
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier XXX

Defense and Attack Techniques against
File-based TOCTOU Vulnerabilities:
a Systematic Review
Razvan Raducu1, Ricardo J. Rodríguez1, (Member, IEEE), and Pedro Álvarez1
1Dept. of Computer Science and Systems Engineering, University of Zaragoza, Spain

Corresponding author: Ricardo J. Rodríguez (e-mail: rjrodriguez@unizar.es).

This work has been supported in part by the PDC2021-121072-C22 project granted by the Spanish Ministry of Economy and
Competitiveness, by the University, Industry and Innovation Department of the Aragonese Government under Programa de Proyectos
Estratégicos de Grupos de Investigación (DisCo research group, ref. T21-20R), and by the University of Zaragoza and the Fundación
Ibercaja under grant JIUZ-2020-TIC-08. The research of R. Raducu was also supported by the Government of Aragon under a DGA
predoctoral grant (period 2021-2025).

ABSTRACT File-based Time-of-Check to Time-of-Use (TOCTOU) race conditions are a well-known
type of security vulnerability. A wide variety of techniques have been proposed to detect, mitigate,
avoid, and exploit these vulnerabilities over the past 35 years. However, despite these research efforts,
TOCTOU vulnerabilities remain unsolved due to their non-deterministic nature and the particularities of
the different filesystems involved in running vulnerable programs, especially in Unix-like operating system
environments. In this paper, we present a systematic literature review on defense and attack techniques
related to the file-based TOCTOU vulnerability. We apply a reproducible methodology to search, filter,
and analyze the most relevant research proposals to define a global and understandable vision of existing
solutions. The results of this analysis are finally used to discuss future research directions that can be
explored to move towards a universal solution to this type of vulnerability.

INDEX TERMS file-based race condition, TOCTOU vulnerability, avoidance techniques

I. INTRODUCTION

Today, many applications are deployed on large-scale dis-
tributed systems and multi-core processors, which perform
multiple tasks concurrently while sharing common resources
such as memory, disk, or network. The intrinsic characteris-
tics of the simultaneous execution of programs make them
very difficult to write, test, and debug [1, 2], which facilitates
the existence of concurrency bugs.

Concurrency bugs are caused by accesses to a shared
resource between threads and processes without proper syn-
chronization. These bugs can lead to vulnerabilities that,
when triggered by adversaries, can cause a much broader
impact on security, such as bypassing security checks, break-
ing the integrity of databases [3], hijacking the vulnerable
program control flow execution, or escalating privileges [4],
among others.

A common attack especially related to concurrency bugs
is the privilege escalation attack, in which a malicious user
gains access to other user accounts on the target system.
The number of vulnerabilities related to privilege escalation

has been increasing in recent years. For instance, in 2020
this type of vulnerability comprised 44% of all Microsoft
vulnerabilities [5]. There are two main types of privilege es-
calation: horizontal privilege escalation attacks, in which an
attacker expands their privileges by taking over another (non-
privileged) user account and abusing the legitimate privileges
granted to the other user; and vertical privilege escalation
attacks, which involve increasing privileges/privileged access
beyond what a user (or an application or other asset) already
has.

Vertical privilege escalation attacks are commonly caused
by a particular type of concurrency bug, called race con-
dition bugs. The root cause of these bugs is a TOCTOU
(Time-of-Check to Time-Of-Use) bug, which occurs when
a program checks a particular characteristic of an object
(e.g., whether the file exists), and later takes some action
that assumes the checked characteristic still holds [6]. The
window of opportunity that the program leaves between the
time of check and the time of use is then exploited by an
adversary. The adversary can increase this window by various

VOLUME 4, 2016 1

Submitted to IEEE Access

means, such as overloading the system or creating specific
inputs for the vulnerable program. In addition, TOCTOU vul-
nerabilities are present in different scenarios. For example,
memory accesses involving the kernel [7, 8] (also known
as double-fetch bugs), Remote Attestation [9, 10], Trusted
Computing [11, 12], or file-based TOCTOU [6, 13], among
others.

In this paper, we focus on file-based TOCTOU since they
are one of the oldest known security flaws, dating back to the
mid-70s [14, 15]. These types of race conditions, particularly
common on Unix-like systems, occur due to the mapping
from a filename to a unique inode and a device number.
Although the mapping of the inode and device number to a
file descriptor is race-free, the mapping of the filename to the
inode and the device number is volatile since filenames and
the underlying inode and device number may change on each
system call invocation.

A well-known example of this kind of problem is
sendmail [13], which used to look for a specific attribute
of a mailbox file before adding new messages to it. Un-
fortunately, the verification and append operations are not
an atomic unit. Consequently, if an adversary (the mailbox
owner) replaces their mailbox file with a symbolic link
to sensitive files (such as /etc/passwd, which contains
information about system user accounts) between the ver-
ification and append operations, then sendmail will add
email contents to /etc/passwd. As a result, the adversary
can craft an email message to add a new user account with
superuser privileges in the system.

Figure 1 illustrates this typical security flaw. The vulnera-
ble code appears on the left side of the figure. On line 6 there
is a check of the write permission on a file (identified by a
string) with the access system call. Once the verification
is successful, the file is opened (line 8) and certain data
is appended to the file. If this program is run with setuid
permission (i.e., users can run it with elevated privileges
temporarily to perform a specific task), the adversary can
take advantage of the race window between the operations
on lines 6 and 8. An example of the exploit used by an
adversary is shown on the right side of the figure. Suppose
the exploit is run to write to the /etc/passwd file, which
is a protected file in UNIX-based systems. If an adversary
iteratively creates a symbolic link to /etc/passwd (line
14, right side) at the same time as the execution of the
vulnerable program (line 12, right side), the race condition
will eventually occur and the attack will succeed, appending
new content to the protected file.

Specifically, file-based TOCTOU vulnerabilities1 are file-
based race conditions that occur on filesystems with weak
synchronization mechanisms (that is, they do not provide
methods to ensure that filesystem objects remain unchanged
between consecutive interactions with them). Given the non-
deterministic nature of race conditions, the success of an

1In the rest of this paper, we refer to file-based TOCTOU vulnerabilities
simply as TOCTOU vulnerabilities.

Table 1: Common Weakness Enumerations related to TOC-
TOU.

CWE ID Vulnerability
CWE-59 Improper Link Resolution Before File Ac-

cess (‘Link Following’)
CWE-61 UNIX Symbolic Link (Symlink) Following.
CWE-62 UNIX Hard Link

CWE-362 Concurrent Execution using Shared Re-
source with Improper Synchronization
(‘Race Condition’)

CWE-363 Race Condition Enabling Link Following
CWE-367 Time-of-check Time-of-use (TOCTOU)

Race Condition (not only file-based
TOCTOU)

CWE-386 Symbolic Name not Mapping to Correct
Object

CWE-706 Use of Incorrectly-Resolved Name or Ref-
erence

attack is highly dependent on the precise and timely actions
of the attacker at any given time during the execution of
the vulnerable program. Furthermore, the occurrence of this
type of vulnerability also depends on certain system calls
being executed in a specific order, as well as environmental
conditions [16, 13]. Therefore, the reproducibility of these
vulnerabilities is typically very difficult.

Despite the age of this security flaw, numerous vulner-
abilities are still reported each year related to TOCTOU
vulnerabilities. For example, at the time of writing, a query
to find TOCTOU-related vulnerabilities returns 786 results in
the National Vulnerability Database [17] and 120 results in
the MITRE CVE search engine [18], with the newest being
only a few days old in both cases. This clearly shows that
it is still a significant security problem and that the CVE
release for TOCTOU vulnerabilities is common in the soft-
ware industry. Furthermore, this vulnerability affects projects
of any size, such as open-source projects [19], and major
software vendors [20, 21, 22]. The proof of the pudding is
in the eating: as shown in Table 1, there are several Common
Weakness Enumeration (CWE) entries related to TOCTOU.
CWEs represent a common language for discussing, finding,
and addressing the causes of software security vulnerabili-
ties, currently maintained by the MITRE Corporation. Each
individual CWE represents only one type of vulnerability.
This paper aims to systematically review the scientific lit-
erature in order to find techniques to mitigate TOCTOU
vulnerabilities, as well as techniques to exploit these vulnera-
bilities. Specifically, we review the literature to find out what
techniques have been proposed, how they are implemented,
how they detect TOCTOU vulnerabilities, which operating
system they target, and whether any source code or software
tool is available to reproduce the experimental results.

