06 +11.21 +23.34

Non-iid +17.66 +7.62 +6.79 +4.69

We conduct extensive experiments to compare the
anonymous free-rider attack performance using four metrics in
MNIST iid data and MNIST non-iid data. As shown in TABLE
V , we utilize the FedAvg and FedProx model aggregation
algorithm. Compared with the vanilla method using iid data, our
novel method achieves the 20.55% average increment in AccVar ,

49.81% in LossVar , 3.27% in AccEDD , and 6.25% in LossEDD .

Moreover, using non-iid data, we achieve 20.93% promotion in

AccVar , 49.06% in LossVar , 11.21% in AccEDD , and 23.34% in

LossEDD . We obtain similar attack effectiveness using FedProx.

In MNIST iid data, we have 28.53% improvement in AccVar ,

35.33% in LossVar , 9.61% in AccEDD , and 9.88% in LossEDD . In

MNIST non-iid data, we obtain 17.66% in AccVar , 7.62 in LossVar ,

6.79% in AccEDD , and 4.69% in LossEDD .

2) Selfish Free-rider Attack Comparison

TABLE VI SELFISH FREE-RIDER ATTACK AND BASELINE AGAINST

RFFL USING ADAM IN MNIST WITH 10 FAIR CLIENTS

Method

Free-

rider

client

Data Splits
Round 0

Data

FP

Num

Avg

FP Rate

Avg (%)

Baselin

e [7]

1/5/

15

iid/
Non-iid/

Powerlaw

- 1.00 10.00

Advan

ced
(ours)

1/5/

15

iid
Powerlaw

6.17 61.67

Non-iid

Non-iid
iid

Powerlaw

Powerlaw
Non-iid

iid

We utilize FP rate to evaluate the performance of selfish
free-rider attacks against the RFFL reputation mechanism [7].

To puzzle the detection of the RFFL and decrease the accuracy
of the FL model, we should achieve higher FP rate. Moreover,
we implement three optimizers to compare the performance of
our advanced method, including Adam, SGD, and AdaBelief.

We conduct extensive experiments with fair client quantity
10, selfish free-rider client number 1, 5, or 15, and three types of
data split including iid, non-iid, powerlaw. Note that, the fair
client and the free-rider client constitute the clients of FL, for
example, 10 fair and 1 free rider means 11 clients in FL.
Moreover, we use MNIST and Cifar10 to evaluate the attack.
The experimental settings are shown in Section 4.2.

As shown in TABLE VI , the fourth column represents the
public data of the pre-train strategy in Algorithm 3 line 8. That
means fair clients are assigned to train MNIST iid data, but the
free-rider clients are pre-trained by other kinds of data. In
practice, we can utilize a public dataset while we only need the
initial global model. The fifth column denotes the number of fair
clients who pass the detection of RFFL. The FP rate is the
proportion of FP rate occupied by all fair clients. To reflect the
attack performance synthetically, we summarize TABLE VII to
demonstrate the effectiveness of our advanced method in the
selfish free-rider attack. We obtain the 61.67% FP rate against
the RFFL reputation mechanism using Adam in the MNIST
dataset which means we confuse RFFL to remove 61.67% fair
clients. However, SGD and AdaBelief have lower FP num and
FP rate, which possibly are scented by the server when the server
sets absolute fair clients in early training rounds.

TABLE VII SELFISH FREE-RIDER ATTACK AGAINST RFFL USING

DEFERENT OPTIMIZERS AND DATASETS ON AVERAGE WITH 10 FAIR

CLEINTS

Method
Optimiz

er

Target

Dataset

Pre-train

Dataset

FP

Average

Num

FP

Average

Rate (%)

Advan

ced

(our)

Adam

(our)

