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Abstract—Data exfiltration relies primarily on network pro-
tocols for unauthorized data transfers from information sys-
tems. In addition to well-established Internet protocols (such
as DNS, ICMP, or NTP, among others), adversaries can use
newer protocols such as Internet of Things (IoT) protocols to
inadvertently exfiltrate data. These IoT protocols are specifically
designed to meet the limitations of IoT devices and networks,
where minimal bandwidth usage and low power consumption are
desirable. In this paper, we review the suitability of IoT protocols
for exfiltrating data. In particular, we focus on the Constrained
Application Protocol (CoAP; version 1.0), the Message Queuing
Telemetry Transport protocol (MQTT; in its versions 3.1.1 and
5.0), and Advanced Message Queuing Protocol (AMQP; version
1.0). For each protocol, we review its specification and calculate
the overhead and available space to exfiltrate data in each
protocol message. In addition, we empirically measure the elapsed
time to exfiltrate different amounts of data. In this regard, we
develop a software tool (dubbed CHITON) to encapsulate and
exfiltrate data within the IoT protocol messages. Our results show
that both MQTT and AMQP outperform CoAP. Additionally,
MQTT and AMQP protocols are best suited for exfiltrating data,
as both are commonly used to connect to IoT cloud providers
through IoT gateways and are therefore more likely to be allowed
in business networks. Finally, we also provide suggestions and
recommendations to detect data exfiltration in IoT protocols.

Index Terms—AMQP 1.0, CoAP 1.0, Data Exfiltration, IoT
Protocols, MQTT 3.1.1, MQTT 5.0

I. INTRODUCTION

INFORMATION is described as one of the most valuable
resources in the digital age [1]. Cybercriminals are also

aware of this fact and are therefore interested in collecting
information, either to obtain valuable assets to trade in the
dark market or to obtain advantages against their targets (as is
the case with companies with bad practices or state-sponsored
hacking groups). As McAffee points out [2], external actors are
responsible for the increasing percentage of data theft observed
due to breaches, which increased from 57% in 2015 to 61%
in 2018.

Computers and networks within organizations are a common
target for various types of attacks, ranging from denial of
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service to phishing [3], [4]. As attacks become more so-
phisticated, defenses must also keep up. As such, firewalls,
demilitarized zone networks, or intrusion detection systems
are techniques that are widely deployed in corporate networks
as a primary layer of defense against attacks [5].

Unfortunately, cybercriminals are free to collect as much
information as possible and exfiltrate all collected data to
their servers when these countermeasures fail. The concept of
exfiltration comes from the military domain. In the context of
computer security, data exfiltration refers to the unauthorized
transfer of information from an information system [6]. Data
exfiltration per se does not necessarily indicate any advanced
techniques, as a simple outgoing HTTP connection from
a compromised email server would essentially accomplish
this task. However, some solutions have been proposed to
prevent this type of misbehavior, such as Data Loss Prevention
(DLP) systems that aim to detect when data is leaving the
organization’s network [7]. For example, a DLP system can
be configured to look up credit card numbers on a company
private network, blocking network traffic appropriately if de-
tected.

Consequently, adversaries use techniques such as covert
channels to avoid detection. A covert channel, first described
by [8], is any communication channel that can be exploited by
a process to transfer information in a way that violates system
security policy [9]. Historically, there is a distinction of the
type of covert channels according to how they are used to
exfiltrate information [10]: (1) storage covert channels, which
use values written/read in transmitted objects (e.g., unused
header fields); and (2) timing covert channels, which use the
time of transmitted objects to modulate the information in
some way (e.g., a delayed packet means 1 bit, while an on-
time packet means 0 bit). In this paper, we focus on storage
covert channels.

Similarly, adversaries can use well-established (storage)
covert channels in the Internet protocol suite to bypass pro-
tections, as they are generally allowed on corporate networks.
To name a few examples, adversaries can exfiltrate infor-
mation through the application-layer Domain Name System
(DNS) protocol embedding data in the domain name being
queried [11], through the network-layer ICMP protocol em-
bedding data in the binary data transmitted by the echo and
echo reply messages [12], or through the application-layer
NTP protocol embedding data in the timestamp fields.

Internet of Things (IoT) networks typically make use of a
variety of protocols specifically designed to meet the require-
ments of resource-constrained devices on which they depend,
in addition to the common protocols of the Internet protocol
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suite. IoT is described as the integration of various sensors,
objects, and smart nodes capable of communicating with each
other without any human intervention [13]. IoT devices can
generally be divided into actuators and sensors [14]. An IoT
sensor collects information which is then transmitted to a
control center to make decisions based on this information
and then trigger some kind of physical intervention, which is
carried out by an IoT actuator.

IoT devices are generally deployed on isolated and even
geographically distant networks thanks to low-power wide area
networks, which allow access to devices from thousands of
kilometers away [15]. In addition to IoT devices, an IoT net-
work needs an IoT gateway to communicate over the Internet
and, in some configurations, with an IoT cloud provider [16].
An IoT gateway is responsible for collecting sensor data,
translating between different IoT protocols, and processing
data before sending it to an external network, such as the
IoT cloud provider’s network. In some network configurations,
an IoT gateway can also support cellular network technology
for communication (for instance, 5G connection), and run on
batteries in the event of a power failure. An example of an IoT
protocol usually supported by IoT gateways is MQTT 3.1.1,
which allows us to connect to AWS IoT Core, Google Cloud
IoT Core, and Microsoft Azure IoT Hub cloud providers. The
latter cloud provider also supports AMQP 1.0 as IoT protocol.

While traditional covert channels (that is, which rely on
protocols from the Internet protocol stack) for data exfiltration
are well founded [17], [18], there is very little literature that
discusses covert channels in IoT networks [19]–[21]. Recently,
the study in [22] analyzes covert channels in the new MQTT
5.0 protocol. Also, to the best of our knowledge, there is no
comprehensive comparison of different IoT network protocols
for data exfiltration.