In summary, our contributions are the following:

• We conduct a comprehensive review of the literature

2 VOLUME 4, 2016

1 // toctou.c
2 char *filename = argv[1];
3 // ...
4
5 // Check permissions
6 if(!access(filename, W_OK)){
7 // Open the file
8 file = fopen(filename, "a+");
9

10 // Write to file the user input
11 fwrite(buffer, sizeof(char), strlen(

buffer), file);
12 fwrite("\n", sizeof(char), 2, file);
13 fclose(file);
14 }else
15 printf("No permission, exiting!\n");

1 #!/bin/bash
2 # exploit.sh
3 # (execute it as: ./exploit.sh /etc/passwd)
4 TEMPFILE="temp.file"
5 OLD_LS=`ls -l $1`
6 NEW_LS=`ls -l $1`
7
8 while ["$OLD_LS" == "$NEW_LS"]
9 do

10 rm -f $TEMPFILE
11 echo "From user" > $TEMPFILE
12 echo "TOCTOU success" | ./toctou

$TEMPFILE > /dev/null &
13 unlink $TEMPFILE
14 ln -s $1 $TEMPFILE &
15 NEW_LS=`ls -l $1`
16 done

Figure 1: Example of a file-based TOCTOU vulnerability (left side) and exploit (right side).

on defense and attack solutions against TOCTOU vul-
nerabilities. In particular, we found 37 articles propos-
ing some kind of defense solution and only 4 articles
proposing attacks against TOCTOU.

• We propose a taxonomy for TOCTOU defenses and at-
tacks, according to when they perform the vulnerability
detection/exploitation and at what level they operate.
Furthermore, we classify TOCTOU attacks based on the
attack vector they exploit.

• We highlight future research trends and directions re-
garding defense solutions for TOCTOU vulnerabilities.
Our proposals cover modifying current operating sys-
tem calls to make them race-free and security focused,
modifying the kernel to avoid the use of filenames, and
the use of transactional filesystems. We provide more
details on this matter in Section V-B.

This paper is organized as follows. Section II briefly
reviews related work. Section III presents the methodology
we followed to carry out the systematic review of the lit-
erature, defining the research questions and inclusion and
exclusion criteria. The results of the systematic review and
the proposed taxonomy are presented in Section IV. A more
detailed discussion of the results is provided in Section V,
also highlighting trends and directions of future research, as
well as limitations of our work. Finally, Section VI concludes
the paper.

II. RELATED WORK
In this section, we review the literature related to our work.

Several different TOCTOU vulnerabilities are mentioned
in other literature reviews or surveys. The survey in [23] fo-
cuses on double-fetch vulnerabilities, which is a vulnerability
that occurs when data consistency between the kernel and the
user space is violated in a race condition. Vulnerabilities in
remote attestation in wireless sensor networks are discussed
in [24]. TOCTOU vulnerabilities can also occur in this con-
text, as attesting a node occurs at a particular point in time
and does not guarantee that the node was not temporarily
compromised before or that it will not be compromised right

after the attestation. TOCTOU vulnerabilities due to naming
collusion in Android are explored in [25], which provides a
systematic review of permission-based Android security.

Unlike these works, our work focuses exclusively on file-
based TOCTOU vulnerabilities. Furthermore, the previous
works do not provide an in-depth analysis of how this vul-
nerability is exploited or of existing defense and offensive
techniques. To the best of our knowledge, we present the first
systematic literature review of file-based TOCTOU vulnera-
bilities.

III. METHODOLOGY OF THE SYSTEMATIC LITERATURE
REVIEW
We conduct a systematic review of the literature following
the recommendations given in [26] to find detection, pre-
vention, avoidance or exploitation techniques that are related
to TOCTOU vulnerabilities. Systematic literature reviews
are methodical, complete, transparent, and replicable studies
that allow the compilation of results following reproducible
and bias-free research carried out by consulting the main
scientific and academic search engines [27].

Next, we explain in detail the methodology that we have
followed. We first state the research questions and the search
strategy used. We then present the criteria used to select
studies for quantitative analysis. Finally, we summarize the
number of articles obtained in each execution phase of our
review protocol.

A. RESEARCH QUESTIONS
The main objective of this research is to review the liter-
ature in the field of prevention, detection, and mitigation
mechanisms for TOCTOU vulnerabilities, as well as related
exploitation techniques. In particular, we want to know the
underlying principles behind mitigating and attacking file-
based race conditions, how they affect the host operating
system, whether they are located at the user or kernel-space
level, and whether any tool or source code exists to replicate
the experimental results. More formally, we formulate the
following research questions (RQ):

VOLUME 4, 2016 3

Submitted to IEEE Access

RQ1.- How do defensive and offensive techniques of file-based
TOCTOU vulnerabilities work?

RQ2.- In which regions of the memory do they reside?
RQ3.- When is the vulnerability detected or exploited?
RQ4.- In which operating system is the technique imple-

mented?
RQ5.- Is there any tool or source code available to validate or

replicate the experimental results?

B. SEARCH STRATEGY
We consulted various scientific databases that allow the
results to be exported for later analysis. In particular, we
considered IEEE Xplore, ScienceDirect, Scopus, and ACM
since together they cover the main journals and conferences
in the field of interest.

The advanced search relied on keywords that were care-
fully selected and modified throughout the review process
to improve the results and fulfill the purpose of our review.
Specifically, we started from scratch by conducting a pre-
liminary search with the term “TOCTOU” and adding those
terms that help us narrow down the results (for instance,
synonyms have also been contemplated). The final search
string is: (TOCTOU OR TOCTTOU OR “time of check
to time of use”) AND file AND (attack* OR exploit* OR
abus*OR defen* OR mitigat* OR fix*). We looked for items
until the year 2021, without setting any initial year.

As we are only interested in scientific/academic works that
have been published in peer-reviewed scientific journals and
conferences, other works such as gray literature, books, stan-
dards, or patents are discarded from our results. In addition,
we carried out a complementary manual search by reviewing
the title of the works presented in the Tier-1 and Tier-2 con-
ferences of computer security, according to [28]. This search
consisted of checking whether the titles of the publications
contained at least one of the following keywords: file, race,
time or toc*. A total of 470 conferences (216 from Tier-1
and 264 from Tier-2) have been verified and all editions of
each conference have been reviewed. For example, regarding
the IEEE Symposium on Security and Privacy, 25 editions
have been reviewed, from 1995 to 2020. In particular, the
following conferences have been consulted: IEEE Sympo-
sium on Security and Privacy, ACM Conference on Computer
and Communications Security, USENIX Security Sympo-
sium, Network and Distributed System Security Symposium,
Annual International Cryptology Conference, International
Conference on the Theory and Application of Cryptographic
Techniques, European Symposium on Research in Computer
Security, International Symposium on Recent Advances in
Intrusion Detection, Annual Computer Security Applications
Conference, Dependable Systems and Networks, ACM In-
ternet Measurement Conference, ACM Asia Conference on
Computer and Communications Security, International Sym-
posium on Privacy Enhancing Technologies, IEEE European
Symposium on Security and Privacy, IEEE Computer Se-
curity Foundations Symposium, International Conference on
Theory and Application of Cryptology and Information Se-

curity, Theory of Cryptography Conference, and Workshop
on Cryptographic Hardware and Embedded Systems.

After thoroughly reviewing the proceedings of these con-
ferences, 13 articles were selected according to their titles
for further study. In addition, we also carried out snowballing
(i.e., reference inspection) on all selected articles. This pro-
cess allowed us to find 11 additional relevant articles. We
provide more details on the number of articles selected during
the review process in Section IV.

C. STUDY SELECTION CRITERIA
After finding these initial articles, we used the StArt tool
to better perform the research and article selection processes.
StArt [29, 30] is a tool that helps researchers define and
execute the systematic review protocol. This tool automati-
cally detects duplicate results, rates them based on predefined
keywords, and provides visualizations of the current review
status, among other features.

The scoring metric provided by StArt was used as the
first filter. The StArt scoring system allows the user to rate
each article based on the appearance of certain keywords in
its title, list of keywords, or abstract. The rating system we
have used is simple, but allows us to really focus on the
relevant articles. For each term in the keyword bag, the score
value is obtained as follows:
• Add 5 points if the term appears in the article title.
• Add 3 points if the term appears in the article abstract.
• Add 2 points if the term appears in the article’s key-

words.
The keyword bag comprises the following main terms,

as well as their synonyms and plurals: TOCTOU, attack,
concurrency, defense, exploit, filesystem, interference, miti-
gation, race condition and data race. We also consider vari-
ations of these terms. The term TOCTOU, for example, has
different forms throughout the literature such as TOCTTOU,
time-of-check-time-of-use, or time of check to time of use. We
set a minimum score of 15 to select an article. Note that
articles relevant to our research should easily exceed that
minimum value, given the scoring scheme described above.

All articles above the threshold are considered for further
inspection and selected or excluded based on the criteria de-
fined in Table 2. These criteria help us select and focus on the
most relevant articles in relation to the proposed RQs. After
applying the criteria filter, the selected articles are studied in
depth to answer each RQ indicated in Section III-A.

