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Abstract—Code-reuse techniques have emerged as a way to
defeat the control-flow defenses that prevent the injection and
execution of new code, as they allow an adversary to hijack
the control flow of a victim program without injected code.
A well-known code-reuse attack technique is Return-Oriented-
Programming (ROP), which considers and links together (rela-
tively short) code snippets, named ROP gadgets, already present
in the victim’s memory address space through a controlled
use of the stack values of the victim program. Although ROP
attacks are known to be Turing-complete, there are still open
question such as the quantification of the executional power of
an adversary, which is determined by whatever code exists in
the memory of a victim program, and whether an adversary
can build a ROP chain, made up of ROP gadgets, for any
kind of algorithm. To fill these gaps, in this paper we first
define a virtual language, dubbed ROPLANG, that defines a set
of operations (specifically, arithmetic, assignment, dereference,
logical, and branching operations) which are mapped to ROP
gadgets. We then use it to evaluate the executional power of an
adversary in Windows 7 and Windows 10, in both 32- and 64-
bit versions. In addition, we have developed ROP3, a tool that
accepts a set of program files and a ROP chain described with our
language and returns the code snippets that make up the ROP
chain. Our results show that there are enough ROP gadgets to
simulate any virtual operation and that branching operations are
the less frequent ones. As expected, our results also indicate that
the larger a program file is, the more likely to find ROP gadgets
within it for every virtual operation.

Index Terms—ROP chain, evaluation, Turing-completeness,
Windows, automatic exploit

I. INTRODUCTION

Software systems have increased in complexity and in size
(measured as lines of code) during the last years. Nowadays,
large software development teams are involved in several
software projects at the same time, having a fixed time-to-
market that urges them to end the development cycle as
fast as possible, regardless of the software quality. Although
automatic methods exist to improve the software quality,
software vulnerabilities have dramatically increased, opening
a window of opportunity to malicious exploitation [1].
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Many of these vulnerabilities lead to control-hijacking at-
tacks, which are the most popular category of memory exploits
nowadays [2]. These attacks use code injection or its evolution,
code-reuse attacks, to hijack the legitimate control flow of a
victim program and execute malicious code. As a consequence,
several defense approaches for control-hijacking attacks have
been proposed [3], aiming to guarantee that the control flow of
a program legitimately prevails. Examples of these include the
use of stack cookies [4], inline software guards [5], runtime
elimination of memory errors, control-flow integrity (CFI) [6]–
[8], protection of data and code pointers [9], address space lay-
out randomization (ASLR) [10], and write-xor-execute (W⊕X;
also known as data-execution prevention, DEP) [11].

Code-reuse techniques have emerged as a trend of advanced
threats to mitigate the effects of the control-flow defenses
that prevent the injection and execution of new code. These
techniques allow an adversary to hijack the control flow
of a victim program to perform malicious activities without
injected code.

Return-Oriented-Programming (ROP) is a code-reuse attack
technique presented in 2007 for the x86 architecture (as an
evolution of the return-to-libc attacks) [12], [13]. ROP attacks
have been demonstrated feasible in numerous architectures,
such as RISC [14], Linux/86 and Solaris/SPARC architec-
tures [3], and recently in RISC-V [15]. In particular, ROP
considers and links together (relatively short) code snippets
already present in the process’s memory address space, named
as ROP gadgets. Each code snippet ends with an instruction
that changes the program control flow (e.g., a ret instruction
in Intel architectures), thus allowing an attacker who controls
the stack to chain them together, controlling the order of code
execution through the stack values. A chain of ROP gadgets
is normally termed as a ROP chain. As the ROP chain links
together these code snippets stored in memory pages marked
as executable, ROP is able to evade control-flow defenses such
as W⊕X.

ROP attacks are defeated with other control-flow defenses
such as CFI. The security analysis of CFI solutions was first
carried out in [16], raising questions on the true effectiveness
of these solutions. The recent work in [17] presents a solution
to precisely measure and verify the effectiveness of existing
CFI solutions.

Modern operating systems such as Windows 10 incorporate



native defense techniques based on CFI, as Control-Flow
Guard (CFG) [18]. CFG prevents the exploitation of memory
corruption vulnerabilities, ensuring that the control-flow of the
program remains legitimate. This defense is implemented in
kernel-space and at program execution the targets of indirect
branches are checked to verify whether they are valid targets.
CFG, though, is not system-wide as it only works with
“CFG-aware” programs, i.e., programs that are compiled with
this feature enabled. Hence, CFG requires support from the
compiler and the operating system to fully implement it.

Unfortunately, not many Windows programs incorporate
this feature at the moment of this writing. To assess this
claim, we have downloaded the top 10 of Windows appli-
cations in FossHub, a popular website hub for free and open-
source software downloads1. and installed on a Windows 10
Enterprise (build 17763.rs5 release 18914-1434). From a total
of 1034 program files (shared libraries and executable files),
we found only 21 (which counts for 2.03%) CFG-aware
programs. In contrast, 90.45% (4167 files) of the program
files in the Windows system folder are CFG-aware programs.
In any event, the hijacking of the control flow via return
address corruption (as ROP does) is a known limitation of
CFG. This hijacking technique is avoided with the shadow
stack mechanism [19], a new security defense incorporated in
the last versions of Windows that require both hardware and
compiler support too.

