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Abstract—Federated Learning (FL) is a distributed learning 

framework and gains interest due to protecting the privacy of 

participants. Thus, if some participants are free-riders who are 

attackers without contributing any computation resources and 

privacy data, the model faces privacy leakage and inferior 

performance. In this paper, we explore and define two free-rider 

attack scenarios, anonymous and selfish free-rider attacks. Then 

we propose two methods, namely novel and advanced methods, to 

construct these two attacks. Extensive experiment results reveal 

the effectiveness in terms of the less deviation with conventional 

FL using the novel method, and high false positive rate to puzzle 

defense model using the advanced method.  
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I. INTRODUCTION 

Federated Learning (FL) is a kind of distributed learning, 
which trains a global model with other remote clients equipped 
with localized privacy data, such as individual smartphones, 
individual laptops, and computers of different companies [1]. In 
the machine learning field, data is critical and full of privacy. 
Because of the characteristics of local computing and model 
transmission [2], which means lower privacy risks in the central 
server than conventional machine learning, FL gains interest 
from industry and academies in recent years [3].  

However, existing FL systems and model aggregation 
algorithms have vulnerabilities, which can be exploited to leak 
the privacy of participants [4] and models [5], such as poisoning 
attacks, inference attacks, and free-rider attacks [6]–[8] in FL 
systems. In free-rider attacks, FL clients benefit from the well-
trained model without contributing any computer resources and 
privacy datasets. In addition, the free-riders will steal changed 
gradients or update weight vectors which can reconstruct the 
model [9]. Even Phong et al. [10] partially recovered the private 
data based on the bias of gradients. More importantly, due to 
lack of fairness, free-rider attacks might discourage 
collaboration among participants with high quality and large 
datasets [8]. Thus, the free-rider attack has tremendous threats 
in FL.  

The existing research on free-rider only focused on 
anonymous free-rider. In this paper, we first define two free-
rider scenarios, namely anonymous free-riders who do not 
possess any private data and computation power and selfish free-
riders who have their privacy dataset but are unwilling to devote 
themselves to model training and unwilling to utilize 
their 

computation resources. And many researchers focus on 
anonymous free-riders. Specifically, Fraboni et al. [6] proposed 
a disguised free-rider attack (denotes the vanilla method in this 
paper) using the parameters deviation of different rounds and 
additive stochastic Gaussian noise multiply several coefficients. 
They achieved almost the same accuracy curve as only fair 
clients. Despite that, the vanilla method has not provided the 
subsequent reasonable update which could be detected by outlier 
detectors. In addition, the vanilla method cannot provide a stable 
attack due to using stochastic Gaussian noise., which has a 
possibility of being identified by the defense model. 

To address the problems mentioned above, in this paper we 
propose a novel method to improve the vanilla method and 
achieve a better pretend ability than vanilla in the similarity with 
conventional FL. Moreover, we implement the vanilla method 
to attack the state-of-the-art (sota) defensive method RFFL [7]. 
All free-rider clients will be eliminated from the FL system by 
RFFL. Thus, we explore the second free-rider attack scenario, 
namely selfish free-rider attack using the advanced method. 
After being assigned an initial global model by the central server, 
we adopt another public dataset to pre-train the global model. 
Then, we upload the changed parameters obtained by the pre-
train model in the first round. At the next training rounds, we use 
Adam [11] optimizer to predict the model parameters to update 
the global model. After implemented experiments, our advanced 
method can confuse the defense model and remove the fair 
clients from FL training. In this situation, RFFL may mistakenly 
allow selfish free-rider clients to participate in FL. In brief, our 
advanced method makes selfish free-rider clients more similar 
to fair clients. The main contributions of this paper are 
summarized as follows: 

⚫ We first explore and define two different free-rider
attack scenarios: anonymous free-rider and selfish free-
rider. Then, we propose a novel method for anonymous
free-rider attacks. To the best of our knowledge, our
novel method achieves a better attack performance in
anonymous free-rider attacks by comparing the vanilla
method, the sota free-rider attack frame.