D. ARTICLES COLLECTED AND REVIEWED
After running the search protocol, we collected 563 articles.
66 of them have been discarded for being duplicates. After
applying the scoring threshold, only 126 remained, which
were further analyzed to apply the selection and exclusion
criteria. In addition, 13 articles were collected after manually
reviewing the Tier-1 and Tier-2 computer security confer-
ences, according to [28]. 6 of them were also discarded
because they were duplicates with regard to the previously

4 VOLUME 4, 2016

Table 2: Inclusion (IC) and exclusion (EC) criteria.

Type Criterion
IC1 The article focuses on concurrency attacks.
IC2 The main contribution of the article is a

defense against TOCTOU or an attack to
exploit it.

EC1 The article is a short introductory paper,
early access, or conference abstract.

EC2 The article is not written in English.
EC3 The article is duplicated.
EC4 The article focuses on other types of TOC-

TOU rather than file-based TOCTOU.
EC5 The article is not available for download-

ing or reading.

Articles identified through
database searching: IEEE

(166), Science Direct (59),
Scopus (59), ACM (250)

(n = 563)

Manual search in proceedings
of the Tier-1 and Tier-

2 computer security
conferences, according to [28]

(n = 13)

Articles after
removing duplicates

(n = 504)

Articles after applying the
scoring system and with a
score above the threshold

(n = 133)

Articles after applying
the inclusion and
exclusion criteria

(n = 37)

Articles included in
quantitative synthesis
after full-text review

(n = 30)

Articles included in
quantitative synthesis

(meta-analysis)
(n = 41)

Articles excluded
(n = 371)

Articles excluded
(n = 96)

Articles excluded
(n = 7)

Articles included
by snowballing
(n = 11)

Id
en

tifi
ca

tio
n

Sc
re

en
in

g
E

lig
ib

ili
ty

In
cl

ud
ed

Figure 2: PRISMA diagram of our review protocol.

considered corpus. These manually-included articles have
not undergone the scoring system, but were reviewed imme-
diately. Again, 6 of them were discarded because they did not
focus on file-based race conditions. This process resulted in
a total of 41 articles that we considered for our quantitative
synthesis analysis.

This information is combined and summarized in Figure 2.
The PRISMA diagram summarizes the execution phases of
our review protocol (identification, screening, eligibility, and
inclusion) and the articles obtained in each phase.

IV. ANALYSIS OF RESULTS
This section presents the results of the systematic review
of the literature. We first propose a taxonomy for current
TOCTOU defense and attack mechanisms that collects the
main insights drawn after the systematic review of the lit-
erature and responds to the research questions established
in Section III-A. We then explain the different categories
into which TOCTOU defenses can be classified, and then we
explain the articles in each category in more detail. Finally,
we follow the same narrative to explain the studies found on
attack methods against TOCTOU vulnerabilities.

A. TOWARDS A TAXONOMY FOR TOCTOU DEFENSE
AND ATTACK MECHANISMS

Figure 3 illustrates the classification of TOCTOU defense
and attack mechanisms resulting from responding to the
research questions established in Section III-A.

A TOCTOU defense or attack mechanism can be cat-
egorized considering two aspects: memory region, which
indicates at which level the TOCTOU defense or exploita-
tion occurs; and time of detection/exploitation, which means
the time when the TOCTOU vulnerability is detected or
exploited. Memory regions can be divided into user-space
level, which includes solutions that run in the same memory
area as the vulnerable application (and some drivers), and
kernel-space level, which comprises solutions that run in
the same memory area where the operating system kernel
runs (as well as kernel extensions and most device drivers).
Detection/exploitation times can be divided into static, which
comprises defense solutions in which the vulnerability is
detected without the vulnerable application running or after
it has been run (in other words, the detection of the vulner-
ability occurs before or after the execution); and dynamic,
which includes proposals capable of detecting or exploiting
the vulnerability when the vulnerable program is running.

Regarding memory regions, as shown in Figure 4a, 60% of
the defense solutions are located in kernel-space, while 40%
are located in user-space. As for offensive techniques, all of
these are attacks from the user-space level. Recall that this
vulnerability allows the attacker to gain system privileges. If
the attacker is able to execute the attack from the kernel-space
level, there is no real gain in exploiting the vulnerability.
We give a more detailed discussion on this matter below in
Section V-A.

Regarding time of detection/exploitation, static proposals
are exclusively defense approaches, and can be further di-
vided into source code detection approaches, which analyze
the source code of the vulnerable program [31, 6, 32], and
post-mortem detection approaches, which detect the TOC-
TOU vulnerability after the exploitation attempt has already
occurred [33, 34, 35, 36, 37, 38, 39, 40]. Unlike post-mortem
detection approaches, source code detection approaches find
the TOCTOU vulnerability before it is exploited, which is
often preferable in certain systems such as critical infrastruc-
tures or systems with highly sensitive information.

VOLUME 4, 2016 5

Submitted to IEEE Access

TOCTOU Defense
and Attack

Time of
detection/exploitation

Dynamic

Attack vector
Kernel I/O caching

External devices

Sandbox
filesystems

Transactional
system calls

Intra/inter-process
memory consistency

System call
interposition

Static

Post-mortem
detection

Source-code
detection

Memory region

User-space
level

Kernel-space
level

Figure 3: Proposed taxonomy for TOCTOU defense and attack mechanisms.

Dynamic proposals are more diverse, based on a multitude
of runtime analysis techniques. Some defense approaches
use system call interposition, monitoring the behavior of the
programs by intercepting their system calls. This monitoring
can occur at either the user-space level [41, 42, 43, 44, 45, 46]
or the kernel-space level [47, 48, 49, 50, 51, 52, 16, 53, 54,
13, 55, 56, 57, 58, 59]. A few defense approaches propose
intra-process or inter-process techniques for memory con-
sistency (both at kernel-space level [60, 61]) to guarantee
the consistency of variables shared across threads. Other
kernel-level defense approaches propose transactional sys-
tem calls [62] as an alternative to traditional filesystems to
prevent race conditions from occurring in system resources,
while others propose sandbox filesystems [63, 64] to protect
against unauthorized file modifications caused by file-based
race condition vulnerabilities.

In particular, as shown in Figure 4b, 71.4% of the defense
solutions are dynamic, while only 28.6% are static. Note that
we use the same terms as in program binary analysis (static
and dynamic), but we refer to the time of detection rather than
how the program is analyzed (not running or while running).

The attack techniques are all dynamic since the vulnerable
program must be running to exploit it. Attack mechanisms
can be further classified according to the attack vector, which
defines the path or means that an attacker takes to exploit a
vulnerability. Regarding TOCTOU vulnerabilities, we have
found two different attack vectors. The first is the external
devices vector, which consists of abusing the trust that the
system places in external devices (i.e., USB sticks or SD
cards) during the installation process of a given application.
During the installation process, the system can use external
devices to store sensitive data that can be altered or manipu-
lated by an attacker, since the external device is under their
control. This attack vector is used in [65, 66]. The second

is kernel Input/Output (I/O) caching, which involves attacks
that abuse the kernel’s I/O caching mechanism to deliberately
increase the window of the vulnerability. If the attacker can
tamper with the kernel cache, they will force I/O operations
so that the kernel resolves the specified pathnames. These
I/O operations take time to complete, which broadens the
vulnerability window and facilitates exploitation. This attack
vector is used in [67, 68].

B. ON TOCTOU DEFENSES
Figure 5 shows a timeline of the articles studied in this work
focused on defense solutions against TOCTOU vulnerabili-
ties. Although the first references to TOCTOU vulnerabilities
are approximately 50 years old [14, 15, 69], the first defense
solution was not proposed until 1994 [33]. Defense solutions
then extend over the years until 2019, the date of the last
solution we found.

Figures 4a and 4b show a graphical summary of defense
solutions according to memory region and time of detection,
respectively. Regarding detection location, there is no clear
or predominant choice among the proposed solutions ana-
lyzed in this systematic literature review, although kernel-
level solutions represent slightly more than half. As for the
moment when TOCTOU is detected, almost three-quarters
of the defense solutions are dynamic (specifically, 71.4%).

Finally, it is worth mentioning the trend of detection
techniques chosen by the proposed defenses and their level
of execution. The timeline in Figure 5 clearly indicates that
the first solutions were based on static user-space detection,
beginning in 1994. In the early 2000s, the first solutions
based on dynamic kernel-space detection emerged. Dynamic
detection at the user-space level began in 2006. Additionally,
19 dynamic kernel-space solutions were published between
2001 and 2014, thus averaging more than one publication

6 VOLUME 4, 2016

per year. In contrast, during our research we found only
one defense mechanism that relies on a static kernel-based
solution.