A natural question that arises in this context is to analyze
the capabilities of an adversary, regardless of the control-flow
defenses put in place. ROP attacks are known to be Turing-
complete [13], i.e., ROP attacks are capable of any arbitrary
computation. Likewise, enough ROP gadgets to make up a
Turing-complete set of operations have been found in Linux
environments [20]. However, a question that still remains open
is the quantification of the executional power of an adversary,
which is determined by whatever code exists in the memory
of a victim program. Noting that the ROP chain built by an
adversary can be seen as the implementation of an algorithm
designed to perform a desired task, if an adversary can find
enough ROP gadgets for any arbitrary operation thus any
algorithm can be implemented with a ROP attack. The more
existing code is in a victim program, the more likelihood there
is for finding useful gadgets [12]. Likewise, if the adversary
is unable to find a ROP gadget for a specific operation needed
in the ROP chain, the attack will likely fail.

Formally speaking, any real world computation can be trans-
lated into an equivalent computation that involves a Turing
machine under the Church-Turing thesis [21]. Assuming this
thesis holds, we can build a Turing machine that performs
equivalent computations to the operations performed by a ROP
chain.

To this extent, in this paper we first define a Turing-complete
set of operations that make up a virtual language. This virtual
language, dubbed ROPLANG, defines a set of operations that

1The list of top 10 software downloaded from https://www.fosshub.com
(accessed on December 24, 2020) is given in Appendix A.

are later mapped to specific ROP gadgets, thus representing a
ROP chain in an abstract way. We then use these operations
to quantify the executional power of an adversary in a given
environment. In particular, we evaluate the executional power
of an attacker in Windows 7 and Windows 10, in its x86 and
x86-64 versions, as Windows is still the predominant platform
targeted by attackers [22].

As a side product of our research, we have developed a tool,
dubbed ROP3, that accepts as input a set of program files and
a ROP chain described with ROPLANG, and returns the ROP
gadgets that make up the ROP chain. Our tool is built on top
of the Capstone disassembly framework [23] and is designed
to work with the Windows binary file format. In addition, our
tool was designed in a modular way to facilitate the adoption
of other file formats and to extend the virtual language.

Ethical considerations. The tool that we introduce in this
paper can be used by an adversary to automatically generate a
ROP chain and thus facilitate the exploitation of a victim pro-
gram. However, at the same time this tool can be integrated in
analysis workflows of automatic exploit generation [24], hence
providing developers with enough information to prioritize the
fixing of software bugs and the application of these fixes by
end users.

This paper is organized as follows. Section II states the
adversary model and the research questions. The related work
is reviewed in Section III. Section IV describes the virtual
language operations and proves its Turing-completeness, sim-
ulating a classical Turing machine. The evaluation of the exe-
cutional power of adversaries in different flavors of Windows
OS is given in Section V. Finally, Section VI concludes the
paper and states future work.

II. PROBLEM DEFINITION

A. Adversary Model

We summarize in this section the number of assumptions
made about the target system and the victim program in
order to make the problem sufficiently tractable to allow for
advancing the state-of-the-art. The assumptions are as follows:

• ASLR is not deployed on the target system, or there is
a break available for ASLR. For instance, there exists a
memory leak in the victim program that facilitates the
adversary to break ASLR by means of learning function
pointers of interest.

• CFI protection mechanisms are disabled on the victim
program, or there is a break for CFI protection mecha-
nisms which are put in place. For instance, a common
bypass method in Windows CFG is leveraging the start
of the ROP chain to non-CFG-aware images.

• The memory address space of the victim program is
known to the adversary. For instance, the adversary can
launch system commands and other analysis tools to
know the dependencies of the victim program and the
mapping of shared libraries. In conjunction with the first
assumption, the adversary can look for and locate any
byte within the memory address space of the victim
program.

https://www.fosshub.com


B. Research Questions

In this paper, we aim to answer the following questions
about ROP attacks:
RQ1. How often do ROP gadgets for any arbitrary operation

arise in real-world programs?
RQ2. Is it possible to chain gadgets for a desired computa-

tion? Can adversaries build any kind of algorithm using
a ROP chain?

III. RELATED WORK

In this section, we focus on the most closely related work. In
particular, we distinguish between works about ROP gadgets
computation and works about specific ROP tools.

The seminal work of Shacham [12] showed that there are
sufficient instructions in a piece of Intel x86 binary code large
enough to make a ROP attack in a victim program viable.
This is mainly motivated because the large instruction set
architecture (ISA) of Intel x86 and because x86 instructions
are unaligned in memory, and thus different instructions can
be interpreted when an original instruction is read some bytes
ahead. A taxonomy of ROP exploits with regards to the section
code from which a ROP gadget is taken is given in [25].

Recall that a ROP attack chains code snippets ending in
branch instructions that alter the control-flow of a victim
program. Normally, these branch instructions refer to the ret
instruction of Intel’s ISA. As shown in [26], ROP attacks are
feasible even without making use of these types of branch
instructions.

A lot of tools have been proposed to detect and mitigate
ROP attacks during the last decade. In the following, we
discuss them in chronological order. First works were based
in dynamic binary instrumentation (DBI). In [27], a DBI
tool developed with the Pin framework [28] that uses taint
analysis as an analysis technique for mitigating ROP attacks
is introduced. Similarly, DROP is proposed in [29], which
is a DBI tool developed with the Valgrind framework [30]
and assumes that ROP gadgets contain no more than five
instructions, ending in a ret instruction. Finally, in [31] the
authors proposed ROPDefender, another tool based on Pin
that detects ROP by means of a shadow stack. A similar
approach based on shadow stacking is also proposed in [32],
but residing in kernel-space instead.
/ROP is proposed in [33], which maintains an allow-

listing of legitimate return addresses as a mitigation technique.
ROPGuard [34] proposes a dynamic protection based on the
runtime monitoring of Windows functions which are normally
abused by ROP attacks. kBouncer [35] detects ROP exploits
using hardware features of the Intel processors. In particular, it
uses the Last Branch Recording registers, which is a hardware
feature introduced in Intel Nehalem architectures that stores
the most recent branches taken by the CPU as a performance
optimization mechanism. Finally, a defense technique (for
Linux i386 and AMD64 systems) named disjoint code layouts
is introduced in [36], which relies on multiple executions of
the same program under a control monitor component that

guarantees that no code segments overlap. Other authors have
proposed the use of hardware performance counters to detect
ROP attacks at runtime [37].