In this paper, we identify and review the adequacy of IoT
protocols for exfiltrating data. Specifically, we study Con-
strained Application Protocol (CoAP) v1.0, Message Queuing
Telemetry Transport (MQTT) v3.1.1 and v5.0, and Advanced
Message Queuing Protocol (AMQP) v1.0. CoAP is a web
transfer protocol for use with restricted nodes and networks,
specially designed for machine-to-machine (M2M) applica-
tions such as smart energy and building automation [23].
MQTT is a a lightweight, open, simple, client-server pub-
lish/subscribe messaging transport protocol designed to be
easy to implement. These features make it ideal for use in
many situations, including constrained environments such as
communication in M2M and IoT contexts where a small
code footprint is required and/or network bandwidth is a rare
commodity [24]. The Advanced Message Queuing Protocol
(AMQP) is an open Internet protocol for business messaging
that defines a binary wire-level protocol for the reliable ex-
change of messages between two parties [25].

To fill the gap in the literature, we compare these protocols
based on the overhead and the payload available for exfiltrating
data of each message. In addition, we compare the time to ex-
filtrate different data sizes to highlight those types of message
that are theoretically valid, but unfeasible in practice. As a
side product of our research, we also extend the open source
Scapy project [26] to support the AMQP protocol. Finally,

to empirically evaluate the performance of data exfiltration
using IoT protocols we developed CHITON, a software tool
made in Python that allows data exfiltration by encapsulating
information in IoT protocol messages.

Contribution. In summary, the contribution of this paper is
twofold. First, we provide a comprehensive theoretical study
of IoT protocols, from the point of view of data exfiltration.
Second, we compare their performance when exfiltrating data
in an experimental scenario. In addition, we have developed
a software tool that allows data exfiltration by encapsulating
information in IoT protocol messages. This tool can be used
to evaluate the security mechanisms placed in organizational
networks to detect this type of data exfiltration.

Paper organization. Section II presents works related to
covert channels techniques and data exfiltration. Section III
shows a complete description of the characteristics of the IoT
protocols mentioned above and a comparison for their use in
data exfiltration. Section IV describes our tool CHITON and the
adversary model that we are considering for experimentation.
Section V describes various countermeasures that can be ap-
plied to defend organization networks against data exfiltration
techniques using IoT protocols. Finally, Section VI concludes
the paper and suggests directions for future work.

II. RELATED WORK

This section presents related work closely linked to our
contributions. We have divided the discussion into three parts:
covert channels, data exfiltration, and software tools for data
exfiltration.

A. Covert Channels

Covert channels have been widely studied since they were
firstly proposed by Lampson [8] as a way of transmitting
information between processes that are not allowed to com-
municate. With the rise of interconnected computers, covert
channels quickly adapted to run over network protocols [10].

Rowland was the first to propose covert channels in optional
fields of the TCP/IP protocol suite, such as IP packet identi-
fication, TCP initial sequence number, or TCP acknowledged
sequence number [17]. With the update of the Internet Protocol
(IP) to version 6, the use of other fields such as IPv6 extension
header has also emerged [27]. A more detailed study can be
found in [28], where 22 (storage) covert channels in IPv6 are
analyzed.

Covert channels in a variety of protocols like HTTP(S),
WLAN, VoIP, SSH, FTP, NTP, to name a few, have also been
explored in multiple works. The works in [18], [29], and [30]
survey network protocols, techniques, and countermeasures
for covert channels. Advanced covert channel have also been
proposed, such as covert channels in the physical layer of IEEE
802.3 10 Gigabit Ethernet [31] or covert channels between
virtualized systems in the cloud [32].

The tunneling protocol can be seen as a specific type of
storage covert channel, where one protocol is embedded within
the payload of another protocol. The use of covert channels
as tunneling protocols was first proposed using the Internet
Control Message Protocol (ICMP) [33] and later using the
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Domain Name System (DNS) protocol [34]. In this regard,
the iodine tool [35] is one of the most mature, studied,
and widely-used tools for tunneling through DNS. Although
tunneling relies on storage covert channels, it tries to maximize
throughput (performance) rather than maintaining low-profile
communication (that is, staying undetected for as long as
possible). In a more general perspective, other works study
malware communication through covert channels [36], [37].

Regarding covert channels in IoT protocols, a recent discus-
sion on CoAP is presented by [21]. Covert channels in wireless
sensor networks, modulating transmit power and sensor data,
are explored in [38]. In [19], the use of different network
destination routes is proposed as timing covert channels.
A classification of attack patterns for IoT environments is
presented in [39]. It is worth mentioning [20], a survey
combining steganography and covert channels in IoT. This
work is recently updated in [22], where the use of covert
channels in MQTT 5.0 is studied.

Unlike these works, we provide a comprehensive theo-
retical study of IoT protocols (specifically, CoAP, MQTT,
and AMQP) from the point of view of data exfiltration. Let
us remark that this approach is not the same as the covert
channel approach because data exfiltration does not attempt to
breach system security, rather data exfiltration relies on already
allowed communications to transfer sensitive information.

B. Data Exfiltration

Most data exfiltration studies focus on air-gapped covert
channels, that is, covert channels specially tailored for bridging
the gap of physically isolated systems. In this regard, acoustic-
based data exfiltration that relies on hard disk noise is pre-
sented in [40]. Malware proofs of concept performing data
exfiltration through visual channels have also recently been
proposed [41], [42]. The use of different radio frequencies as
a data exfiltration method has also been studied in [43]. More
focused on IoT environments, the work in [44] presents an
abuse of smart lighting systems to exfiltrate data through the
flickering of light bulbs. Finally, the abuse of an iTunes library
to exfiltrate data from paired iOS devices is presented in [45].

Regarding data exfiltration detection, the work in [46] has
recently proposed a new model to detect low-throughput data
exfiltration through DNS. Similarly, a deep learning-based
detection approach for keylogging and data exfiltration attacks
is introduced in [47]. Different machine learning models to
evaluate their detection rates for different IoT network traffic
attack patterns are also used in [48], where authors conclude
that data exfiltration detection has the worst metric of all types
of attacks (in multiclass classification).