Table 3 summarizes our findings on defensive techniques,
answering research questions RQ2 through RQ5. A detailed
discussion answering these questions is provided in Sec-
tion V. For each study, we indicate in the table the de-
tection location and the detection type. We also indicate
the operating system on which it is evaluated (the specific
operating system and version if indicated in the publication,
or otherwise the generic operating system) and if the pro-
posed solution is reproducible (that is, if a prototype tool
or source code is provided for download). In this regard, we
consider reproducibility to be an important issue in terms of
scientific rigor and its contribution to open science. Figure 4c
summarizes the reproducibility of the techniques proposed
by the works analyzed in this systematic literature review.
In addition, we indicate the items each technique uses to
identify (uniquely) a filesystem object and detect external
manipulation. Figure 7 shows in a bar graph how many
defense techniques use each item identified in the literature
review. We describe each of these works in more detail below
to answer RQ1.

1) Description of TOCTOU Defense Solutions
In this section we describe each of the works according
to the research questions established in Section III-A. The
studies, which are presented in chronological order, have
been grouped according to the detection location (user-space
level versus kernel-space level) and the detection time (static
versus dynamic).

Based on Static User-Space Detection
The first work we found is [33]. The authors proposed a
defense solution that detects TOCTOU exploitation attempts
after the vulnerable program has been executed. The detec-
tion process is mainly based on the analysis of execution
traces. We refer to this type of static detection as post-
mortem detection, since the detection is made after the ex-
ploitation attempt has been carried out and the vulnerable
program has finished its execution. The authors’ solution
monitors the execution of privileged programs, auditing cer-
tain sequences of unwanted actions and then checking them
against expressions described by the logic of predicates and
regular expressions. The authors also presented a software
prototype that runs on the Sun Solaris operating system and
is capable of detecting TOCTOU vulnerabilities in three
widely used programs (specifically, fingerd, rdist, and
sendmail). However, no reference to the source code or
to the tool itself is provided to facilitate reproduction of the
experiments.

File-based race conditions on Unix-like operating systems
were first discussed in detail in [31], concluding that kernel
modifications are required to eliminate file-based race condi-
tions. In addition, a lexical source code scanner is proposed to
detect the vulnerabilities related to file access. Although the

presented prototype successfully discovered new instances of
TOCTOU, the tool or its source code is not available.

In a later work, Bishop and Dilger [6] demonstrated that
privilege escalation attacks that exploit TOCTOU vulnera-
bilities only occur when filesystem objects are referenced by
their names and not by file descriptors. Again, a software
prototype is developed to (lexically) parse C source code files
and detect file-based race conditions. Detection is based on
pattern matching techniques and dependency and data-flow
graph analysis. Unfortunately, the prototype is not accessible.

Goyal et al. [34] proposed an algorithm that is evaluated
on a Unix-like system to detect TOCTOU attacks based
on the analysis of execution traces (that is, it performs a
post-mortem detection). A set of predefined rules is verified
against execution traces to detect successful exploitation of
TOCTOU vulnerabilities. As the authors stated, this solution
is incomplete as the attack patterns must be known before-
hand. No reference is provided to the availability of the
prototype that implements the algorithm.

A probabilistic solution was proposed in [32], in which
the source code of the vulnerable program is modified to
reduce the probability of success of an attack. This solution
replicates an arbitrary number of times the execution of the
original sequence of potential vulnerable actions, verifying
afterwards if the accessed file is changed. Since the authors
provided examples on how to modify the source code, we
consider this to be a reproducible work.

The solution proposed by Bhatkar et al. [35] was also
based on post-mortem detection as it parses execution traces
to build a control and data-flow graph which is then verified
against a set of learning temporal properties representing
TOCTOU vulnerabilities. The solution is implemented in a
software tool for Red Hat Linux 7.3 that is not available.

Yu et al. [38] proposed a virtualization-based solution
dubbed SimRacer, which tests the occurrence of certain
types of race conditions by replaying event traces of the
executions of the program. The authors test it against a set
of vulnerable programs, successfully detecting all TOCTOU
vulnerabilities. By construction, SimRacer is compatible
with any operating system that runs on top of the full-system
Simics simulator. Unfortunately, neither the tool nor its
source code is available.

Yu et al. [39] introduced SIMEXPLORER, an improved
version of SimRacer. This solution extends the detection
algorithms of SimRacer to consider hardware interruptions
and signal handlers. Tested with 24 programs, it detected 36
out of 41 previously known vulnerabilities. Like SimRacer,
SIMEXPLORER can run on any OS that runs on top of Simics
and is also not available.

The latest static user-space solution also relies on post-
mortem detection. Capobianco et al. [40] provided a solution
for detecting TOCTOU vulnerabilities by calculating the
attack graph of the vulnerable program and analyzing it to
detect sequences of events that may end up exploiting the
vulnerability. These attack graphs allow the user to find the
attack surface used by the adversaries and how they effec-

VOLUME 4, 2016 7

Submitted to IEEE Access

Table 3: Overview of TOCTOU defenses, sorted by publication year.

Publication Detection
location

Detection
time

Operating System Reproducible Items used to identify file
objects

[33] User-space Static Sun Solaris 7 File path, permission mode,
owner ID, GID

[31] User-space Static Unix-like 7 (n/a)
[6] User-space Static SunOS and Solaris 7 (n/a)
[47] Kernel-space Dynamic Linux 7† Filename
[48] Kernel-space Dynamic Red Hat Linux 6.2 7 (n/a)
[34] User-space Static Unix-like 7 (n/a)
[49] Kernel-space Dynamic OpenBSD 7 File path, PID, current time, file

operation, inode
[32] User-space Static Linux 2.4.18, FreeBSD

4.7, Solaris 8, SunOS 4.1.4
3 Inode, device ID, generation

number (if available)
[50] Kernel-space Dynamic Linux 2.4.20 7 Filename, inode
[51] Kernel-space Dynamic Red Hat Linux 7.3 (kernel

2.4.18)
7 Filename, inode

[16] Kernel-space Dynamic Red Hat Linux 9 (kernel
2.4.20)

7 File path, arguments, PID,
filename, UID, GID, EUID,

EGID
[52] Kernel-space Dynamic Red Hat Linux 7.3 7 File path, PID, inode, # of

processes accessing the file
[41] User-space Dynamic Linux 3 Filename
[60] Kernel-space Dynamic Linux 2.4.28 7 File path, # of processes

accessing the file, UID
[35] User-space Static Red Hat Linux 7.3 7 File path, UID, inode

[42, 43] User-space Dynamic Solaris 8, AIX 5.3 and
Linux 2.4.26, 2.6.20 and

2.6.22

3 Filename, inode

[53] Kernel-space Dynamic POSIX 3 Device ID, inode
[62] Kernel-space Dynamic Linux 2.6.22 3∗ Inode
[44] User-space Dynamic POSIX 3? File path, UID
[13] Kernel-space Dynamic Linux 2.4.28 7 File path, logical disk block
[54] Kernel-space Dynamic Linux 7 (n/a)

[36, 37] Kernel-space Static Linux 2.6.35 3† Inode, file handlers, UID, PID,
PPID

[55] Kernel-space Dynamic Linux 2.6.35 7 Inode
[45] User-space Dynamic Unix-like 7† Device ID, inode, parent

directory
[56] Kernel-space Dynamic Linux 3.2.0 7 Inode
[38] User-space Static Linux 2.6.15 7 File descriptors, inode, PID
[63] Kernel-space Dynamic Linux 3.2.0-36 and 3.8.10 3 (n/a)
[57] Kernel-space Dynamic Linux 2.6.35 and 3.2.0 3‡ Device ID, inode
[58] Kernel-space Dynamic Linux 3.2 7 Inode
[61] Kernel-space Dynamic Linux 7 (n/a)
[59] Kernel-space Dynamic Linux 7 Device ID, inode,
[46] User-space Dynamic POSIX.1-2008 compliant 7† Inode
[39] User-space Static Any on Simics 7 PID, File descriptors, inode
[64] Kernel-space Dynamic Linux 4.10 3 File path, inode
[40] User-space Static (n/a) 7 (n/a)

(n/a): Not available; †: No longer available; ‡: Found in the related article material, such as the conference presentation; ∗: Found by
searching the Internet; ?: Lack of details to fully replicate it.

8 VOLUME 4, 2016

User-space
40.0%
(14)

Kernel-space

60.0%
(21)

(a) Detection location

Static

28.6%
(10)

Dynamic

71.4%
(25)

(b) Detection time

Yes

17.1%
(6)

Yes (with remarks) 11.4%
(4)

No

62.9%
(22)

No (with remarks)

8.6%
(3)

(c) Reproducibility

Figure 4: Graphical summary of defense solutions (detection location, detection time, and reproducible).

tively elevate privileges. While the authors conduct detection
statically, they explore how it can be applied at runtime
and discuss the research challenges, as their primary goal
is to improve the capabilities of intrusion detection systems.
Unfortunately, neither the prototype nor the source code is
available.