Other authors have proposed tools more focused on offen-
sive technology. ROPInjector, proposed in [38], transforms
a shellcode to its ROP-chain equivalent and patches the
program file to incorporate the ROP chain into its binary code
directly. This way of action is uncommon for ROP attacking.
In the same way, the authors in [39] proposed a metamor-
phic obfuscator dubbed Frankenstein, which is able to
reassemble malicious code with code fragments entirely from
other programs. In contrast, other authors have proposed the
use of ROP as a defense technology. For instance, the authors
in [40] use ROP it for software watermarking. In [41], a tool
called ROPOB is proposed to obfuscate control flow using ROP.
Likewise, RopSteg [42] hinders parts of the original program
code by generating equivalent ROP gadgets and blending
them into the program. The work in [43] proposes SpecROP,
which mixes ROP attacks with speculative execution attacks.
This novel speculative execution attack uses branch poisoning,
commonly used in speculative execution attacks, to effectively
stitch the execution of smaller gadgets equivalent to much
larger, monolithic gadgets.

Regarding the generation and analysis of ROP chains,
deROP [44] makes use of debugging functions to transform a
ROP chain in a non-ROP chain for posterior analysis. In [45],
a system that automatically generates ROP chains for Linux
systems is introduced, although the described language is not
Turing-complete, unlike ours. The work in [46] introduces
Sigreturn Oriented Programming (SROP) as another evolution
of ROP attacks. SROP abuses how signal returns are handled
in Linux and other UNIX-based systems. The authors also
showed that SROP is Turing-complete. ROPEMU, introduced
in [47], is an emulation-based framework to analyze complex
code reuse attacks, allowing for dissecting, reconstructing, and
simplifying ROP chains.

In [48], the authors introduced a tool, named AMOCO,
which builds a directed acyclic graph and uses symbolic
execution analysis [49] to automatically generate ROP chains.
AMOCO avoids the use of an intermediate language to minimize
execution time and errors when constructing the ROP chains.
In contrast, our tool ROP3 uses a tree-like structure and
analyzes it with a backtracking algorithm. Moreover, it relies
on ROPLANG, which can be seen as a sort of intermediate
language. The ease of adding new virtual operations in RO-
PLANG facilitates to find ROP gadgets that are semantically
equivalent to an operation of interest.

Other tools widely used for building ROP chains are
ropper [50], ROPgadget [51], and ropium [52],
which also rely on the Capstone engine. Unlike our tool,
ropper [50] does not automatically generate ROP chains.
Although it has recently incorporated a semantic search for
ROP gadgets, it is not backing in any formal language as
we do with ROPLANG. ROPgadget [51] provides a way to
automatically get a Python code implementing a ROP chain
that will run a shell. The definition of common shellcodes



Table I
SIMULATION OF ARITHMETIC OPERATIONS. THE RET INSTRUCTION (AT

THE END OF EACH ROP GADGET) WAS DELIBERATELY OMITTED.

Operation ROP gadgets/Operations
add dst, src
clc
adc dst, srcadd(dst, src)

inc dst
sub dst, src
clc
sbb dst, srcsub(dst, src)

dec dst
xor REG1, REG1
sub REG1, dst
mov(dst, REG1)

neg(dst)

neg dst

using ROPLANG is a very interesting idea that needs further
research. Finally, ropium [52] (built on top of ROPgadget)
allows for searching for ROP gadgets via semantic queries too,
but without relying on any formal language either.

Last, but not least, the work in [53] studied how software
diversification can eliminate almost all the ROP gadgets in
real-world applications. The language and the tool that we
propose in this paper can be used in this context, helping
software developers deploy their software with as few ROP
gadgets as possible.

IV. DEFINITION OF THE VIRTUAL LANGUAGE: ROPLANG

A. Virtual Language Operations

A virtual operation in ROPLANG is simulated using a
concrete x86 instruction sequence in the vulnerable program
execution that makes up ROP gadgets. Our operations use a
similar notation to Intel’s assembly notation, which is also
used in the x86 instructions shown in the rest of this section.
In addition, we adhere to the Intel x86 syntax when having
operations with two operands (the destination register first,
and the source register second). Such instruction sequences or
gadgets can be divided into the following categories:

1) Arithmetic operations: The basic arithmetic operations
that we considered are addition (add), subtraction (sub), and
negation (neg), which can be simulated using a variety of x86
instructions sequences: For instance, to simulate an addition
we can rely on the own assembly instruction add operation,
on the instruction inc, or on the combination of clc and adc
instructions. Table I shows examples of x86 ROP gadgets that
simulate add, sub, and neg.

In the case of having a ROP gadget with more than one
assembly instruction, it could be divided into smaller ROP
gadgets, where every gadget is composed of few instructions.
For instance, the clc;adc dst, src can be simulated either
by a single ROP gadget having both instructions and ending
with a return instruction, or by two ROP gadgets, clc and
adc dst, src, ending both with a return instruction as ret
does not affect any flag when executed.

The virtual operations of ROPLANG can have relationships
between them too. For instance, one of the ways to simulate
the neg operation (see the first ROP gadget of neg in Table I)

Table II
SIMULATION OF ASSIGNMENT OPERATIONS. THE RET INSTRUCTION (AT

THE END OF EACH ROP GADGET) WAS DELIBERATELY OMITTED.