In addition to air-gapped data exfiltration works, we detect a
gap in the literature on the analysis and comparison of different
protocols to exfiltrate data. To the best of our knowledge, we
are the first to thoroughly compare different IoT protocols
from a data exfiltration point of view and empirically evaluate
their performance when exfiltrating arbitrary data. Hence, our
work complements all the aforementioned works.

C. Software Tools for Data Exfiltration

We have searched for tools on GitHub to complete the
vision found in the academic literature. Most of the publicly
available tools for data exfiltration are intended to evaluate
the implementation of Network Monitoring and Data Leakage
Prevention configurations. Two tools are the most relevant at
the moment of this writing: (i) DET [49], which provides sup-
port for HTTP, HTTPS, ICMP, DNS, SMTP/IMAP, FTP, and
SIP protocols; and (ii) PyExfil [50], which supports DNS,
ICMP, NTP, BGP, QUIC, Slack, POP3, FTP, IP, and HTTP/S
protocols, as well as other physical channels (e.g., audio). In
addition, it also incorporates steganographic techniques.

We found other four relevant data exfiltration tools, but
all of them are no longer maintained, and were last updated
2 years ago at the time of writing. IPv6teal defines a
covert channel to exfiltrate data through the IPV6 header field
Flow label [51]. IPv6DNSExfil uses DNS AAAA records
to create a command and control channel [52]. Similarly,
DNSExfiltrator encapsulates data via sub-domain name
requests to a domain controlled by an adversary [53]. By
default, this tool cuts information into 63-byte chunks (the
maximum size of a DNS label) up to a maximum domain of
255 bytes (the maximum length of a DNS domain, including
subtags). Finally, the dnsteal tools uses a method similar
to DNSExfiltrator to exfiltrate information [54]. The
detection of this DNS exfiltration technique was specifically
addressed by [46].

Unlike these tools, CHITON is a modular software library
designed to be easily integrated into any other software project,
making it easy to use for evaluation and testing. This software
library only encapsulates the binary data in protocol messages
and, if necessary, sends these messages over the network.

III. COMPARATIVE ANALYSIS OF IOT PROTOCOLS FOR
DATA EXFILTRATION

In this section, we conduct a comparative analysis of
IoT protocols for data exfiltration. We first describe the IoT
features and protocols used in the comparison and then show
their comparative analysis.

A. Comparison Description

To compare them qualitatively, we focus on three charac-
teristics of the protocols: message type, which specifies the
action to be performed. Each type is made up of payload
(how much data a protocol can carry in a single message)
and overhead (each byte sent that does not represent exfiltrated
data); transport, which can be a connectionless transport layer,
such as UDP, or a connection-oriented protocol, such as TCP;
and error detection, which indicates if the protocol counts with
any checksum redundancy to detect and correct errors in the
received data.

In our approach, the overhead is not just the required
message type headers, but we also consider the overhead
that each field type introduces. For instance, AMQP string
type has a specific constructor to indicate that the following
bytes should be interpreted as a string plus its size. This
construction means that to exfiltrate 4096 bytes of information,
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we introduce a 5-byte overhead, corresponding to one byte to
indicate that the following is a Unicode UTF-8 string with
length of up to 232 − 1 bytes and the actual length value of
the string, which must be a 4-byte value. Hence, to exfiltrate
a 4096-byte payload, we need to send 4101 bytes.

Regarding payload size, it can be refined in theoretical and
practical payload size. Due to physical and implementation
constraints (practical), real world scenarios may require sizes
smaller than the sizes defined in a protocol standard (theo-
retical), which may have certain fields with unlimited size.
For simplicity of comparison, in this paper we assume ideal
scenarios, i.e., we only consider the theoretical payload size.

To compare them quantitatively, we calculate for each
protocol the number of messages to be sent, assuming a data
transmission of 1MiB. In addition, we consider two types of
adversaries: a stealthy adversary, who tries to adapt outgoing
messages to commonly used sizes; and a rough adversary, who
maximizes the possible payload for each messages.

Regarding IoT protocols, recall that an IoT gateway allows
an IoT device to connect over the Internet (see Section I).
Typically, enterprise networks connect the IoT gateway to the
network of the cloud service provider, responsible for long-
term storage and data analysis. Common protocols offered by
IoT cloud service providers are MQTT version 3.1.1 (recently
updated to version 5.0), AMQP version 1.0, and CoAP version
1.0. As an adversary can route any data through these protocols
directly to the Internet, all of them are considered in this work.
Next, we first explain these protocols, and then we highlight
the messages that can be used to exfiltrate data, considering
all messages types as defined in each protocol specification.

B. IoT Protocol Messages for Data Exfiltration

In what follows, we describe each IoT protocol and show the
relevant characteristics of each type of message. We adhere to
each protocol specification to name its message types. Message
types are typically named depending on the action that is
taken. For instance, CoAP calls them methods, MQTT control
packets, and AMQP performatives. For each type, we calculate
the maximum available payload following a valid message
structure. We only rely on message fields whose meaning
is user-defined (e.g., tokens) and do not have a well-defined
meaning in the specification (e.g., the CoAP Response Code,
whose value of 4.00 means a Bad Request).

Constrained Application Protocol (CoAP)
CoAP is an application layer transfer protocol used with

network nodes with restricted capabilities [23]. This protocol
follows a request/response scheme (very similar to the HTTP
interaction model), where resources are accessed through
a URI interface thanks to certain actions on them (called
methods). Each protocol message consists of mandatory fields
such as Version or Message ID; and optional fields such as
Token, which are used to match a response to a request; several
Option fields, similar to HTTP request headers; and a Payload.
The CoAP reserved port number is 5683.

The GET and DELETE methods allow data to be sent in the
queried URI thanks to the Uri-Path Option. Although both

methods do not contain a CoAP Payload, the data can also be
extracted via other Option fields. In this protocol, the stealthy
adversary has several combinations.