Based on Dynamic User-Space Detection
Aggarwal and Jalote [41] proposed the first solution based
on dynamic user-space detection. In particular, the solu-
tion relies on a software agent integrated in the vulnerable
program to control its execution while detecting common
vulnerabilities. System calls are monitored by the agent and
sent to another process in charge of real-time analysis of the
behavior of the vulnerable program. A software prototype for
Linux is provided and evaluated, which succeeds in stopping
file-based TOCTOU exploits.

A new standard function was provided in [42, 43] to avoid
the TOCTOU vulnerability window between the system call
sequence access and open. This new feature is an en-
hancement of a previous version introduced in [32] to defend
against complex attacks such as filesystem mazes [67]. More
details on this type of attacks are given in Section IV-C.
Although the solution provides good results, it still has some
drawbacks, such as the difficulty of deployment in produc-
tion, defending against circular symbolic links, or multi-
threaded applications, among others. Source code is provided
by the authors. Since [43] is the full report of [42], we
consider them as a single solution.

Chari et al. [44] proposed a set of secure calls for POSIX-
compliant operating systems to prevent privilege escalation
attacks based on TOCTOU. These secure calls overlap actual
system calls, monitoring invocations of certain file-based
system calls for unwanted inputs. However, the solution does
not work with statically-linked programs since it is provided
as a software library. Unfortunately, the work in [44] only
shows a subset of the proposed secure calls, leaving the
reader without full knowledge to fully reproduce their work.

Likewise, Payer and Gross [45] also proposed a Unix-
based software library dubbed DynaRace. This binary-
instrumentation solution is based on the state-machine for-
malism: it maintains a state machine for each file used by

the vulnerable program, updated upon a sequence of certain
file-based system calls, to detect unwanted behavior. When
detected, it issues a warning and aborts the vulnerable pro-
gram. The tool was available on the author’s website.

A software library solution that detects file-based race
conditions is also provided in [46]. This solution, though,
puts all the responsibility on the team of software developers,
as they must use the secure system calls provided by the
software library rather than those of the operating system. In
addition, it can also generate false positives, and leaves the
vulnerable program in an unknown state after detecting an
exploitation attempt. The source code was available on the
website of the author’s research group. Unfortunately, it is no
longer online.

Based on Static Kernel-Space Detection
In [36, 37], the authors introduced a system dubbed
RacePro capable of detecting different types of race con-
ditions, including TOCTOU. The system monitors program
executions and audits system calls that access shared kernel
objects. These audit records are then verified against benign
and harmful race models, which are known in advance.
RacePro was tested on Linux Kernel version 2.6.35 and
found 4 unknown bugs in common Linux tools such as
make and locate. The source code for RacePro is freely
available at [70], although it is not explicitly mentioned in
the paper. Since [36] is the preliminary work of [37], we
consider them a single solution.

Based on Dynamic Kernel-Space Detection
RaceGuard is a Linux kernel modification proposed in [47]
to detect race conditions when creating temporary files. In-
ternally, it keeps track of filenames created through certain
system calls, which are then checked for race conditions.
However, this solution is incomplete as it only monitors the
creation of new files, regardless of existing ones. Although
the source code was originally available as a kernel patch for
Immunix, this commercial operating system was discontin-
ued in 2003.

Similarly, Ko and Redmond proposed in [48] a kernel
module for Red Hat Linux 6.2 that monitors system calls
made during the execution of a privileged program, deliber-

VOLUME 4, 2016 9

Submitted to IEEE Access

1994

1995

1996

2001

2002

2003

2004

2005

2009

2006

2008

2010

2011

2012

2013

2014

2015

2017

2018

2019

2021

[31]

[6]

[32]

[33]

[34]

[35] [41]

[42, 43]

[44]

[45]

[38]

[46]

[39]

[40]

[36, 37]

[47]

[48]

[49]

[50]

[51,
52, 16]

[60]

[53]

[62]

[54, 13]

[55]

[56]

[57, 58] [63]

[61][59]

[64]

Source code
detection

Post-mortem
detection

Static detection

System call
interposition

Dynamic detection

User-space level

Post-mortem
detection

System call
interposition

Memory
consistency

Sandbox
filesystem

Transactional
system calls

Static detection

Dynamic detection

Kernel-space level

Figure 5: Evolution of TOCTOU defenses over the years.

10 VOLUME 4, 2016

ately performing them ahead of the execution of system calls
in non-privileged programs. However, the availability of the
prototype is not mentioned.

In [49], Tsyrklevich and Yee also proposed a kernel
module for OpenBSD to detect sequences of system calls
that can lead to race conditions. The module removes the
sharing property of some file objects, making their accesses
mutually exclusive. The solution is successfully evaluated in
four attack scenarios, detecting and stopping all exploitation
attempts. However, as the authors admit, this solution is
not free of race conditions, as the interception of system
calls implicitly generates another race condition vulnerability
window. Although the authors state that their proposal is
portable to other operating systems (not only Unix-like), the
source code is not provided.
Race-attack Prevention System is a system

proposed by Park et al. [50] that also intercepts system
calls and checks the consistency between them. Built on top
of RaceGuard [47], it verifies if shared file objects are
manipulated from a transactional point of view to avoid race
conditions. This solution is implemented for Linux kernel
2.4.20, but unfortunately there is no mention of where or how
it can be obtained.

Lhee and Chapin [51] proposed another software library
that intercepts system calls to detect TOCTOU vulnerabil-
ities, detecting inconsistencies in file objects by means of
their binding information (specifically, the inode and the
filename). This solution is implemented as a kernel module
for Red Hat Linux 7.3 running on top of Linux kernel version
2.4.18. Although the authors implemented, tested, and evalu-
ated a simplified prototype of their defense proposal, it is not
available.

Uppuluri et al. [52] defined a set of security policies,
specified using a behavior modeling specification language,
that can be compiled and integrated into different detection
engines. A prototype engine is implemented as a kernel
module for the Red Hat 7.3 operating system. As before,
this solution is not free of race conditions, as it relies on the
interception of system calls. In addition, the prototype is not
available either.

Wei and Pu [16] proposed a model for TOCTOU vul-
nerabilities in Unix filesystems, called CUU model. This
model consists of pairs of system calls that can lead to a
TOCTOU vulnerability. In addition, they propose different
tools that are based on this model to monitor and detect
TOCTOU vulnerabilities in Linux systems at the kernel level.
These tools were successfully tested in version 2.4.20 of
the Red Hat Linux 9 kernel, in approximately 130 utility
programs. This solution, though, is only suited for single core
processors. However, none of the tools are publicly available.

A defense solution called Event Driven Guarding of In-
variants (EDGI), based on the CUU model, is presented
in [60]. Vulnerable pairs of system calls are translated into
invariants, which are used as sophisticated locks with a time-
out mechanism. This solution is implemented in version
2.4.28 of the Linux kernel, but neither the tool nor its source

code is available.
Kupsch and Miller proposed in [53] a set of functions

to create and manipulate files in a secure way, replacing
standard C functions such as creat, open, or fopen, to
name a few, to eliminate TOCTOU race conditions. A work-
ing implementation of these functions is publicly available
at [71].

Porter et al. [62] introduced a variant of Linux 2.6.22,
dubbed TxOS, which incorporates system call transactions,
allowing software developers to perform operations on sys-
tem resources guaranteeing ACID properties (atomicity, con-
sistency, isolation and durability) of the underlying system
calls. Furthermore, the vulnerable program is blocked when
an exploitation attempt is detected. TxOS is open source and
publicly available at [72].

Wei and Pu extend their CUU model in [13] by proposing
the Stateful TOCTOU Enumeration Model. This model lists
all the pairs of system calls that can lead to a TOCTOU
vulnerability on a Linux and POSIX system (224 and 285
pairs, respectively). To the best of our knowledge, this study
is the most comprehensive characterization of the system
calls leading to the TOCTOU vulnerability to date. EDGI is
also extended to incorporate this model in version 2.4.28 of
the Linux kernel.

Rouzaud-Cornabas et al. [54] formalized the concept of
race conditions and provided a framework for defining secu-
rity properties to prevent them. These properties are specified
and integrated into a Linux kernel module, implemented on
top of SELinux. It is based on information flow graphs to
represent the temporal relationships between processes and
system resources. This solution was tested in production
systems for six months with successful results. However, it
is not publicly available.

Vijayakumar et al. [55] introduced a software prototype
that stops attacks targeting vulnerabilities based on name
resolution (such as TOCTOU) by combining four incomplete
defense techniques (specifically, system resource restrictions,
capabilities, namespace management, and program resource
restrictions) to build a complete solution. It is implemented
as a SELinux module in version 2.6.35 of the Linux kernel.
Neither the source code nor the tool is available.

Vijayakumar et al. [56] presented a software engine,
dubbed STING, that prevents name resolution attacks. In
particular, it analyzes system calls at runtime and creates
test cases that are then used to replicate an adversary’s
behavior and thereby detect exploitation attempts. STING
is implemented as a Linux security module in Linux kernel
3.20, and tested with different operating systems, discovering
26 race condition vulnerabilities (21 of them were previously
unknown). However, as the authors warn, it can produce false
positives under certain running conditions. Unfortunately, the
tool is not available for public use.