Operation ROP gadgets
mov dst, src
xchg dst, src
xor dst, dst
add dst, src
xor dst, dst
not dst
and dst, src
clc
cmovnc dst, src
stc
cmovc dst, src
push src

mov(dst, src)

pop dst
pop dst; value is set in the stack

lc(dst, value) popad; value is set in the stack appropriately

Table III
SIMULATION OF DEREFERENCE OPERATIONS. THE RET INSTRUCTION (AT

THE END OF EACH ROP GADGET) WAS DELIBERATELY OMITTED.

Operation ROP gadgets
ld(dst, src) mov dst, [src]
st(dst, src) mov [dst], src

has as last instruction a move (mov) operation, which is
defined next. In addition, this simulated operation also defines
REG1 as an abstract representation of any general-purpose
register different from dst.

2) Assignment operations: The assignment operations en-
able us to assign value to a variable. A variable in this context
is a CPU logical (also called general-purpose) register, while
a value can be either an immediate or a logical register too.
In this category, we have considered the move (mov) and
load constant (lc) operations. Examples of ROP gadgets
simulating these operations are shown in Table II. Note that
some instructions may overwrite certain general-purpose reg-
isters during its execution. These registers are normally called
clobbered registers. We say that a ROP gadget of an operation
can have side effects if the execution of the gadget reads/writes
memory addresses or overwrites more clobbered registers than
the minimum needed for the operation. For instance, the
popad instruction, used to simulate the lc operation (see
Table II), will load double-word values (32-bit length) into
all the general-purpose registers, apart from the destination
register of interest.

3) Dereference operations: The load (ld) and store (st)
operations represent memory dereferences, which are useful
to visit a memory location for reading or writing. Table III
shows examples of these operations.

4) Logical operations: This category includes the xor,
and, or, and not operations. Note that by De Morgan’s
Laws, the logic operations can be simplified to an operation
{and, or} plus an operation of the set {xor, not, neg}.
Straightforward examples of ROP gadgets simulating these
operations are presented in Table IV.



Table IV
SIMULATION OF LOGICAL OPERATIONS. THE RET INSTRUCTION (AT THE

END OF EACH ROP GADGET) WAS DELIBERATELY OMITTED.

Operation ROP gadgets
xor(dst, src) xor dst, src
and(dst, src) and dst, src
or(dst, src) or dst, src

not dst
not(dst) xor dst, 0xFFFFFFFF

5) Branching operations: Conditional branching operations
require some tricky steps to be achieved. In particular, we
need to stitch together various ROP gadgets to obtain an
operation equivalent to conditional branching. We need first to
undertake some operation to perform the desired comparison.
As stated in [12], the carry flag (CF) is enough to obtain the
full set of standard comparisons. As comparison operations,
we define the equal comparison (eqc), and the less than
comparison (ltc). Note that having eqc and ltc we can
implement other comparison operations such as greater than
or equal, distinct, etc. For instance, to perform a distinct
comparison we can perform first an equal comparison and then
negate the result. All the comparison operations will clear (or
set) the CF according to the comparison performed. Table V
shows a subset of ROP gadgets useful to simulate comparison
operations.

Once the comparison has been done, we can make the
conditionally change in the stack pointer depending on the
result of the comparison. Following the method proposed
in [12], we define the following operations:

1) First, we need then to get the CF in a general-purpose reg-
ister. In this regard, we can use assembly instructions that
work explicitly with the CF, such as left/right rotations
with carry (rcl, rcr), or addition with carry (adc). Other
instructions such as subtraction with carry (sbb) can also
be used, although additional instructions will be needed
in this case (see Table VI). We named this operation as
get carry flag operation (gcf). This operation needs a
comparison operation as a parameter.

2) When the gcf operation is done, we have a general-
purpose register that contains a 1 or 0 value. As proposed
in [12], we transform it to contain an arbitrary δ value
or 0, where δ represents the offset that we want to add to
the stack pointer register if the condition checked in the
first step holds. We define the load stack delta operation
(lsd) that enables us to set either δ or 0 in a general-
purpose register.

3) Finally, we modify the value of the stack pointer register
appropriately. We define a stack pointer addition (spa)
that performs an addition to the stack pointer register of
any other general-purpose register. If the register contains
a negative value, then the addition becomes a subtraction
operation. Note that we can also use a spa operation
preceded by a neg operation to simulate a stack pointer
subtraction. For the sake of completeness, we also define
a stack pointer subtraction (sps) operation that subtracts

Table V
SIMULATION OF COMPARISON OPERATIONS.

Operation Operation
sub(dst, src)

eqc(dst, src)
neg(dst)

ltc(dst, src) sub(dst, src)

Table VI
SIMULATION OF CONDITIONAL BRANCHING OPERATIONS. THE RET

INSTRUCTION (AT THE END OF EACH ROP GADGET) WAS DELIBERATELY
OMITTED.

Operation ROP gadgets/Operations
lc(REG1, 0)
Comparison operation cop(dst, src)
adc dstCF, REG1
lc(REG1, 0)
Comparison operation cop(dst, src)
sbb dstCF, REG1
neg(dstCF )
lc(dstCF, 0)
Comparison operation cop(dst, src)

gcf(dstCF , cop(dst, src))

rcl dstCF, 1
lc(REG1, δ)
neg(dstCF )lsd(dstCF , δ)
and(dstCF , REG1)

spa(src) add(REG_SP, src)
sps(src) sub(REG_SP, src)

to the stack pointer register the value of any other general-
purpose register.

Regarding unconditional branching, a virtual operation can
be straightforwardly constructed relying on a similar way to
conditional branching. We define the jmp operation such that
it makes use of lc to load a δ offset in a register, and then
uses spa to unconditionally change the control-flow of the
ROP chain. This operation is shown in Table VII.