⚫ We propose an advanced method for selfish free-rider
attacks against the RFFL (sota FL defense model) and
obtain the 61.67% False Positive (FP) rate, which
means under our advanced free-rider attack method,
fair clients are removed by RFFL defense model and
FL training accuracy will be affected and decreased.
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Fig. 1. The Schematic Diagram of Federated Learning with Fair Clients and Free-riders 

The verification of the novel method is carried out by using 
the same experimental settings as in [6] under an anonymous 
free-rider attack scenario. After that, we use the advanced 
method to attack the defense model RFFL [7]. The extensive 
experimental results indicate that: 

⚫ We achieve the improvement under MNIST
independent identically distributed (iid) and non-iid
data. The best promotion is 49.81% in the loss curve
variance between our novel method attack and full fair
clients, under MNIST iid and FedProx [12] model
aggregation algorithm.

⚫ We achieve a 61.67% False Positive (FP) rate using
advanced free-rider attack method under MNIST,
37.78% under Cifar10, 19.44% under Cifar10 with pre-
trained dataset MNIST. On the one hand, 61.67% FP
rate indicates that RFFL possibly will not suspect the
mistake of the defense mechanism and extremely
puzzle the defense model. On the other hand, higher FP
rate means more fair clients are removed from FL
training, which tremendously decreases the accuracy of
the FL model.

The rest of the paper is organized as follows. Section 2 
presents the preliminary of federated learning and free-rider 
attack. Section 3 demonstrates the method description, and 
Section 4 introduces the experimental setup and results. Section 
5 summarizes the conclusion. 

II. PRELIMINARY 

In this section, we will introduce the basic concepts of 
federated learning. Then we demonstrate the related work of 
federated learning and free-rider attack in FL settings. 

A. Federated Learning

Federated learning (FL), proposed by [13], is a series of
solutions in training global models over remote data servers 
and/or smart devices possessing localized data, for instance, 
individual mobile phones, laptops, company servers, and private 
computers. The FL opens up new research directions in artificial 
intelligence because it can train personalized models without 
violating any user privacy data [1]. 

As shown in the black line in Figure. 1, conventional FL with 
fair clients follows the training process. First, the central server 
transmits the initialized global model to all remote fair clients 

(Step N1 Model Initialization). After that, remote fair clients 
complete the model training using their privacy dataset and 
upload their changed model parameters to the central server 
(Step N2 Model Training and Upload). Then, the central server 
collects the model parameters from fair clients and aggregates 
them using specific model aggregation algorithms, such as 
FedAvg [13] and FedProx [12] (Step N3 Model Aggregation). 
At last, the central server assigns an updated model to each fair 
client (Step N4 Model Update). Since then, the global model has 
achieved FL in one round. 

B. Free-rider Attack

In the FL scenario, the free-rider represents a portion of
individuals who benefits from well-trained models from 
cooperative learning without contributing any computation 
resources and privacy data. In general terms, there are two 
categories of free-rider. One is an adversarial client without any 
data. The other is a selfish client unwilling to devote their private 
data to model training. In this paper, we study the free-rider 
attack in two scenarios, anonymous free-rider attack, and selfish 
free-rider attack respectively. 

As shown in the red line in Fig. 1 and Algorithm 1, we 
demonstrate the free-rider attack process in FL settings. The 
central server firstly transmits the initialized global model to all 
remote fair clients (Step N1 Model Initialization). Free-rider 
clients generate stochastic Gaussian noise as changed 
parameters in the first round (Step A2 Stochastic Gaussian 
Noise Upload). After that, the server completes the model 
aggregation using aggregation algorithms (Step N3 Model 
Aggregation). Then, the clients receive the assigned parameters 
in the next round (Step N4 Model Update) and calculate the 
deviation between two changed parameters (Step A5 Deviation 
Calculation). Finally, they obtain the prediction generated by the 
optimizer (Step A6 Parameters Prediction) and upload the 
model parameters to the central server (Step A7 Model Upload). 