Different policies are given in [58] to determine which
files can be retrieved using the name resolution process in
system calls. These policies control file access at run-time in
the context of a system call. A prototype that enforces these

VOLUME 4, 2016 11

Submitted to IEEE Access

policies is deployed on top of the SELinux access control
module and tested on the Ubuntu 12.04 operating system.
The experimental results show that all exploitation attempts
were successfully stopped. However, the policy enforcement
prototype is not available.

Vijayakumar et al. [57] also proposed Process
Firewall, a Linux security module that analyzes system
calls and restricts access to resources depending on the
current state of the process. These constraints are modeled as
Linux IPTable rules and are interpreted by a rule processing
mechanism designed for system calls. Tested on Ubuntu
10.04, nine resource attacks (including TOCTOU-based at-
tacks) were detected and blocked successfully. Although it
is not mentioned in the article, Process Firewall is
publicly available at [73].

Kim and Zeldovich [63] introduced a new Linux-based
sandboxing mechanism called Mbox that interposes on sys-
tem calls. Mbox creates a layered sandbox filesystem on top
of the host filesystem where all the operations take place,
preventing the latter from being manipulated. The user can
then browse the sandbox filesystem, committing the modifi-
cations to the host filesystem or discarding them accordingly.
The interposition of system calls is carried out using the
seccomp/BPF facility. Mbox is open source and available
at [74].

Zhou et al. [61] proposed SHIELD, a software that uses
deterministic multithreading techniques to guarantee that
variables shared across threads are consistent. To do this,
when it detects a memory modification, it executes a memory
propagation mechanism that extends the modification to the
virtual memory of other threads within the program. Like
other solutions, SHIELD is not available.

Vijayakumar et al. [59] presented Jigsaw, a defense
mechanism against resource access attacks based on the
interception of system calls. It works in two phases: first,
it parses the program using graph-based formalisms to find
system calls on shared resources; second, it uses Process
Firewall [57] to enforce the invariants that avoid the
vulnerability. This solution is implemented as a kernel mod-
ule and tested on Ubuntu 10.04, identifying two unknown
vulnerabilities. Unlike Process Firewall, neither the
program application nor its source code is publicly available.

A lightweight Unix-based filesystem sandboxing mecha-
nism is proposed in [64]. The mechanism is dubbed SandFS
and is designed as an extensible kernel filesystem that inter-
cepts all filesystem requests. It works with low-level kernel
objects and provides a C-like API for the developers to imple-
ment their own security extensions. Acting as an interposing
layer between the filesystem and the user-defined security
extensions, it does not perform any filesystem operations, but
instead compares them to the extensions. Allowed operations
are tracked to the filesystem, whereas denied operations
are canceled with the corresponding error number. SandFS
leverages the eBPF framework to achieve safety guarantees
and is publicly available at [75].

2005 2009 2012 2017 2021

[67] [68] [65] [66]

Figure 6: Evolution of TOCTOU attacks over the years.

C. ON TOCTOU ATTACKS

Figure 6 shows the timeline of the articles studied in this
work that focus on attacks that try to exploit TOCTOU
vulnerabilities. At a glance, the literature on attacks is very
scarce. We have found only 4 works that propose new ways
to abuse TOCTOU vulnerabilities, in addition to the seminal
work of [33] that first introduced specific examples on how to
exploit TOCTOU vulnerabilities and gain elevated privileges.
Regarding these offensive works, the oldest and newest of
them date from 2005 and 2017, respectively. The remaining
are dated from 2009 and 2012.

As commented above, all of them are attacks from the user-
space level and dynamic. In summary, we conclude that there
is not much innovation in the ways of abusing TOCTOU
vulnerabilities and few authors are interested in it. Regarding
the attack vectors, the offensive techniques that we found take
advantage of: the trust in external devices and the I/O caching
mechanism of the system kernel (explained in Section IV-A).

1) Description of TOCTOU Attacks

In this section, we classify the articles found during our
systematic review of the literature that contribute to new
ways of abusing TOCTOU according to the attack vector they
exploit. We describe them according to the research questions
set out in Section III-A. As before, they are presented in
chronological order. Let us remark that none of these works
provide source code or software tools, but instead they pro-
vide a detailed explanation of how the attacks work.

Attack Vector Based on External Devices

Mulliner and Michéle proposed in [65] another novel attack
called Read It Twice, focused on consumer electronics and
embedded devices. This attack takes advantage of the instal-
lation and update processes of these devices, which normally
depend on external devices and are carried out in two steps
(not atomic): one to verify and the other to install/update.
This attack has been successfully tested on Linux-based
Samsung TVs. In addition, the authors develop a hardware
board to determine whether a device is vulnerable to these
attacks.

Similarly, Lee at al. studied the installation process of
of Android applications in [66], finding TOCTOU vulnera-
bilities in all its phases. As a result, the authors present a
novel attack called Ghost Installer Attack (GIA), as well as
defense solutions against it. We have categorized this paper
exclusively as TOCTOU attack because the proposed defense
solutions are designed for the GIA.

12 VOLUME 4, 2016

Attack Vector Based on the Kernel I/O Caching
Borisov et al. presented in [67] a novel technique to exploit
race conditions when the defense solution proposed by [32] is
working. This attack, carried out by means of three software
tools, relies on a deliberate increase in input/output filesys-
tem operations, as they are likely to force the preemption of
the running thread due to memory cache buffering issues.

Subsequently, in [68] Cai et al. presented a novel attack
that defeats the solutions proposed by [32] and by [42]. This
attack is based on collision attacks targeting the kernel’s
filename resolution algorithm. As a result, the filesystem
operations of the vulnerable program are slowed down and
thus the window of vulnerability increases.

V. SYNTHESIS
In this section we first present a detailed analysis of the
results of our systematic literature review to answer research
questions RQ2 through RQ5. We then highlight the future
research trends and directions that we envision and finally
discuss the limitations of our work.

A. DISCUSSION OF RESULTS
Below, we address and answer each of the research questions
established in Section III-A.

RQ2: Memory Regions of Defensive and Offensive
Techniques
After performing the systematic literature review, we have
found that defense mechanisms reside either in user-space or
in kernel-space. As shown in Figure 4a, 60% of the defense
techniques reside in kernel-space.

User-space techniques can be applied to a wide variety
of programming languages, compilers, and interpreters and
are easier to debug. However, they cannot access kernel-
level information or mechanisms such as the system’s cache,
the scheduler, hardware, input/output (I/O), or the inode
generation algorithm, which is a major limitation in terms
of the scope of the solution.

Alternatively, kernel-space solutions have access to all
system components and information. Solutions that work in
kernel-space benefit from lower latency when performing
certain operations, such as system calls. Despite all this, the
kernel-space approaches may require modifying the kernel
or adding modules, which is not always a viable option. If
the kernel can be modified, serious backward compatibility
issues can arise, even rendering older software or kernel
versions unusable. Furthermore, implementing and debug-
ging solutions in kernel-space is not only more difficult than
its user-space counterpart, but is also limited to the kernel
language. Moreover, kernel-level errors are likely to crash the
entire system.

As for offensive techniques, all of them are attacks from
the user-space level. This result would be expected, because
otherwise, if the attacker can already execute code in the ker-
nel, there is no motivation to exploit a file-based TOCTOU
vulnerability.

RQ3: Time of Vulnerability Detection or Exploitation
According to the moment at which the vulnerability detection
is carried out, the defense solutions are broadly divided into
static and dynamic techniques. Static detection comprises
solutions in which the vulnerability is detected without the
vulnerable application running or after it has been run (that
is, the detection happens before or after the execution), while
dynamic detection includes techniques capable of detecting
the vulnerability when the vulnerable program is running. As
shown in Figure 4b, there is a clear predominance of dynamic
techniques, with 71.4%.

Static techniques have proven useful in detecting and
correcting the vulnerability before it occurs (for instance,
during the development phase of the software system). Some
of these techniques require the source code of the program
to be executed, which is unlikely to happen in most cases.
Their main advantages include the fact that they are simple
to implement, they do not require modification of the runtime
environment, and that the overall system performance is not
affected as a result of code analysis. Unfortunately, these
techniques only propose solutions to known attacks (that is,
to specific vulnerable instruction sequences) which limits
their effectiveness. Furthermore, even when the attack is
detected, it is not always easy to figure out how to modify
the source code of the vulnerable program to avoid the
vulnerability, especially in multi-threaded programs.

Other static detection approaches rely on log analysis or
execution traces. Therefore, in this case the vulnerability is
detected when it has already occurred. In addition, these
detection techniques are often unsound because there is a
wide variety of factors that influence the exploitability of the
vulnerability, such as environment variables or system load.