Tables I to VII show a (non-exhaustive) list of the ROP
gadgets needed to simulate the virtual operations defined by
our language. Note that some operations are defined with other
virtual operations too. We assume that no harmful side effects
(i.e., the execution of ROP gadgets do not affect to poste-
rior computations within the same operation) are produced
between these sequences of virtual operations.

B. On the Turing-Completeness of ROPLANG

Following a similar approach as in [54], we show how a
classical Turing machine can be simulated with ROPLANG to
demonstrate that it is Turing-complete. Formally speaking, a
(one-tape) Turing machineM is a tuple 〈Q,Γ, σ0,Σ, q0, F, δ〉
where [55]:

• Q is a finite, non-empty set of states;
• Γ is the finite set of symbols in the tape alphabet;

Table VII
SIMULATION OF UNCONDITIONAL BRANCHING OPERATIONS.

Operation ROP gadgets/Operations
lc(dst, δ)

jmp(dst, δ)
spa(dst)



• σ0 ∈ Γ is the blank symbol;
• Σ ⊆ Γ \ {σ0} is the input alphabet symbols, i.e., the set

of symbols allowed to appear in the initial tape contents;
• q0 ∈ Q is the initial state;
• F ⊆ Q is the set of final states or accepting states. If

any state of F is reached, the input string (initial tape
contents) is accepted; and

• δ : (Q \ F ) × Γ → (Γ × {L,R} × Q) is a partial
function called transition function which determines the
next move, where L is left shift and R is right shift.

The mechanics of a Turing machine M is defined by δ. If
δ(qi, Sj) = (Si,j , D, qi,j), then when state of the machine is
qi, reading the symbol Sj on the tape makesM to replace Sj

by Si,j , moving the tape in direction D ∈ {L,R} and going
to state qi,j . If δ is not defined on the current state and the
current tape symbol, then the machine halts. If qi,j ∈ F , then
it is said that M stops and accepts the initial tape contents.

Roughly speaking, the operation of the Turing machine
comprises four steps. First, it reads the current tape symbol.
The current tape symbol and the current state are then used to
check the transition table and get the next state and symbol.
Next, the new symbol is written to the tape and the current
state is updated appropriately. Finally, the tape head is moved
to the left or right direction.

Representation. To represent a Turing machine, we set-up
the following data structures in the victim program’s memory:
qcur ∈ Q holds the current state, thead tracks the position on
the tape containing the current symbol σ ∈ Σ. As the tape is
linear, a left shift movement on the tape with regard to the
current position means thead − 1, while thead + 1 represents
a right shift movement instead. The transition table ttable will
be placed in memory such that the comparison operation to
search is transformed into a direct lookup in a two-dimensional
array.

Initialization. We use three general-purpose registers to
internally store the references to thead, qcur, and ttable (REG1,
REG2, and REG3, respectively). An adversary can craft a
payload as shown in Listing 1 to load the input, the initial
state, and the transition table. Additionally, we use a special
symbol (♣) to encode the new symbol in final states for the
sake of simplicity. We use another general-purpose register,
REG4, to store it.

Listing 1. Initialization of a Turing machine.
1 mov(REG1, thead) ; start loading tape content
2 st(REG1, S0)
3 add(REG1, 1)
4 st(REG1, S1)
5 ...
6 add(REG1, 1)
7 st(REG1, SN) ; end loading tape content
8 mov(REG1, thead) ; reset tape header ptr
9 mov(REG2, qcur) ; initial state

10 mov(REG3, ttable) ; start loading trans. table
11 st(REG3, S0,0) ; new symbol (q0, S0)
12 add(REG3, 1)
13 st(REG3, D0,0) ; direction
14 add(REG3, 1)

15 st(REG3, q0,0) ; new state
16 add(REG3, 1)
17 st(REG3, S0,1) ; new symbol (q1, S0)
18 add(REG3, 1)
19 st(REG3, D0,1) ; direction
20 add(REG3, 1)
21 st(REG3, q0,1) ; new state
22 add(REG3, 1)
23 ...
24 st(REG3, S0,i) ; new symbol (qi, S0)
25 add(REG3, 1)
26 st(REG3, D0,i) ; direction
27 add(REG3, 1)
28 st(REG3, q0,i) ; new state
29 add(REG3, 1)
30 ...
31 st(REG3, Sj,i) ; new symbol (qj , Si)
32 add(REG3, 1)
33 st(REG3, Dj,i) ; direction
34 add(REG3, 1)
35 st(REG3, qj,i) ; new state
36 add(REG3, 1)
37 mov(REG3, ttable) ; reset trans. table ptr
38 mov(REG4, ♣) ; halt symbol

Simulating the mechanics of a Turing machine. As men-
tioned above, each step in the machine checks the transition
table by using the current state and the current tape symbol.
By the way used to represent the transition table, this checking
procedure will be a direct lookup in a two-dimensional array.
We use the add and ld operations to dynamically calculate
the offset in the transition table, based on the current symbol
and state. Once the correct offset is obtained, we use it to
lookup the new symbol (writing it into the tape), the next
state, and the direction to move the tape header. This process
is repeated until the machine reaches a halt (or final) state.
We use an operation equivalent to “no operation” to indicate
the termination of the Turing machine. The payload needed to
simulate the steps of a Turing machine is shown in Listing 2.