Let us explain how the message bytes useful for exfiltrating
data are calculated using these methods. First, 1 byte is needed
to specify Version (2 bits), Type (2 bits), and Token Length
(4 bits). The Token Length field establishes the length of the
next Token field (1000, or 8 bytes as the maximum value).
The next byte indicates the CoAP method, in the form of
c.dd, where c is represented by the 3 most significant bits
and dd by the remaining 5 bits. In this case, the Code field
can be 0.01 (GET method) or 0.04 (DELETE method).
The next 2 bytes indicate the Message ID field, which is the
first field useful for exfiltrating data, since it does not have
a predefined value and is specified by the user. Following a
similar reasoning, the next 8 bytes indicate a Token to correlate
requests and responses, but can also be used to exfiltrate data.
After the Token field, we can use a total of 5 Option fields.
Each Option is constructed with 1 byte, divided into Option
Delta (the most significant 4 bits) and Option Length
(the remaining 4 bits). Option Delta indicates the Option
type and Option Length its size (in bytes). Both Option
fields follow the same structure. When its value is equal to
13, it indicates that the next byte is in fact the real value.
When it is 14, it indicates that the actual value is in the next
two bytes. The value 15 in Option Length is reserved for
internal use only, but in Option Delta it is reserved for the
Payload Marker. Using this type of construction, an additional
2 bytes are required for each Option used to exfiltrate data.
In this case, we have used 5 Uri-Path and Uri-Query
options, 4 of them in the maximum size (255 useful bytes)
plus another one of 238 bytes. In total we have an exfiltration
payload of 1268 bytes to keep the CoAP message below the
IPv6 minimum link MTU of 1280 bytes1.

Following this structure, we have obtained 1268 bytes of
payload for a stealthy adversary with 12 bytes of overhead,
resulting in an overhead of 0.94%. Similarly, the rough adver-
sary can use 2 bytes in the Message ID field, 8 bytes in the
Token field, and add different Uri-Path and Uri-Query
options until the payload reaches the maximum of 64, 995
bytes, corresponding to the sum of 254 options of 255 bytes
each plus another of 215 bytes.

Other methods such as POST and PUT allow data to be
carried in the body of the message, which also allows data
exfiltration. In particular, a body message can contain a CoAP
Payload after option fields, using a 0xff byte as an indicator
of the start of the payload. Therefore, the stealthy adversary
can exfiltrate up to 1273 bytes per message (and thus keep the
message size below the IPv6 minimum link MTU) thanks to 2
bytes in the Message ID field, 8 bytes in the Token field, 255
bytes in the (required) Uri-Path option and 1008 bytes in the
payload itself, while 2 bytes are used to encode the value of
application/octet-stream in the Content-Type
option. In contrast, the rough adversary can exfiltrate 65, 500

1The CoAP specification does not enforce an MTU [23]. Instead, when a
Path MTU is unknown, the specification recommends assuming an IP MTU of
1280 octets, corresponding to the minimum packet size that must be supported
by all nodes in an IPv6 network [55].
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bytes in the payload, corresponding to 255 bytes in the
Uri-Path option and 65, 235 in the payload itself.

Message Queuing Telemetry Transport (MQTT)

MQTT is also an application layer protocol, but imple-
ments a publish/subscribe-based messaging transport protocol
instead [24]. The latest version of MQTT (version 5.0) intro-
duces several additions, such as adding user properties to the
Variable Header field. For this protocol, we contemplate that
the rough adversary uses these newer properties of MQTT 5.0,
while the stealthy adversary is restricted to the older, stable
MQTT version 3.1.1 (in which the Variable Header field lacks
user properties) as version 5 is not currently supported by IoT
cloud providers. The MQTT reserved port number is 1883.
CONNECT is the first control packet sent from the client

to the server to open a connection. This message contains
a variable header, where the Protocol Name field is set
to MQTT and its payload is a unique ClientID field,
encoded in a 23-byte UTF-8 string as maximum length. The
stealthy adversary can use this maximum length to exfiltrate
data, while the rough adversary can use other user properties
(such as Authentication Method, Authentication
Data, and various User Property), increasing the use-
ful payload size to 255.99 MiB (thus keeping the MQTT
message below the maximum MQTT message size, which
is 268, 435, 455 bytes). The MQTT specification does not
enforce a maximum occurrence of User Property fields,
regardless of the message type. Therefore, they can be used
multiple times until the maximum MQTT message size is
reached.

In response to a CONNECT control packet, the server
sends the CONNACK control packet. This message con-
tains a variable header, in which Connect Reason
Code is set to zero and there is no payload. Hence,
CONNACK is not suitable for the stealthy adversary. In
contrast, the rough adversary can use up to 255.99 MiB,
considering other properties such as Reason String,
various User Property, Response Information,
Server Reference, Authentication Method, and
Authentication Data.

The application messages are sent in PUBLISH control
packets, which have a variable header with the Topic Name
property encoded as a UTF-8 string of maximum 65, 535
bytes, the 2-byte integer field of Packet Identifier, and the
payload of the message, which can be up to a theoretical value
of 268, 435, 456 bytes (approximately 256 MiB). The stealthy
adversary can limit the payload size to the length of an IP
packet minus the headers (that is, 65, 232 bytes of payload)
and limit the use of 255 bytes for the Topic Name field. On
the contrary, the rough adversary can use the maximum values
of both fields to obtain close to 256 MiB.

The MQTT protocol also supports Quality of Service (QoS)
with the PUBACK (QoS 1), PUBREC, PUBREL, and PUBCOMP
(QoS 2) control packets. All these messages follow the same
structure: a Packet Identifier field followed by a Reason Code
field, which indicates the result of an operation (e.g., value
0x00 for success) and no payload. In this case, the stealthy

adversary can exfiltrate only 2 bytes in the Packet Identifier
field, while the rough adversary can use a payload of up to
255.99 MiB via the Reason String and various User
Property properties.

The SUBSCRIBE control packet is sent from the client to
the server to indicate a subscription. The variable header of
this message has a Packet Identifier field, which is a 2-byte
integer, and a pair of Topic Filter field as payload, which
is a UTF-8 encoded string of up to 65, 535 bytes and a
Subscription Options field, which is one byte in size. Likewise,
the UNSUBSCRIBE control packet is sent to unsubscribe from
topics. This message is also made up of the Packet Identifier
field and the Topic Filter field, which in this case describes the
list of topic filters from which the client wishes to unsubscribe.
With these messages, the stealthy adversary can use the Packet
Identifier and the Topic Filter fields to exfiltrate up to 257
bytes, while the rough adversary can use the full size of the
Topic Filter field plus various User Property fields, raising the
payload to a value of 255.99 MiB.