MNIST MNIST 6.17 61.67

Cifar10
Cifar10 3.78 37.78

MNIST 1.94 19.44

SGD

MNIST MNIST 1.22 12.22

Cifar10
Cifar10 2.39 23.89

MNIST 0.89 8.89

AdaBel
ief

MNIST MNIST 4.06 40.56

Cifar10
Cifar10 2.33 23.33

MNIST 1.11 11.11

Baselin

e

Adam
MNIST - 1.00 10.00

Cifar10 - 1.56 15.56

SGD
MNIST - 0.33 3.33

Cifar10 - 0.67 6.67

AdaBel

ief

MNIST - 1.11 11.11

Cifar10 - 0.56 5.56

In summary, the advanced method achieves 61.67% FP rate
in MNIST with 10 fair clients, 37.78% in Cifar10, and 19.44%
in the Cifar10 dataset when free-rider clients are trained by the
MNIST dataset. Moreover, the advanced method obtains the
best average FP rate using Adam optimizer in each experimental
setting with 10 fair clients. In other words, we successfully
puzzle and confuse the FL server to remove the fair clients from
FL training, and thus we effectively decrease the accuracy of FL.

V. CONCLUSION

This paper explores and studies the two scenarios of free-
rider attacks in Federated Learning (FL), namely anonymous
and selfish free-rider attacks. We propose respectively the novel
method and the advanced method to implement free-rider
attacks in FL settings. Moreover, we conduct extensive
experiments to verify the attack performance of the novel
method compared with the vanilla method of [6]. In addition,
utilizing the advanced method against the state-of-the-art
defense model, we achieve the up to 61.67% false positive rate
under MNIST and Cifar10 datasets.

REFERENCES

[1] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on

federated learning,” Knowl.-Based Syst., vol. 216, p. 106775, Mar.
2021, doi: 10.1016/j.knosys.2021.106775.

[2] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Federated

learning,” Synth. Lect. Artif. Intell. Mach. Learn., vol. 13, no. 3, pp. 1–
207, 2019.

[3] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha,

and G. Srivastava, “A survey on security and privacy of federated
learning,” Future Gener. Comput. Syst., vol. 115, pp. 619–640, 2021.

[4] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond

inferring class representatives: User-level privacy leakage from
federated learning,” in IEEE INFOCOM 2019-IEEE Conference on

Computer Communications, 2019, pp. 2512–2520.

[5] W. Wei, L. Liu, Y. Wut, G. Su, and A. Iyengar, “Gradient-Leakage
Resilient Federated Learning,” in 2021 IEEE 41st International

Conference on Distributed Computing Systems (ICDCS), Jul. 2021,

pp. 797–807. doi: 10.1109/ICDCS51616.2021.00081.
[6] Y. Fraboni, R. Vidal, and M. Lorenzi, “Free-rider Attacks on Model

Aggregation in Federated Learning,” in Proceedings of The 24th

International Conference on Artificial Intelligence and Statistics, Mar.
2021, pp. 1846–1854. Accessed: Dec. 07, 2021. [Online]. Available:

https://proceedings.mlr.press/v130/fraboni21a.html

[7] X. Xu and L. Lyu, “A reputation mechanism is all you need:

Collaborative fairness and adversarial robustness in federated

learning,” 2021.
[8] L. Lyu, X. Xu, Q. Wang, and H. Yu, “Collaborative fairness in

federated learning,” in Federated Learning, Springer, 2020, pp. 189–

204.
[9] W. Wei et al., “A framework for evaluating gradient leakage attacks

in federated learning,” ArXiv Prepr. ArXiv200410397, 2020.

[10] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning: Revisited and enhanced,” in International

Conference on Applications and Techniques in Information Security,

2017, pp. 100–110.
[11] D. Kingma and J. Ba, “Adam: A method for stochastic optimization

in: Proceedings of the 3rd international conference for learning

representations (iclr’15),” San Diego, 2015.
[12] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V.

Smith, “Federated Optimization in Heterogeneous Networks,” Proc.

Mach. Learn. Syst., vol. 2, pp. 429–450, Mar. 2020, Accessed: Dec.
27, 2021. [Online]. Available:

https://proceedings.mlsys.org/paper/2020/hash/38af86134b65d0f10fe

33d30dd76442e-Abstract.html
[13] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from

decentralized data,” in Artificial intelligence and statistics, 2017, pp.
1273–1282.

[14] J. Zhuang et al., “AdaBelief Optimizer: Adapting Stepsizes by the

Belief in Observed Gradients,” Adv. Neural Inf. Process. Syst., vol.
33, 2020.