Listing 2. Simulating a step of a Turing machine.
1 _step:
2 mov(REG5, REG3) ; set to trans. table
3 add(REG5, REG1) ; get the row
4 ld(REG5, REG5)
5 add(REG5, REG2) ; get the column
6 ld(REG6, REG5) ; load new symbol
7 gcf(REG7, eqc(REG4, REG5)) ; halt sym?
8 lsd(REG7, _exit) ; finish simulation
9 spa(REG7)

10 st(REG1, REG6) ; write it to tape
11 add(REG5, 1)
12 ld(REG6, REG5) ; load direction
13 add(REG1, REG6) ; move the tape header
14 add(REG5, 1)
15 ld(REG2, REG5) ; load new state
16 jmp(REG5, _step) ; repeat the step
17 _exit:
18 mov(REG1, REG1) ; halt state

C. Tool Description
The ROP3 tool is developed in Python programming lan-

guage, and it relies on the Capstone disassembly frame-
work [23] to search for gadgets, operations, and ROP chains.
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Figure 1. Backtracking algorithm of ROP3 to find a ROP chain.

Thanks to Capstone, the disassembled instruction counts on
a very fine-grained level of detail, such as the list of implicit
registers read/written, thus enabling the tool to make decisions
based on the instruction and operand types.

Each of the virtual operations that make up ROPLANG
(described in Section IV) is natively supported by ROP3.
Specifically, a virtual operation is defined in a separated file
using YAML syntax. An operation is composed of one or more
sets of instructions, whereas a single instruction is defined by
its mnemonic and the operands (if any). The operands can be
defined to hold a particular logical register (such as eax, rbx,
r14, etc.) or an arbitrary register (reg1, reg2, ...), which acts
itself as a register mask (that is, it can match to any logical
register). Optionally, an operand can hold an arbitrary value
to comply semantically with an operation (e.g, the operand
can hold −1 to obtain the negation of an integral value of a
register using the xor operation). Likewise, an operand can be
defined as implicit when the assembly instructions defined in
the YAML file uses some registers implicitly. For instance, the
leave instruction in Intel x86 assembly has no operands, but
it implicitly moves the current value held on ebp to the esp
register and pops the top of the stack into ebp. Following
this structure, we can define an arbitrary number of custom
operations, either as a single or as multiple YAML files.
ROP3 follows a similar approach as in [12] to search for

ROP gadgets. It first locates the raw bytes of instruction
opcodes that change the control flow in the executable sections
of the program file (or files) provided as input, and then goes
backwards at the defined maximum of byte length from such
an instruction. The maximum size of the ROP gadgets can be
parametrized when executing the tool and its default value is
set to 5. ROP3 supports the search of different gadget endings,
such as near returns (retn), far returns (retf), unconditional
jumps (jmp), or procedure calls (call).

On a higher abstraction level, in ROP3 a ROP chain is the
concatenation of a series of operations. Usually, there are data
dependencies between the registers used by the operations in

a ROP chain. For example, a ROP chain may firstly load a
constant value in any logical register (operation lc(reg1)
with ROPLANG syntax) and, afterwards, move such a value
to another register (operation mov(reg2, reg1)). As RO-
PLANG, ROP3 follows the Intel syntax when referring to
operands (that is, the first operand is the destination register
and the second operand is the source register).

In order to search for ROP chains, ROP3 works as follows.
The tool first parses the plain text file provided by the user
as input, in which the operations to be chained are defined
with ROPLANG operations. It then finds all gadgets that fulfill
every operation, providing the destination and source registers
of each operation and builds a tree structure, considering the
operation order defined in the input file. Finally, it solves
the data dependencies between operations traversing the tree
recursively in depth-first order with backtracking.

Figure 1 illustrates how ROP3 works. Let us consider that
the user wants to build a ROP chain defined by the op-
erations lc(reg1); neg(reg2); and(reg2, reg1)
(shown at the left side of the figure). ROP3 searches for ROP
gadgets that fulfill every operation (obtaining the ones shown
at the middle of the figure) and then builds a tree structure
for every gadget found for the first operation. For the sake of
illustrative purposes, we only show the tree of the first ROP
gadget found (depicted at the right side of the figure). For
every operand in an instruction, a node is created. Every node
of the tree has been labeled with the register considered in
each ROP gadget.

Once a tree is built, it is traversed with backtracking, solving
the data dependencies between the operations as follows: the
edx register is assigned to the register mask reg1 and then
moves (denoted as a dotted arrow) to the node representing
the first gadget of the second operation, neg ebx ; ret (1).
In this node, the ebx register is assigned to the register mask
reg2, and then moves to the next node (2), which represents
and ecx, eax ; ret. As the assigned value to reg2 does
not match with the current operand (registers ecx), it moves



up (3), denoted as a dotted arrow in red, and down (4) to
the next child of the parent node. The use of backtracking
allows ROP3 to prune the sub-trees and find a solution in
an efficient manner. As the operand of the next node does
not match either, it moves up again (5), going back to the
previous node as no more nodes are available (6), and clears
up the value assigned to reg2. Moving to the next gadget,
neg ecx ; ret (7), it assigns ecx to reg2. It moves down
(8) and checks that the assigned value of reg2 matches the
value of reg2 in the gadget, and then moves down to check
the second operand (9). As the assigned value of reg1 does
not match the value of reg1 in this gadget, it moves up again
(10) and goes to the next node (11). In this case, the assigned
value of reg1 matches the value of reg1 and thus the search
has finished. The search algorithm then backtracks till the root
node, keeping track of all assigned register values, and returns
the result to the user. The combination of ROP gadgets that
satisfy the ROP chain has been highlighted in gray in the tree.

At the moment of this writing, we are adding to ROP3 a
feature to consider the (possible) side effects of a sequence of
instructions within a ROP gadget (for instance, an unwanted
load of a value into a register, an addition between registers,
etc.). For each instruction within a ROP gadget, we keep track
of what is producing into the logical registers, thus pruning
the sub-tree or continuing the path when appropriate.