The server responds to the SUBSCRIBE control packet sent
by the client with a SUBACK control packet, confirming receipt
and processing of the subscription. Also, the UNSUBACK
control packet is sent in response to the UNSUBSCRIBE
control packet. Both acknowledge message have a variable
header that has the field Packet Identifier, while the message
payload contains a list of Reason Codes values (one byte
each) corresponding to all possible subscription topics in
the SUBSCRIBE control packet. A stealthy adversary can
exfiltrate 2 bytes per message using the Packet Identifier
field, whereas the rough adversary can exfiltrate up to 255.99
MiB using the Reason String and User Property
properties.

PINGREQ and PINGRESP are ping-like control packets
sent from a client to check if the server is up. These messages,
though, are not suitable for exfiltrating data as they do not have
variable header or payload fields.

The DISCONNECT control packet is the last MQTT control
packet sent from the client or the server, and specifies the
reason for closing the network connection in the Disconnect
Reason Code field (1 byte long), without any payload field.
As with the CONNACK control packet, the stealthy adversary
cannot use it while the rough adversary can exfiltrate up
to 255.99 MiB by means of the Reason String, various
User Property, and Server Reference properties.

The last message is the AUTH control packet, which is sent
as part of an extended authentication exchange (such as chal-
lenge/response authentication). Similar to the DISCONNECT
control packet, the variable header of this message has a
Authenticate Reason Code property (1 byte long),
without any payload field. As before, it is not suitable
to be used by the stealthy adversary, whereas the rough
adversary can exfiltrate up to 255.99 MiB thanks to the
Authentication Method, Authentication Data,
Reason String, and various User Property proper-
ties.



6

Advanced Message Queuing Protocol (AMQP)
AMQP is an application layer protocol for message-oriented

middleware software infrastructures [25]. It is a peer-to-peer
protocol at the binary wire level to transport messages between
two processes over a network. An AMQP encoded data stream
comprises bytes of unknown type with embedded constructors,
which indicate how the bytes should be interpreted (i.e., its
type is defined within the data). AMQP is a complex protocol
that has more than 24 native data types (such as string or
boolean), plus 19 specific definitions built on these native
data types. Since binary encoding is not ideal for representing
types, the type notation in AMQP follows an XML schema.
The AMQP reserved port number is 5672. AMQP is a complex
protocol and its library implementations have a large footprint,
so they are generally used by devices whose resources are not
constrained, such as IoT gateways.

AMQP messages comprise a Frame Header field of a fixed-
length 8-byte structure preceding each frame, a variable-length
Extended Header field for future extensions of the protocol,
and a variable-length Frame Body field containing a byte
sequence, the format of which depends on the type of frame.
Each type of AMQP message corresponds to an AMQP action
(called performative). In this case, we consider that the stealthy
adversary only uses the mandatory fields of each performative,
while the rough adversary uses all possible fields.

The Open performative negotiates the connection parame-
ters. The stealthy adversary can use the container-id field to
exfiltrate up to 4096 bytes (we consider the Linux PATH_MAX
size2 as the upper limit for string types), while the rough adver-
sary can use also the hostname, outgoing-locales, incoming-
locales, offered-capabilities, desired-capabilities, properties
fields in addition to container-id to exfiltrate up to 4 GiB. Each
of these fields can hold up to 4 GiB except the properties field,
which can contain up to 8 GiB, resulting in a total of 32 GiB.
Unfortunately, this number is bounded by the upper bound of
the Open list descriptor, which is 4 GiB. This limitation also
applies to all other AMQP performatives.

The Begin performative begins a session on a channel.
In this case, the stealthy adversary can use a 12-byte payload,
spread over 4 bytes of each of the next-outgoing-id, incoming-
window, and outgoing-windows fields. In contrast, the rough
adversary can maximize the payload to be up to 4 GiB using
offered-capabilities, desired-capabilities, and properties fields.

The Attach performative binds a link to a session. The
stealthy adversary can use a payload of 4100 bytes, distributed
as 4096 bytes in the name field plus 4 bytes in the handle field.
As before, the rough adversary can maximize the length of
data exfiltrated up to 4 GiB by using name, unsettled, offered-
capabilities, desired-capabilities, and properties fields plus the
use of the string type with the source and target fields,
which use wildcard data types (*), expressing that they can
contain any type of data.

The Flow performative updates the flow state for the
specified link. This performative allows the stealthy adversary
to exfiltrate 12 bytes, distributed over 4 bytes in each of

2See https://github.com/torvalds/linux/blob/master/include/uapi/linux/
limits.h (visited on August 26, 2021).

the incoming-window, next-outgoing-id, and outgoing-window
fields. In contrast, the rough adversary can maximize the
length of exfiltrated data to 4 GiB thanks to the properties
field.

The Transfer performative sends messages through a
link. In this case, the stealthy adversary can use a 4-byte
payload via the handle field, while the rough adversary can
again get 4 GiB for exfiltrating data by relying on the state
field and using any data as the wildcard type that support
that size. Furthermore, both adversaries can also use the
message payload for their data exfiltration purposes. The
stealthy adversary can add up to 65, 471 bytes to reach the
maximum IP packet length (65, 535 bytes). In contrast, the
rough adversary can also use it to transfer up to 4 GiB of data
more.

The Disposition performative informs the remote peer
of local changes in delivery states. In this case, the stealthy
adversary can use a 4-byte payload in the first field, while the
rough adversary, as before, can maximize the payload up to 4
GiB thanks to the state field with any other type of data that
supports that size.

As for the message sent to end the connections, there are
three performatives. The Detach performative detaches the
link endpoint from a previously established session. With this
performative, the stealthy adversary can use only a 4-byte
payload in the handle field, while the rough adversary can
exfiltrate up to 4 GiB just using the error field. The End
performative indicates that the session has ended, while the
Close performative indicates that the sender will not send
any more frames on that connection. Both performatives have
no required fields and therefore they are not eligible candidates
for the stealthy adversary. In contrast, the rough adversary can
still rely on the error field, exfiltrating up to 4 GiB data.