On the other hand, dynamic defenses protect systems in
real time and can thwart exploitation attempts as they occur.
The defense is typically performed by an external agent that
is integrated into the runtime environment, and hence these
solutions tend to incur performance overheads for the system.
Alternatively, other solutions require running the vulnerable
application in a controlled environment to perform the anal-
ysis. Regardless of the type of approach, dynamic techniques
are useful for detecting well-known attacks, although they
have the ability to store information about the program exe-
cution that could be used to identify new attacks. The main
advantage of these techniques is that it is not necessary to
have or modify the source code of the program, facilitating
their adoption in a more general way.

As for the offensive techniques, they are all dynamic
since the vulnerable program must be running to exploit it.
These techniques use two different attack vectors: external
devices (such as USB sticks or SD cards) and the I/O caching
mechanism of the system kernel. External devices are abused
during the installation process of the vulnerable application,
as the attacker can alter or manipulate the sensitive data
that can be stored on these devices. In contrast, abuse of
the system kernel I/O caching mechanism is done by third-
party programs, which force the kernel to perform more I/O

VOLUME 4, 2016 13

Submitted to IEEE Access

(N
/A

)
C

al
la

rg
um

en
ts

C
ur

re
nt

tim
e

D
ev

ic
e

ID
Fi

le
de

sc
ri

pt
or

s
Fi

le
gr

ou
p

ow
ne

rI
D

Fi
le

ha
nd

le
rs

Fi
le

op
er

at
io

n
Fi

le
ow

ne
rI

D
Fi

le
pa

th
Fi

le
na

m
e

G
en

er
at

io
n

nu
m

be
r

In
od

e
L

og
ic

al
di

sk
bl

oc
k

N
um

.o
fp

ro
gr

am
s

ac
ce

ss
in

g
Pa

re
nt

di
re

ct
or

y
Pa

re
nt

pr
oc

es
s

ID
Pe

rm
is

si
on

m
od

e
Pr

oc
es

s
ID

0

3

6

9

12

15

18

21

N
um

be
ro

fw
or

ks

8

1 1

5
2 2 1 1

6
9

6

1

20

1 2 1 1 1

6

Items

Figure 7: Prevalence of filesystem objects’ metadata to detect
any changes.

operations and thus increase the vulnerability window, which
facilitates the occurrence of race conditions.

RQ4: Operating System used by the Techniques
All the defense solutions focus on Unix-like operating sys-
tems. In addition, 3 out of the 4 attack techniques are also
directed at these operating systems (the remaining attack
proposal focuses on Android, which uses Linux as its kernel).
The prevalence of the Unix-like operating system is due
to the fact that other operating systems, such as Windows,
manage references to files through internal structures similar
to file descriptors (for instance, via handles in Windows [76]).
This means that these operating systems are free of file-
based TOCTOU vulnerabilities, although other types of race
conditions are still possible (which are beyond the scope of
this paper).

RQ5: Reproducibility of Source Code or Tools
Figure 4c shows the reproducibility of defense techniques.
Almost three-quarters of the articles studied are not repro-
ducible, either because no source code or tool is provided
or because details are lacking to fully replicate them. In
the spirit of open science, experimentation on any proposal
should be reproducible to allow others to evaluate, compare,
and improve the proposal.

Most defense solutions use some kind of history tracking
of filesystem objects’ metadata to detect any changes. When
they are detected, the solutions apply their logic to decide
whether the modification is legitimate or corresponds to an
attempted exploitation. Although none of the articles studied

Table 4: Reutilization of inode according to the filesystem.

Filesystem Reutilization of inode
BTRFS No
EXT2 Yes
EXT3 Yes
EXT4 Yes
FAT16 No
FAT32 No
NTFS No
HFS+ No
JFS No

NILFS2 Yes
REISERFS Yes

XFS Yes
RAMFS No
TMPFS No

specify what underlying filesystem they used to test their
proposed defenses, commonly used metadata includes inode,
device ID, filename, or file path, among others. Figure 7
shows the prevalence of each metadata used by the de-
fense solutions analyzed in this systematic literature review.
However, the accuracy of these metadata for detecting file-
based TOCTOU vulnerabilities is highly dependent on the
underlying filesystem.

For instance, a common metadata is the inode, used by
20 of the 35 defense solutions. An inode (index node) is a
data structure that defines a file or a directory on a Unix-style
filesystem and is stored in the directory entry. To determine
if inodes are unique per file, we have studied the behavior
of inodes on the main filesystems in the Unix universe [77].
In particular, we have empirically tested if, when an inode is
freed (that is, without hard or soft links that point to it), the
filesystem eliminates it and never uses it again or if it is free
to reuse it when necessary. We have found that the uniqueness
of an inode depends to a large extent on the underlying
filesystem and, therefore, inodes cannot be assumed to be an
item for single distinction. The results of our tests are shown
in Table 4.

Turning to offensive techniques, we consider two of them
are partially reproducible and the other two are no longer
reproducible. Based on their level of detail, we consider
that [65] and [66] are partially reproducible because, al-
though they do not provide any source code or tool to perform
the attack, both works are detailed enough to be replicated.
On the other hand, we consider both [67] and [68] as no
longer reproducible, as both articles link to their respective
source code repositories which are unfortunately no longer
available.

B. FUTURE RESEARCH TRENDS AND DIRECTIONS
Most defense solutions protect against specific cases of TOC-
TOU vulnerabilities, but incur large impacts on performance
or make strong assumptions about the behavior of the under-
lying filesystem. In summary, no defense solution is univer-

14 VOLUME 4, 2016

sal, as reflected in the fact that, until now, no solution has
been officially adopted to prevent TOCTOU vulnerabilities.

In our opinion, it is unlikely that a universal solution
will be found, given the non-determinism of the TOCTOU
vulnerability and the influence of external factors (such as the
environmental variables, among others). In any case, the best
solution we envision is a mixture of some of the approaches
mentioned above. In particular:

• A new API (or modification of the current one) to
provide a race-free, security-focused API. A good op-
tion to avoid TOCTOU vulnerabilities is to use an API
based on file descriptors rather than filenames. However,
legacy software would still be vulnerable. In addition,
the burden falls on software developers, who must know
and use this race-free, security-focused version of the
API.

• Modification of the kernel to always work with file
descriptors. Modifying the kernel to work exclusively
with file descriptors instead of filenames can also be a
good solution. However, this solution implies a drastic
modification of the kernel and therefore it is likely to
cause serious backwards compatibility issues.

• Transactional filesystems. Another good option can be
to use transactional filesystems. A transactional filesys-
tem allows the files and directories to be created, mod-
ified, renamed, and deleted atomically, protecting the
consistency of their filesystem structure. A good solu-
tion can rely on this type of filesystem to verify that the
file objects do not change between pairs of TOCTOU
vulnerable system calls.

C. LIMITATIONS
Like any other systematic review of the literature, we have
defined a search protocol that is reproducible and its results
are free of bias. Note that we have considered articles written
in English, without considering articles potentially relevant
written in any other language. In addition, as we have used
the scoring system of the StArt tool, our results are tied to
that particular scoring system.

Our results are also limited to the keyword bag that we
have defined to perform the search. We can also improve
these terms to expand our search results. Finally, we have
excluded gray literature (e.g., blogs or repositories) as we are
exclusively interested in scientific contributions. However,
gray literature is an important source of knowledge about
issues related to security. For instance, the Openwall kernel
patch [78] is a collection of security hardening patches for
various versions of the Linux kernel posted on a website.

VI. CONCLUSIONS
Although file-based TOCTOU vulnerabilities were first men-
tioned in the mid-1970s, they began to be studied in more
detail twenty years later. Despite this vulnerability being
almost 50 years old, it remains unresolved. In this paper,
we have presented a systematic review of the literature up

to 2021 on defense solutions, as well as related attack tech-
niques, against this type of race condition vulnerability. In
particular, we found 41 articles of interest in different sci-
entific databases (in particular, IEEE Xplore, ScienceDirect,
Scopus, and ACM).

Our results indicate that a large majority of research efforts
have been directed towards defense mechanisms (37 out of
41), whereas a small fraction of works focuses on offensive
techniques (the remaining 4). The defense solutions proposed
in the literature can be classified into source code detection,
post-mortem detection, system call interposition, memory
consistency, transactional system calls, and sandbox filesys-
tems. As for the offensive solutions, half of them deliberately
force more time-consuming input/output operations, while
the rest focus on exploiting the installation of programs from
external storage devices.

We found defense solutions that reside in the kernel
(slightly above half, 21 out of 35) and at the user-space level
(the remaining 14). However, all the attack techniques are
carried out from the user-space level. Most of the defense
solutions proposed are dynamic (25 out of 35), while the
others are static solutions. Static solutions detect TOCTOU
vulnerabilities in source code or at the binary level, while
dynamic solutions execute, monitor, and verify execution
at runtime or after program execution, analyzing logs and
audit trials. All the defense techniques are developed for
Unix-like operating systems. Similarly, 3 out of the 4 attack
solutions focus on Unix-like systems, while the remaining
attack focuses on Android.