We define the anonymous free-riders who do not possess 
any privacy dataset and do not have any training ability of a large 
model. They possibly are fake clients and only want to filch the 
model parameters. In contrast, we consider that selfish free-
riders who have privacy datasets, are real clients and are 
equipped with small computation power. However, the selfish 
free-riders are unwilling to devote their privacy dataset to the 
global model. In other words, selfish free-riders expect to obtain 



a well-trained global model without wasting abundant 
computation power and using a private dataset. 

Algorithm 1 The Free-Rider Attack in Federated Learning Settings 

Input: Learning rate  , Round R , Fair clients K , Free-rider clients 

N , Initial Global Model Parameters 0  

Output: Update Model Parameters   

Initialize: 0 0 =  

1: For r  in range( R ): 

2:     /* For Server*/ 

3:     Allocate r  to each client 

4:     To step 10 

5:     1r + = ModelAggregation( 1r

k + , 1r

n + ) 

6:     Return 1r + , Next loop 

7:  

8:     /* For Clients*/ 
9:     /* For Fair Clients*/ 

10:     For k  in range ( K ): 

11:         1r

k + = FairUpdate( r , ) 

12:     End for 

13:     Return 1r

k +  to Server 

14:  

15: /* For Free-rider Clients*/ 

16:     For n  in range ( N ): 

17:         1r

n + = FreeRiderUpdate( r , )  

18:     End for 

19:     Return 1r

n +  to Server 

20:     To step 4 

21: End for 

III. METHOD DESCRIPTION  

In this section, firstly, for anonymous free-riders, we 
improved the vanilla method proposed by [6]. Then, we conduct 
the advanced method to carry on selfish free-rider attacks 
against RFFL, a reputation mechanism defense method 
proposed by [7]. 

A. Novel Method for Anonymous Free-rider  

TABLE I  ADAM NOTATIONS IN ALGORITHM 2  

( )f  : ( )f   , d   
f  is the loss function,   

is the parameter of Model 

( ) ( )
1

2
, arg minM xy M x y = −  

The projection of y  onto a 

convex feasible set  

tg  
The gradient in optimizing 

step t  

tm  
The exponential moving 

average (EMA) of tg  

tv  The EMA of 2

tg  

 = 310−  The learning rate 

810 −=  
The epsilon is a small 

value 

1 20.9, 0.999 = =  The smoothing parameters 
in Adam 

21 ,t t   

The momentum for tm  

and tv  respectively at step 

t  (constant) 

For anonymous free-riders, we improve the vanilla method 
[6]. Instead of adding stochastic gaussian perturbations, we 
implement the novel method by utilizing the optimizer Adam 
[11] algorithm to update parameters. In this section, we firstly 
demonstrate the details of the novel method in Algorithm 2. As 
proposed by [11] and [14], we describe the corresponding 
notations in TABLE I . In detail, we use a stochastic Gaussian 

perturbation ( )20, n   as the first return of the model 

parameter 1 . In the subsequent round, we obey the Adam 

optimizer to update parameters 1r r

t + =  (in lines 8-15). At last, 

we upload the varying parameters to the server. 

Compared with the novel method, the vanilla method [6] 

replaces lines 5-11 by 1r r  + = + , where ( )20, n  . Note that 

the vanilla method has proven the convergence of expectation 
and variance, and we only take full advantage of the Adam 
optimizer, the convergence of the novel method is inevitable.  