C. Discussion
Regarding qualitative analysis, CoAP relies on UDP as the

transport layer because it consumes less resources on the
devices, unlike MQTT and AMQP, which are based on TCP.
None of the protocols considered in this paper performs any
type of integrity verification to detect transmission errors, re-
lying exclusively on the error detection mechanisms provided
by the transport layers (both UDP and TCP have a checksum
field of 16 bytes).

Regarding quantitative analysis, Table I summarizes the re-
sults of both adversaries. For each message, we show the total
message size (that is, payload plus overhead), the percentage of
overhead relative to the total size, and the number of messages
required to encapsulate 1 MiB of data. For each protocol,
we highlight in the table the most suitable message type for
data exfiltration, that is, the one with the fewest messages
and the least overhead. As expected, we can see that the best
message to exfiltrate data for each protocol is the message
designed to transport information between communication
nodes. Specifically, POST and PUT for CoAP, PUBLISH for
MQTT, and Transfer for AMQP.

Comparing between protocols, AMQP and MQTT stand
out for rough adversaries, since they only need one mes-
sage of any type to fully exfiltrate 1 MiB of data

https://github.com/torvalds/linux/blob/master/include/uapi/linux/limits.h
https://github.com/torvalds/linux/blob/master/include/uapi/linux/limits.h


7

(except PINGREQ/PINQRESP). Based on the number of
messages, CoAP is the most stable protocol since the
number of messages required varies less, regardless of
the type of message. For a stealthy adversary, MQTT
needs on average twice as many messages compared to
AMQP because PUBACK/PUBREC/PUBREL/PUBCOMP and
SUBACK/UNSUBACK can only exfiltrate 5 bytes per message.
Still, the MQTT PUBLISH control packet is the best message
of all protocols, requiring fewer messages and with an over-
head of only 6 bytes for a stealthy adversary and 7 bytes for
a rough adversary.

In terms of overhead, CoAP introduces the minimum over-
head among all the packages studied. For a stealthy adversary,
MQTT introduces a third less overhead (on average) compared
to AMQP. However, when the data to be exfiltrated increases,
AMQP’s binary encoding provides more size-optimized results
for a rough adversary, producing 32 bytes of overhead on
average, with only 20 bytes of overhead at best (Transfer
performative) and 49 bytes of overhead in the worst case
(Flow performative).

IV. EXPERIMENTS AND DISCUSSION

In this section, we first introduce CHITON, a software tool
developed as a side-product in this research to encapsulate
information in IoT protocol messages. We then model the
adversary scenario used later in our experiments and finally
discuss the experimental results.

A. The CHITON Software Tool

In the context of this research, we have developed a soft-
ware artifact, dubbed CHITON, to empirically evaluate data
exfiltration on IoT protocols. This tool allows the user to
encapsulate arbitrary data in messages of the IoT protocols
explained in Section III. In the interest of open science, we
have released CHITON as open source under the Affero GPL
version 3 license [56].

CHITON is developed in the Python programming lan-
guage to support multiple platforms. In particular, our tool
relies on Scapy [26], which is a well-established and mature
packet manipulation Python library that allows the user to
manipulate network packets and automatically convert them
to/from packet objects to their (on-wire) byte representation
very simply. Scapy provides support for some IoT protocols,
such as CoAP and MQTT. However, the AMQP protocol is
not supported. In addition, and as required by CHITON, we
also added a new functionality in Scapy to support the AMQP
protocol.

In addition to being a (standalone) tool, CHITON is also
provided as a software library, making it easy to integrate
into other tools and analysis workflows. Our tool follows
a client/server architecture: the network host that wants to
extract data acts as a client, while the network host that
receives it acts as a server. Before data exfiltration occurs,
both hosts have to agree (in some way) on which protocol
and which protocol message will be used.

B. Adversary Model

As far as we know, the use of IoT protocols for data
exfiltration is not a common practice in cybercrime today.
However, the prevalence of IoT devices in organizational
networks increases the attack surface and can cause this to
change in a short time. For example, the recent T-Mobile
breach occurred when an attacker gained access to a GPRS
gateway that was allegedly misconfigured and exposed to
the Internet, allowing the attacker to eventually switch to
the LAN [57]. A similar issue may occur in organizational
networks in which IoT devices are placed.

As an example of a network, we consider a typical business
network segregated into two subnets, a corporate IoT network
made up of heterogeneous devices, such as IoT devices and
workstations connected to an IoT gateway, and the IoT cloud
network, responsible for long-term storage and data analysis.
Regarding the adversary model, we consider an adversary
with basic capabilities (basic adversary), such as a script
kiddie [58] who aims to maximize the payload exfiltrated in
each message and use IoT protocols trying to stay undetected.
The behavior of this adversary corresponds to the rough
adversary, previously defined in Section III-A. In this adverse
scenario, there is at least one compromised workstation within
the corporate network. For example, a script kiddie would
be an adversary who gains access to a workstation by spear
phishing credentials.

An adversary will choose IoT traffic over traditional TCP/IP
traffic (such as SMTP, DNS, or HTTP, among others) in an
attempt to avoid heavily monitored networks. Furthermore,
IoT protocols may be the only alternative for external commu-
nication in IoT networks. The use of IoT protocols also has
some limitations, as the adversary limits their attack to those
organizations that have IoT networks in place. In addition,
constrained IoT devices can overheat if data exfiltration is
prolonged in time, which can cause hardware failures that
generate alarms in the attacked organization, thus making it
easier to discover the presence of the adversary.

We consider that this adversary does not have privileged
access on any of the compromised devices within the corporate
IoT network, so only ports greater than 1024 are available to
communicate. Note that ports below 1024 are reserved for the
system and cannot be used without privileged permissions.
This restriction clearly limits the data exfiltration technique to
be used because the adversary would have to act as a client,
restricting the protocol messages available for tunneling. For
example, while a DNS request (client) has a payload of up
to 245 bytes, a DNS response (server) can contain up to
the theoretical limit of 65, 156 bytes. This is the reason for
the (asymmetric) limitation of the upstream bandwidth when
extracting data through the traditional [35] protocols.