For the sake of open science, we have released our software
under the GNU/GPLv3 license [56]. In addition, ROP3 is also
a Python3 library, which facilitates the integration with other
analysis pipelines.

V. EVALUATION

In this section, we first use ROP3 to evaluate how many
ROP gadgets for any arbitrary operation arise in real-world
programs. In particular, we focus on different flavors of
Windows OS, checking whether the default dynamic link
libraries (DLLs) shipped with Windows OS contain ROP
gadgets for any arbitrary operation, as specified by ROPLANG.
We then verify whether there are enough gadgets to build a
fully operating Turing machine. Appendix B gives details to
exercise our artifact and reproduce the evaluation.

A DLL is a Windows executable file that contains a set of
functions and data used by other Windows programs. These
functions are normally termed as Application Programming
Interface (API) functions. They are similar to the .so files
in Linux OS. A set of DLLs is shipped with Windows OS
and is available for any Windows program, providing shared
functions that make integration easier with the Windows OS
itself. These DLLs are commonly referred to as system DLLs.

When the Windows PE loader loads a program for ex-
ecution, all its shared libraries are loaded as well in the
process’ memory address space. Windows OS incorporates
a mechanism to improve the application load time and to
cache commonly used system DLLs. This mechanism, termed
KnownDlls, is an object stored in the Windows Reg-
istry [57].

As the number of DLLs shipped with Windows OS is in
terms of hundreds, being also different across the flavors of
Windows, we have considered only the subset of system DLLs
contained in KnownDlls that are common across all the
versions of Windows considered for the experimentation.

This subset of DLLs is composed of a total of 20 DLLs,
counting with DLLs frequently used by Windows programs.
Apart from these ones, we have considered other DLLs such
as msvcrt.dll (the core element of the Microsoft Visual
C runtime library), psapi.dll (related to process manage-
ment), and ws2_32.dll (related to Windows Sockets API),
although they were not included into the KnownDlls object
of certain Windows OSes considered in the experimentation.
Likewise, we have also decided to include ntdll.dll in
the selected subset, as it is always loaded with any Windows
program file since it contains functionalities of the Windows
PE loader itself [58]. We refer the reader to Figure 2 to see
the complete set of DLLs considered for experimentation.

As a test-bed environment, we have made a fresh install of
different Windows OSes in a set of virtual machines (having
each a dynamically allocated hard-drive of 32GB and 4GiB
of RAM memory) over the Oracle VirtualBox hypervisor.
The installation process followed a default (out-of-the-box)
configuration. Once installed, we have empirically verified the
existence of the above subset of system DLLs and extracted
them out of the virtual machine.

We tested the two most widely used versions of Windows
OS (Windows 10, 75.68%, and Windows 7, 18.03%; numbers
of the year 2020 according to [59]), grouped by architecture,
are: [32 bits] Windows 7 Professional 6.1.7601 Service Pack
1 Build 7601 and Windows 10 Education 10.0.14393 Build
14393; [64 bits] Windows 7 Professional 6.1.7601 Service
Pack 1 Build 7601 and Windows 10 Pro 1703 Build 15063.726.
In the following, we refer to each version by the major version
name and its architecture word size.

With regard to the configuration of ROP3, we configured
it to search for gadgets of 10-byte length. Although the
tool supports searching for different ROP gadget endings,
we have only considered near returns because the other end-
ings introduce more complexity when building a ROP chain.
Additionally, we have counted only once the ROP gadgets
composed of the same sequence of instructions, regardless of
the memory addresses in which they are mapped.

We have searched the ROPLANG operations as defined
in Section IV (that is, our results are biased by the current
definition of operations). We have considered every ROP
gadget composed of several instructions as a single gadget,
instead of handling every instruction as an individual gadget.
Furthermore, we have extended the spa operation to consider
also the addition of immediate values such as 4, 8, 16,
and 32 (spa-4, spa-8, spa-16, and spa-32 operations,
respectively) to increase the probability of finding appropriate
ROP gadgets. In the same way, we have divided the gcf
operation into two, embedding into them the type of com-
parison being carried on: equal comparison (gcf-eqc) and
less-than comparison (gcf-ltc) operations. In an attempt to



increase the likelihood of finding complex operations such as
the branching operations, we have extended the neg, eqc,
gcf, lsd, and jmp operations with the use of intermediate
mov between their operations. Further discussion is given in
Section V-B.

A. Prevalence of ROP Gadgets
For each operation, we have computed its percentage of

occurrence within every DLL and plotted it in a heatmap. In
addition, we have also annotated the number of results found
by ROP3, setting only the most significant digit and the order
of magnitude when the number of results are greater than 104

for the sake of readability. DLLs have been sorted by their
size in each heatmap. Figure 2 shows the results for Windows
7 and Windows 10 in 32-bit (top figures) and 64-bit (bottom).

Our experiments show that the branching virtual operations
are the less frequent operations, regardless of the architecture.
Moreover, in 32 bits there are no results for any of the
comparison operations as defined in Table VI, regardless of the
Windows version. In fact, these operations only appear in one
DLL of Windows 7 SP1 64-bit. The case of the unconditional
branch operation is very interesting, as we have (few) results
in 32-bit versions, while none in 64-bit.

For the rest of virtual operations, the results are diverse,
although we can find at least one result for each virtual
operation. The results tend to be higher in the lower part of the
figures, which corresponds with the bigger DLLs. As claimed
by other authors [12], the longer the binary code is, the more
likely to find ROP gadgets to perform any arbitrary operation.

Regarding the versions of Windows, the results show the
number of virtual operations found in Windows 10 is always
greater than in Windows 7. This can be motivated because of
the difference in sizes between the DLLs, as in Windows 10
the DLLs are normally bigger than in Windows 7. Likewise,
we have empirically verified that the size in 64-bit is always
greater than in 32-bit (but in msvcrt.dll) for both versions
of Windows, which also explains the slight variations in the
results among the architecture word sizes.