Algorithm 2 The Perturbations Additive of Novel Method 

Input:  

Adam: Learning rate  , Optimizing Step t , Betas 1 2,  , Epsilon 

 , Weight decay  , Loss function f  , and Model   

Model: Round R , Initial Global Model Parameters 0  , Free-riders 

clients N  

Output: Update Model Parameters   

Initialize: 0 0 = , 0 0m = , 0 0v = , 0 0t =  

1: /* For Free-Riders Clients*/ 

2: Obtain the 0  from the Server 

3: For r  in range ( R ): 

4:     For n  in range ( N ): 

5:         If 0r == :  

6:             1 0  = + , where ( )20, n   

7:         Else: 

8:             While t  not converged:  

9:                 ( )1t t tg f  −=   

10:                 1 1 1(1 )t t tm m g −= + −  

11:                  

12:                 
11

t
t t

m
m


=

−
 

13:                 
21

t
t t

v
v


=

−
 

14:                 Update 1, t

t
t tv

t

m

v


 


−

 
 =  −
 + 

 

15:             Return 
1r r

t + =  to Server 

16:         End if  

17:     End for 

18: End for 

B. Advanced Method for Selfish Free-rider  

In general, we define selfish free-riders who truly possess 
privacy and public datasets. Therefore, selfish free-riders can 
train the allocated global model using public datasets, instead of 
privacy datasets. Thus, selfish free-riders will obtain the well-
trained model parameters without devoting their datasets. 

As shown in Algorithm 2, we conduct the novel method to 
add perturbation into the parameters of the global model. 



However, additive stochastic Gaussian noise (line 5 in 
Algorithm 2) in round 0 will mislead the update parameters 
which means going too far on the wrong track. For example, 
RFFL [7] uses a reputation mechanism to judge whether the 
client does possess own dataset during the model training. In this 
situation, if we adopt terrible parameters at first and sent them 
to the server, RFFL will define a lower reputation value. Once 
reputation value is lower than the threshold, these free-rider 
clients will be eliminated from the FL system. As a result, we 
proposed an advanced method to evade the detection of RFFL. 

To implement the advanced method, we improve the 
perturbations additive of the novel method in round 0 (which is 
described in line 5 of Algorithm 2). To be specific, as shown in 
Algorithm 3, we firstly obtain the model structure M  and initial 

global model parameter 0 . Then we train M  using a public 

dataset and record the round 0 parameters 0

public . In addition, we 

return 0

public as the first response of the global model. After that,

we use Adam optimizer to update the parameters in subsequent 
rounds. 

Algorithm 3 The Perturbations Additive of Advanced Method 

Input: 

Adam: Learning rate  , Optimizing Step t , Betas 1 2,  , Epsilon 

 , Weight decay  , Loss function f , and Model   

Model: Round R , Initial Global Model Parameters 0 , Free-riders

clients N

Output: Update Model Parameters 

Initialize: 0 0 = , 0 0m = , 0 0v = , 0 0t =

1: /* For Free-Riders Clients*/ 

2: Obtain the 0 and M  from the Server 

3: Train M  using a public dataset 

4: Record parameters 0

public where round 0

5: For r  in range ( R ): 

6:     For n  in range ( N ): 

7:   If 0r == :  

8:  1 0r

public + =

9:   Else: 

10:  Line 8-15 in Algorithm 2 

11:   End if  

12:     End for 

13: End for 

IV. EXPERIMENT EVALUATION

This section first describes the experimental dependency 
including the used dataset and experimental settings. Then, we 
introduce the experimental evaluation metrics in the novel 
method and advanced method. At last, we demonstrate the 
experimental results and analysis. 

A. Datasets

We utilize MNIST and Cifar10 as standard classification
baseline datasets. MNIST includes handwritten digits with 10 
classes and has become the most known and used dataset in the 
classification task. The Cifar10 is made up of 10 classes of 
32x32 images with three RGB channels and consists of 50000 
training samples and 10000 testing samples. 

B. Experimental Settings

For accelerating the experiments, we only create an
independent identically distributed (iid) MNIST dataset and a 
non-iid MNIST dataset in the novel method comparison. In 
addition, to control the number of variables, we investigate the 
different free-rider attack performances under the same settings. 
In other words, as shown in [6], we investigate free-rider attacks 
with 600 training samples and 300 testing samples for each fair 
client in MNIST iid scenario, and 150 training samples and 75 
testing samples in the non-iid scenario.  