C. Experiments

Our goal is to empirically measure how long the data exfil-
tration takes using the IoT protocols presented in Section III.
The data size ranges from 1 KiB to 100, 000 KiB to assess
how well each IoT protocol performs when the data size is
increased.
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Table I
EXFILTRATION OF 1,048,576 BYTES (1 MIB) BY IOT PROTOCOL. MESSAGE SIZE IS EXPRESSED IN BYTES.

Stealthy Adversary Rough Adversary
Message Size Overhead # Messages Message Size Overhead # Messages

CoAP
GET/DELETE 1280 0.94% 827 65,507 0.74% 17
POST/PUT 1280 0.55% 820 65,507 0.01% 17
MQTT (version 3.1.1) (version 5.0)
CONNECT 37 37.84% 45,591 1,048,635 0.01% 1
CONNACK - - - 1,048,628 < 0.01% 1
PUBLISH 65,495 0.01% 17 1,048,583 < 0.01% 1
PUBACK/PUBREC/PUBREL/PUBCOMP 5 60% 524,288 1,048,627 < 0.01% 1
SUBSCRIBE 263 2.28% 4081 1,048,626 < 0.01% 1
UNSUBSCRIBE 262 1.91% 4081 1,048,625 < 0.01% 1
SUBACK/UNSUBACK 5 60% 524,288 1,048,627 < 0.01% 1
PINGREQ/PINGRESP - - - - - -
DISCONNECT - - - 1,048,627 < 0.01% 1
AUTH - - - 1,048,627 < 0.01% 1
AMQP
Open 4121 0.61% 256 1,048,601 < 0.01% 1
Begin 30 60% 87,382 1,048,606 < 0.01% 1
Attach 4126 0.63% 256 1,048,602 < 0.01% 1
Flow 30 60% 87,382 1,048,625 < 0.01% 1
Transfer 65,495 0.03% 17 1,048,596 < 0.01% 1
Disposition 20 80.00% 262,144 1,048,605 < 0.01% 1
Detach 19 78.95% 262,144 1,048,615 < 0.01% 1
End - - - 1,048,613 < 0.01% 1
Close - - - 1,048,613 < 0.01% 1

Since the nature of the data file is irrelevant, we generate
a random file of the maximum payload length (100 MiB) and
divide it into chunks of the desired size. To verify the integrity
of transmitted data, we compute the SHA256 hash of each
chunk on the client and server sides and compare them. In all
of our experiments, the matching of the calculated hashes was
successful.

Transmission time is measured on the server side, as the
server is responsible for receiving the exfiltrated data. Each
message is identified during transmission thanks to a message
counter: the first message has the value 1 and the last one has
the value 0. Therefore, the start time is taken when the first
message arrives, while the end time is taken when the last
message arrives. Consequently, the elapsed time is calculated
subtracting these times. Note that network latency plays a very
important role in this type of measurement. To overcome this,
we repeat the experiments ten times at different times during
a day and then calculate the average.

We simulate the aforementioned basic adversary model by
interconnecting two network devices through the Internet: one
host (the client) is located in the network of the University of
Zaragoza, while the other host (the server) is located in the
home office of the main author of this paper. The distance
between them is 14 hops, measured by the traceroute
tool, and the average latency is 21.546 ms, measured by the
ping utility. The client device runs a Raspbian Buster on
top of a Raspberry Pi 3 Model B, which plays the role of
a compromised constrained workstation. This device has a
1.2 GHz Broadcom BCM2837 processor, 1 GB of LPDDR2
RAM (900 MHz), and a 100Base-T Ethernet connection. The
server device is a personal computer (PC), which plays the
role of malicious server that receives the exfiltrated data.
This computer runs Ubuntu 20.04 on an 4.60 GHz Intel i7-
8700 processor, 16GB of DDR4 RAM (2400 MHz), and a

1000Base-TX Ethernet connection with a RTL8111 chipset.
In this scenario, the Raspberry runs a client instance of

CHITON and is responsible for exfiltrating all data, while
the PC runs the server instance of CHITON to receive the
exfiltrated data over the network. We assume that the adversary
previously obtained access to the workstation and was able to
install the CHITON client. The PC is also capturing the network
traces with tcpdump for debugging purposes. Regarding the
protocol messages, we only consider the best messages to
exfiltrate data for each protocol, as shown in Table I. We
consider a message best suited for exfiltrating data when
it shows the highest payload/overhead ratio. In particular,
we select the POST and PUT methods (from CoAP), the
PUBLISH control packet (for MQTT), and the Transfer
performative (for AMQP). A detailed explanation of these
messages is given in Section III.

D. Discussion of Results
The experimental results using the best message size of

CoAP, MQTT, and AMQP protocols are plotted in Figure 1.
Note that both the file size axis (in KiB) and the transmission
time axis (in milliseconds) are on logarithmic scale. As shown,
the transmission times of the MQTT and AMQP protocols
are identical in all cases. On the contrary, there is a notable
difference with regard to the transmission time of the CoAP
protocol. This difference can be motivated by three reasons:

1) In CoAP protocol, more messages are needed to send the
same amount of data. This implies a longer time overhead
because the operating system, together with the network
controller, must deal with the underlying I/O network
operations more frequently.

2) The CoAP protocol runs over UDP, unlike the MQTT and
AMQP protocols. Note that depending on the configu-
ration of the intermediate network nodes, packet traffic
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policies can be implemented to prioritize TCP over UDP
traffic. Therefore, intermediate nodes could deliberately
delay UDP traffic. Unfortunately, this problem cannot be
mitigated by the basic adversary.

3) CoAP message size could be suboptimal. As stated in
Section III, despite using the 1280-byte IP upper limit
recommended by the standard CoAP specification [23],
this message size might not be the most appropriate value
for the network. While TCP implements a retransmission
mechanism for lost packets, an application that relies on
UDP protocol needs to detect packet loss at the end node
and notify the source node to retransmit lost packets
appropriately. This packet loss could be due to many
reasons, such as network congestion, device computing
performance, or wireless network interference, to name a
few. In the same way, nodes communicating in a network
could support larger packets before incurring packet loss,
so the optimal size of the CoAP message could be greater
than the limit applied in our experiments and therefore
increase the efficiency of communication.