It is worth mentioning also that the 64-bit mode in Intel
introduced a new addressing form named relative Instruction
Pointer addressing (RIP-relative addressing) [60], which is the
default for many 64-bit instructions that reference memory
in any of their operands. Therefore, none of the 64-bits
instructions contain absolute memory addresses. In contrast,
32-bit instructions within a DLL can contain references to
memory addresses with regard to its base address, which is
randomized in every Windows booting due to ASLR [58].
Therefore, unlike the results of 64-bit, the results shown in
32-bit strongly rely on the base addresses of the DLLs, and
may change when the base addresses are different. Further
experimentation is needed to evaluate how ASLR can affect
the prevalence of ROP gadgets in 32-bit Windows systems.

B. Simulating a Turing machine
To simulate a Turing machine as defined previously, we

would need to find at least one result for every virtual opera-
tion. However, the current definition of the virtual operations

provides very limited results for conditional and unconditional
operations in certain versions of Windows, which are manda-
tory to simulate a Turing machine.

Note that the virtual operations in Section IV-A are de-
fined in their simplest form. For instance, the virtual op-
eration eqc(dst, src) is defined as sub(dst, src);
neg(dst) (see Table V). We can add an intermediate assign-
ment operation (as mov(reg1, dst)) to relax the data de-
pendency constraints as it is more likely to find a mov(reg1,
dst) operation, although the length of the ROP chain
would increase. The virtual operation eqc(dst, src) can
then be defined as sub(dst, src); mov(reg1, dst);
neg(reg1). These modifications can be done to any virtual
operation of ROPLANG, without affecting its semantics.

We have performed this extension (by extending the cor-
responding YAML files) to the definition of the neg, eqc,
gcf, lsd, and jmp operations and recomputed the results,
which are plotted in Figure 3. With this variation, there are
a lot of results for conditional and unconditional operations
in 32-bit, while the number of results in 64 bits are more
discrete. The only operation that has still no results is the
unconditional operation in Windows 7 SP1 64 bits. Therefore,
these experimental results show us that an adversary can very
likely find a ROP gadget for any arbitrary operation, just doing
sophisticated linking of other operations when the operation
needed is not directly found. As shown, our tool supports the
extension of the virtual operations in a very straightforward
way, increasing the likelihood of finding operations of interest.

VI. CONCLUSIONS AND FUTURE WORK

Although ROP attacks are known to be Turing-complete,
the executional power of an adversary strongly relies on
the code which already exists in the memory of a victim
program. In this paper, we have investigated the executional
power by evaluating how often the ROP gadgets for any
arbitrary operation arise in a subset of commonly used system
shared libraries of Windows 7 and Windows 10, both in 32-
bit and 64-bit architecture word sizes. In addition, we have
also investigated if there are enough gadgets to be chained
for any arbitrary computation. To do so, we have defined a
virtual language, dubbed ROPLANG, whose operations are
mapped to ROP gadgets. We also introduced a new tool,
named ROP3, which allows for finding ROP gadgets and
building a ROP chain specified by ROPLANG’s operations
in any set of program files given as input.

Our experimental results show that any virtual operation is
found, being the branching operations the less frequent ones.
Furthermore, the size of the program file clearly impacts on the
prevalence of ROP gadgets within the file. We have also shown
that a careful linking of the virtual operations can be performed
to find operations that are not straightforwardly found.

As future work, we aim to improve ROP3 to automatically
eliminate the side-effects likely to occur by some ROP gadgets
in a generated ROP chain. Furthermore, we aim to evaluate and
to compare the executional powers in other operating systems
such as UNIX-based systems and macOS, among others.
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Figure 2. Number of ROP gadgets per ROPLANG’s operation in Windows 7 and Windows 10 in 32-bit (top figures) and 64-bit (bottom figures).
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Figure 3. Number of ROP gadgets per ROPLANG’s operation, considering intermediate mov operations in the neg, eqc, gcf, lsd, and jmp operations,
in Windows 7 and Windows 10 in 32-bit (top figures) and 64-bit (bottom figures).
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APPENDIX

A. Software Downloaded from FossHub

List of TOP 10 software downloaded from the FossHub
website (accessed on December 24, 2020): Audacity 2.4.2;
qBittorrent 4.3.1; Classic Shell 4.3.1; MKVToolNix 51.0.0;
IrfanView 4.56; HWiNFO 6.40; Shotcut 20.11.28; Avidemux
2.7.6; Calibre 5.8.0; Code Blocks (including compiler) 20.03.

B. Artifact Evaluation

The dataset and artifact scripts used for evaluation in this
paper are freely available in [61] under Creative Commons
Attribution 4.0 International license. The source code of
ROP3 is released under the GNU/GPLv3 license and freely
available in [56]. The version used for reproducing the results
provided in this paper is version 0.9 (see Releases in [56]).
Complete and detailed instructions to exercise and reproduce
our experiments are given in the dataset.
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https://github.com/JonathanSalwan/ROPgadget
https://github.com/Boyan-MILANOV/ropium
https://github.com/Boyan-MILANOV/ropium
https://github.com/reverseame/rop3
https://github.com/reverseame/rop3
https://blogs.msdn.microsoft.com/larryosterman/2004/07/19/what-are-known-dlls-anyway/
https://blogs.msdn.microsoft.com/larryosterman/2004/07/19/what-are-known-dlls-anyway/
https://gs.statcounter.com/windows-version-market-share/desktop/worldwide/#monthly-202001-202012-bar
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https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://doi.org/10.5281/zenodo.4603061
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