Analogously, in the advanced method comparison, as shown 
in [7], we consider three types of data, such as iid data, powerlaw 
data (which follows a power law to randomly partition), and 
non-iid data. Other experimental settings are shown in TABLE 
II and III. In TABLE II, we demonstrate the number of fair 
clients and free-rider clients, the type of data, and the number of 
samples in training and testing. The last column is the model 
aggregation algorithms including FedAvg and FedProx. 

TABLE II  DATA SPLITS DETAILS 

M
et

h
o
d
 

Fair 

Clien

ts 

Free-

rider 

Clients 

Data 

Splits 

Train 

Num 

Test 

Num 

Model 

Aggregation 

Novel 

6 1 
MINST 

iid 
600 300 

FedAvg/ 

FedProx 

10 5 

20 15 

6 1 
MINST 
non-iid 

150 75 10 5 

20 15 

Advan

ced 
10 

1 
MINST 

iid 
540 60 

FedAvg 

5 

15 

1 
MINST 

non-iid 
540 60 5 

15 

1 
MINST 

powerlaw 

/a b

*540

/a b

*60 
5 

15 

1 
Cifar10  

iid 
1600 400 5 

15 

1 
Cifar10 
non-iid 

1600 400 5 

15 

1 
Cifar10  

powerlaw 

/a b

*160 

/a b

*40 
5 

15 

Note: 1) 0.659 0.6591.659 0.01 1.659 0.99a     ， 2) ( )b sum a=

In TABLE III, we show the hyper-parameters in novel and 
advanced methods, including model parameters update 
optimizer, loss function, number of rounds, and the learning rate. 
In TABLE IV, we focus on advanced method attacks against 
RFFL. The first column denotes the target dataset, namely the 
data trained by fair clients in FL. The second column is the pre-
trained dataset trained by free-rider clients, which represents that 
selfish free-rider is unwilling to contribute the privacy dataset 
into FL model training. Note that, MNIST iid means that we 
extend the same MNIST tensor dimension as Cifar10 to simulate 
the selfish free-rider. In addition, we implement 3 optimizers, 
namely Adam, AdaBelief, and SGD, to compare the selfish free-
rider attack performance. 



TABLE III HYPER-PARAMETERS 

Method Optimizer Loss Round Learning Rate 

Novel 
Adam (ours)/ 

SGD [6] Cross-
Entrop

y Loss 

MNIST iid:200 
Non-iid:300 

0.001 

Advan
ced 

Adam (ours)/ 

AdaBelief [14]/ 

SGD  

MNIST:100 
Cifar10:200 

MNIST: 0.15/ 

Cifar10 :0.015 

(decay: 0.997) 

Note: 1) Decay = Learning Rate Decay, which means slowly reducing or 

decaying the learning rate after each round. 2) Optimizer utilizes the default 

setting. 

TABLE IV DATA TRAINED IN ADVANCED METHOD  

Target Dataset Trained 

by Fair Clients 

Pre-train Dataset Trained 

by Free-rider Client 
Optimizer 

MNIST 

iid non-iid / powerlaw 

Adam/ 

AdaBelief/ 

SGD 

non-iid iid / powerlaw 

powerlaw iid / non-iid 

Cifar 10 

iid 
non-iid / powerlaw 

MNIST non-iid / powerlaw 

non-iid 
iid / powerlaw 

MNIST iid / powerlaw 

powerlaw 
iid / non-iid 

MNIST iid / non-iid 

C. Evaluation Metrics

In this section, we utilize Variance deviation (Var) and
Euclidean Distance Deviation (EDD) as the evaluation metrics 
of comparison of the novel method and vanilla method [6]. Note 
that, the deviation represents the difference value of accuracy 
and loss in each round between the novel method or vanilla 
method and the only fair client model. To be specific, lower 
deviation in accuracy and loss value have more probability to 
evade the detection of outlier detector, so that we can carry on a 
successful free-rider attack. In other words, better attack 
performance means the lower AccVar , LossVar , AccEDD , and LossEDD . 

Note that fr  means the free-rider. 