In general, TCP incurs network overhead to provide key
features such as orderly data transfer or retransmission of
lost packets. In particular, TCP causes an overhead in the
establishment and termination of a connection due to the
three-way handshake and four-way handshake, respectively.
This connection-oriented overhead is negligible because this
number of packets is much less than the actual number of
messages transmitted to exfiltrate the data.

Finally, let us note that we found no problem with the loss
or disorder of UDP data during our experiments. However,
UDP is a best-effort transport layer, which means that packets
in transit are likely to get dropped or out of order for a
myriad of reasons. Therefore, the client would need to resend
all the data in the event of a single packet loss due to the
client implementation of CHITON, drastically increasing the
exfiltration time. At the moment of this writing, CHITON
detects UDP packet loss or disorder, but does not have any
packet replay mechanism. As future work, our goal is to
incorporate a replay packet mechanism in our tool to overcome
these issues.

V. COUNTERMEASURES

In this section, we provide suggestions and recommenda-
tions for network engineers to detect the use of IoT protocols
as covert channels for data exfiltration.

Zero Trust Architecture (ZTA). Traditional networks
have evolved to inverted networks where the perimeter itself
has dissolved due to the proliferation of cloud computing,
mobile device use, and the IoT. This evolution has caused
a paradigm shift as traditionally, nation-state agencies and
enterprise networks are (in general) only focused on their
perimeter defense and coarse-grained subject permissions. As
a result, one of the biggest challenges in these networks (and
for nation-state agencies in particular) has been unauthorized
lateral movements within the environment.

Zero trust architecture is an enterprise-architectural ap-
proach to prevent data breaches and limit internal lateral move-
ment [59]. Based on zero trust principles (roughly speaking,
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Figure 1. Exfiltration times of data of different file sizes (using the best
message type of each protocols).

principles of “never trust, always verify”), it is designed to
reduce the risk exposure of the enterprise in the new perimeter-
less world. ZTA entails securing the access to resources from
any location and controlling it on a need-to-know basis (strictly
enforced). In addition, it forces the organizations to inspect and
log all traffic to audit whether their users are doing the right
thing.

Stateful-based detection. Stateful protocol analysis in-
volves comparing predetermined profiles of benign (generally
accepted) protocol states with observed events to identify
deviations. Some vendors use the term deep packet inspection
to denote some type of stateful protocol analysis, often com-
bined with a firewall ability to block any detected malicious
communication. Henceforth, we use the term stateful protocol
analysis as it is more appropriate to refer to parsing of both
network-based and host-based activities, whereas deep packet
inspection refers only to the network-based activity analysis.

Unlike anomaly-based detection, which uses host or
network-specific profiles, stateful protocol analysis relies on
vendor-developed universal profiles that specify how a pro-
tocol will behave. Therefore, it can identify unexpected se-
quences of protocol commands, such as issuing a command
multiple times or issuing a command out of the correct order.
These profiles are built upon protocol models, which are based
primarily on protocol definitions from software vendors and
standards entities.

Stateful detection systems are (advanced) intrusion detection
and prevention systems capable of understanding and tracking
the network, transport, and application protocols to get a
sense of a global state [60]. These systems also include
reasonableness checks for individual commands, such as min-
imum and maximum lengths for command arguments. For
instance, when a command typically has a username argument
whose maximum length is 20 characters, an argument of 1000
characters is suspect. Machine-learning approaches can also be
used to detect undesired communications.

This solution has some limitations, though. With regard
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to protocol models, many standards do not fully explain the
internal details of protocols, causing variations between vendor
implementations. Additionally, many vendors violate standards
or extend them with proprietary features, some of which may
even replace standard features. Also, full details on proprietary
protocols are often unavailable, making a complete and accu-
rate analysis difficult. Since standard protocols are continually
reviewed and vendors modify their protocol implementations
to accommodate these changes, protocol models must also be
updated to reflect them.

Regarding protocol analysis, the analysis task is a resource
intensive task due to the complexity of the analysis and the
overhead involved in tracking status for many simultaneous
sessions. Moreover, attacks that do not violate acceptable
protocol behavior, such as taking many benign actions in a
very short period of time to cause a denial of service, are not
detected. In addition to these problems, particular versions of
specific applications and operating systems within the network
may have different protocol implementations, which can be a
major restriction for analysis.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we studied the CoAP, MQTT, and AMQP
protocols from the point of view of data exfiltration. Data
exfiltration is the unauthorized transfer of information from an
information system. Furthermore, we also introduced CHITON,
a Python library that allows data to be exfiltrated through the
three aforementioned protocols. To the best of our knowledge,
this work is the first to broadly compare these IoT protocols
from a data exfiltration point of view, focusing on character-
istics such as overhead and available payload to exfiltrate data
in each protocol message.

In addition, we empirically measured and compared the time
required to exfiltrate files of different data sizes. The experi-
mentation shows that CoAP is the least suitable protocol and
that both MQTT and AMQP outperform it. This preference
for MQTT and AMQP is also supported from an adversary’s
point of view, as these protocols are more likely to be allowed
on the enterprise networks because they are typically used to
connect enterprise IoT networks to IoT cloud providers. For
instance, MQTT version 3.1.1 is an IoT protocol supported
by the three major cloud providers (Amazon Web Services,
Microsoft Azure, and Google Cloud).

We believe this work can be taken as a basis to study
how to detect an unintended data transfer using IoT protocols
and therefore improve detection systems appropriately. In this
regard, we discussed the use of network segmentation, state-
ful intrusion detection systems, and deep packet inspection
techniques against the problem of data exfiltration using IoT
protocols. As future work, we aim to broaden the scope of
this study by adding more protocols (such as MQTT-SN, a
version of MQTT specially designed for the IoT environment)
and measuring the performance impact on various IoT devices.
Regarding CHITON, our goal is to add support for a response
mechanism for lost UDP packets and for packet sorting, as
well as to extend the number of supported protocols.
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