( ) ( )
2 2

1 1

1 R R
r r

fair frAcc fair fr

r r v Acc

Var v v v v
R = = =

= − − −  () 

( ) ( )
2 2

1 1

1 R R
r r

fair frLoss fair fr

r r v Loss

Var v v v v
R = = =

= − − −  () 

( ) ( )
2 2

1 1
,

R R
r r r r

Acc fair fr fair fr

r r
x y Acc

EDD x x y y
= =

=

= − + −  () 

( ) ( )
2 2

1 1
,

R R
r r r r

Loss fair fr fair fr

r r
x r Loss

EDD x x y y
= =

=

= − + −  () 

Apart from the four metrics in the novel method, we propose 
False Positive (FP) rate to evaluate the performance of attacking 
RFFL using advanced methods. The FP rate denotes the 
removing ratio of fair clients in the detection of RFFL. We 
assume that the FL server assigns several absolute fair clients so 
that higher FP rate will be prone to puzzle servers to remove fair 
clients from the training process. Moreover, adversarial free-
rider clients will benefit from the training process until they are 
removed from FL training. In other words, a better free-rider 
attack means higher FP rate. 

# Number of Removing Fair Clients

# Number of All Fair Clients
FP = () 

D. Experimental Results and Analysis

In this section, we follow the experimental settings as shown
in Section 4.2. We implement anonymous free-rider attacks and 
selfish free-rider attacks to verify the attack performance of the 
novel method and advanced method. 

1) Anonymous Free-rider Attack Comparison
We utilize Var and EDD to evaluate the difference between

full fair clients and anonymous free-rider clients in FL settings. 
To evade the detection of outlier detectors, we need to obtain 
deviation as small as possible. We conduct a comparison 
including the vanilla method [6] and the novel method. 

TABLE V  ANONYMOUS FREE-RIDER ATTACK AVERAGE INCREASE 

COMPARISON IN MNIST IID DATA (%)  

Model 

Aggregati

on 

Data 

Splits AccVar LossVar AccEDD LossEDD

FedAvg 
iid +20.55 +49.81 +3.27 +6.25 

Non-iid +28.53 +35.33 +9.61 +9.88 

FedProx 
iid +20.93 +49.06 +11.21 +23.34 

Non-iid +17.66 +7.62 +6.79 +4.69 

We conduct extensive experiments to compare the 
anonymous free-rider attack performance using four metrics in 
MNIST iid data and MNIST non-iid data. As shown in TABLE 
V , we utilize the FedAvg and FedProx model aggregation 
algorithm. Compared with the vanilla method using iid data, our 
novel method achieves the 20.55% average increment in AccVar , 

49.81% in LossVar , 3.27% in AccEDD , and 6.25% in LossEDD . 

Moreover, using non-iid data, we achieve 20.93% promotion in 

AccVar , 49.06% in LossVar , 11.21% in AccEDD , and 23.34% in 

LossEDD . We obtain similar attack effectiveness using FedProx. 

In MNIST iid data, we have 28.53% improvement in AccVar , 

35.33% in LossVar , 9.61% in AccEDD , and 9.88% in LossEDD . In 

MNIST non-iid data, we obtain 17.66% in AccVar , 7.62 in LossVar , 

6.79% in AccEDD , and 4.69% in LossEDD . 

2) Selfish Free-rider Attack Comparison

TABLE VI  SELFISH FREE-RIDER ATTACK AND BASELINE AGAINST 

RFFL USING ADAM IN MNIST WITH 10 FAIR CLIENTS 

Method  

Free-

rider  

client 

Data Splits 
Round 0  

Data  

FP 

Num 

Avg 

FP Rate 

Avg (%) 

Baselin

e [7] 

1/5/ 

15 

iid/ 
Non-iid/ 

Powerlaw 

- 1.00 10.00 

Advan

ced 
(ours) 

1/5/ 

15 

iid 
Powerlaw 

6.17 61.67 

Non-iid 

Non-iid 
iid 

Powerlaw 

Powerlaw 
Non-iid 

iid 

We utilize FP rate to evaluate the performance of selfish 
free-rider attacks against the RFFL reputation mechanism [7]. 



To puzzle the detection of the RFFL and decrease the accuracy 
of the FL model, we should achieve higher FP rate. Moreover, 
we implement three optimizers to compare the performance of 
our advanced method, including Adam, SGD, and AdaBelief. 

We conduct extensive experiments with fair client quantity 
10, selfish free-rider client number 1, 5, or 15, and three types of 
data split including iid, non-iid, powerlaw. Note that, the fair 
client and the free-rider client constitute the clients of FL, for 
example, 10 fair and 1 free rider means 11 clients in FL. 
Moreover, we use MNIST and Cifar10 to evaluate the attack. 
The experimental settings are shown in Section 4.2.  

As shown in TABLE VI , the fourth column represents the 
public data of the pre-train strategy in Algorithm 3 line 8. That 
means fair clients are assigned to train MNIST iid data, but the 
free-rider clients are pre-trained by other kinds of data. In 
practice, we can utilize a public dataset while we only need the 
initial global model. The fifth column denotes the number of fair 
clients who pass the detection of RFFL. The FP rate is the 
proportion of FP rate occupied by all fair clients. To reflect the 
attack performance synthetically, we summarize TABLE VII to 
demonstrate the effectiveness of our advanced method in the 
selfish free-rider attack. We obtain the 61.67% FP rate against 
the RFFL reputation mechanism using Adam in the MNIST 
dataset which means we confuse RFFL to remove 61.67% fair 
clients. However, SGD and AdaBelief have lower FP num and 
FP rate, which possibly are scented by the server when the server 
sets absolute fair clients in early training rounds.  

TABLE VII SELFISH FREE-RIDER ATTACK AGAINST RFFL USING 

DEFERENT OPTIMIZERS AND DATASETS ON AVERAGE WITH 10 FAIR 

CLEINTS 

Method 
Optimiz

er  

Target 

Dataset  

Pre-train 

Dataset  

FP 

Average 

Num 

FP 

Average 

Rate (%) 

Advan

ced 

(our) 

Adam 

(our) 

MNIST MNIST 6.17 61.67 

Cifar10 
Cifar10 3.78 37.78 

MNIST 1.94 19.44 

SGD 

MNIST MNIST 1.22 12.22 

Cifar10 
Cifar10 2.39 23.89 

MNIST 0.89 8.89 

AdaBel
ief 

MNIST MNIST 4.06 40.56 

Cifar10 
Cifar10 2.33 23.33 

MNIST 1.11 11.11 

Baselin

e 

Adam 
MNIST - 1.00 10.00 

Cifar10 - 1.56 15.56 

SGD 
MNIST - 0.33 3.33 

Cifar10 - 0.67 6.67 

AdaBel

ief 

MNIST - 1.11 11.11 

Cifar10 - 0.56 5.56 

In summary, the advanced method achieves 61.67% FP rate 
in MNIST with 10 fair clients, 37.78% in Cifar10, and 19.44% 
in the Cifar10 dataset when free-rider clients are trained by the 
MNIST dataset. Moreover, the advanced method obtains the 
best average FP rate using Adam optimizer in each experimental 
setting with 10 fair clients. In other words, we successfully 
puzzle and confuse the FL server to remove the fair clients from 
FL training, and thus we effectively decrease the accuracy of FL. 

V. CONCLUSION 

This paper explores and studies the two scenarios of free-
rider attacks in Federated Learning (FL), namely anonymous 
and selfish free-rider attacks. We propose respectively the novel 
method and the advanced method to implement free-rider 
attacks in FL settings. Moreover, we conduct extensive 
experiments to verify the attack performance of the novel 
method compared with the vanilla method of [6]. In addition, 
utilizing the advanced method against the state-of-the-art 
defense model, we achieve the up to 61.67% false positive rate 
under MNIST and Cifar10 datasets.  
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