Finally, we discovered that almost all the software tools
developed to defend or exploit TOCTOU vulnerabilities are
not available. Few give access to the source code or the tool
itself, or give enough details to code it ourselves, making it
difficult to replicate experiments later. For the sake of open
science and reproducibility, any contribution that introduces
new software tools or new methods should be accessible to
the public and other scientific researchers.

References
[1] C. E. McDowell and D. P. Helmbold, “Debugging Con-

current Programs,” ACM Comput. Surv., vol. 21, no. 4,
p. 593–622, dec 1989.

[2] E. Lee, “The Problem with Threads,” Computer,
vol. 39, no. 5, pp. 33–42, 2006.

[3] T. Warszawski and P. Bailis, “ACIDRain: Concurrency-
Related Attacks on Database-Backed Web Applica-
tions,” in Proceedings of the 2017 ACM International
Conference on Management of Data. New York, NY,
USA: Association for Computing Machinery, 2017, pp.
5–20.

[4] J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan,
“Concurrency Attacks,” in Proceedings of the 4th
USENIX Conference on Hot Topics in Parallelism (Hot-
Par’12). USA: USENIX Association, 2012, p. 15.

[5] BeyondTrust, “Microsoft Vulnerabil-
ities Report 2021,” [Online; https://

VOLUME 4, 2016 15

https://www.beyondtrust.com/assets/documents/BeyondTrust-Microsoft-Vulnerabilities-Report-2021.pdf
https://www.beyondtrust.com/assets/documents/BeyondTrust-Microsoft-Vulnerabilities-Report-2021.pdf
https://www.beyondtrust.com/assets/documents/BeyondTrust-Microsoft-Vulnerabilities-Report-2021.pdf

Submitted to IEEE Access

www.beyondtrust.com/assets/documents/
BeyondTrust-Microsoft-Vulnerabilities-Report-2021.
pdf], Mar. 2021, accessed on May 30, 2021.

[6] M. Bishop and M. Dilger, “Checking for Race Con-
ditions in File Accesses,” Computing Systems, vol. 9,
no. 2, pp. 131–152, 1996.

[7] P. Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-Lazaro,
“How Double-Fetch Situations Turn into Double-Fetch
Vulnerabilities: A Study of Double Fetches in the Linux
Kernel,” in 26th USENIX Security Symposium (USENIX
Security 17), Vancouver, BC, aug 2017, pp. 1–16.

[8] P. Wang, K. Lu, G. Li, and X. Zhou, “DFTracker:
Detecting Double-Fetch Bugs by Multi-Taint Paral-
lel Tracking,” Front. Comput. Sci., vol. 13, no. 2, p.
247–263, Apr. 2019.

[9] M. Ambrosin, M. Conti, R. Lazzeretti, M. M. Rabbani,
and S. Ranise, “Collective Remote Attestation at the
Internet of Things Scale: State-of-the-Art and Future
Challenges,” IEEE Communications Surveys Tutorials,
vol. 22, no. 4, pp. 2447–2461, 2020.

[10] O. Arias, D. Sullivan, H. Shan, and Y. Jin, “LAHEL:
Lightweight Attestation Hardening Embedded Devices
using Macrocells,” in 2020 IEEE International Sympo-
sium on Hardware Oriented Security and Trust (HOST),
2020, pp. 305–315.

[11] S. Bratus, N. D’Cunha, E. Sparks, and S. W. Smith,
“TOCTOU, Traps, and Trusted Computing,” in Inter-
national Conference on Trusted Computing, vol. 4968.
Berlin, Heidelberg: Springer-Verlag, March 2008, pp.
14–32.

[12] X. Chang, B. Xing, and Y. Qin, “Formal Analysis of a
Response Mechanism for TCG TOCTOU Attacks,” in
2012 Fourth International Conference on Multimedia
Information Networking and Security, 2012, pp. 19–22.

[13] J. Wei and C. Pu, “Modeling and Preventing TOCT-
TOU Vulnerabilities in Unix-style File Systems,” Com-
puters & Security, vol. 29, no. 8, pp. 815–830, 2010.

[14] W. S. McPhee, “Operating System Integrity in OS-
/VS2,” IBM Systems Journal, vol. 13, no. 3, pp. 230–
252, 1974.

[15] R. P. Abbott, J. S. Chin, J. E. Donnelley, W. L. Konigs-
ford, S. Tokubo, and D. A. Webb, “Security Analysis
and Enhancements of Computer Operating Systems,”
Institute of Computer Sciences and Technology, Na-
tional Bureau of Standards, Gaithersburg, MD, Tech.
Rep. NBSIR 76-1041, Apr. 1976.

[16] J. Wei and C. Pu, “TOCTTOU vulnerabilities in unix-
style file systems: An anatomical study,” in 4th USENIX
Conference on File and Storage Technologies (FAST
05), San Francisco, CA, Dec. 2005, p. 12.

[17] National Vulnerability Database, “NVD -
TOCTOU Search Results,” [Online; https:
//nvd.nist.gov/vuln/search/results?form_type=
Advanced&results_type=overview&search_type=
all&cwe_id=CWE-59&isCpeNameSearch=false], Jan.
2022, accessed on January 13, 2022.

[18] MITRE, “MITRE CVE - TOCTOU Search Results,”
[Online; https://cve.mitre.org/cgi-bin/cvekey.cgi?
keyword=file-based+TOCTOU], Jan. 2022, accessed
on January 13, 2022.

[19] Flysystem, “Time-of-check Time-of-use (TOCTOU)
Race Condition in league/flysystem,” [Online;
https://github.com/thephpleague/flysystem/security/
advisories/GHSA-9f46-5r25-5wfm], Jun. 2021,
accessed on January 13, 2022.

[20] VMWare, “VMSA-2020-0023.3,” [Online;
https://www.vmware.com/security/advisories/
VMSA-2020-0023.html], Oct. 2020, accessed on
January 13, 2022.

[21] Red Hat, “CVE-2021-30465- Red Hat Customer Por-
tal,” [Online; https://access.redhat.com/security/cve/
cve-2021-30465], May 2021, accessed on January 13,
2022.

[22] Adobe, “Adobe Security Bulletin,” [Online;
https://helpx.adobe.com/security/products/
creative-cloud/apsb20-11.html], Mar. 2020, accessed
on January 13, 2022.

[23] P. Wang, K. Lu, G. Li, and X. Zhou, “A Survey of the
Double-fetch Vulnerabilities,” Concurrency and Com-
putation: Practice and Experience, vol. 30, no. 6, p.
e4345, 2018.

[24] R. V. Steiner and E. Lupu, “Attestation in Wireless Sen-
sor Networks: A Survey,” ACM Comput. Surv., vol. 49,
no. 3, sep 2016.

[25] Z. Fang, W. Han, and Y. Li, “Permission based Android
Security: Issues and Countermeasures,” Computers &
Security, vol. 43, pp. 205–218, 2014.

[26] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner,
J. Bailey, and S. Linkman, “Systematic Literature Re-
views in Software Engineering–a Systematic Literature
Review,” Information and Software Technology, vol. 51,
no. 1, pp. 7–15, 2009.

[27] A. P. Siddaway, A. M. Wood, and L. V. Hedges, “How
to Do a Systematic Review: a Best Practice Guide for
Conducting and Reporting Narrative Reviews, Meta-
analyses, and Meta-syntheses,” Annual Review of Psy-
chology, vol. 70, no. 1, pp. 747–770, 2019.

[28] G. Gu, “Computer Security Conference Ranking and
Statistic,” [Online; https://people.engr.tamu.edu/guofei/
sec_conf_stat.htm], 2015, accessed on Feb 10, 2020.

[29] A. Zamboni, A. Thommazo, E. Hernandes, and S. Fab-
bri, “StArt Uma Ferramenta Computacional de Apoio à
Revisão Sistemática,” in Congresso Brasileiro de Soft-
ware (CBSoft’10), Salvador, Brazil, 2010, pp. 91–96.

[30] E. Hernandes, A. Zamboni, S. Fabbri, and A. D. Thom-
mazo, “Using GQM and TAM to Evaluate StArt-A Tool
that Supports Systematic Review,” CLEI Electronic
Journal, vol. 15, no. 1, pp. 3–3, Apr. 2012.

[31] M. Bishop, “Race Conditions, Files, and Security
Flaws; or the Tortoise and the Hare Redux,” University
of California at Davis, Davis, CA, Tech. Rep. Report
CSE-95-9, 1995.

16 VOLUME 4, 2016

https://www.beyondtrust.com/assets/documents/BeyondTrust-Microsoft-Vulnerabilities-Report-2021.pdf
https://www.beyondtrust.com/assets/documents/BeyondTrust-Microsoft-Vulnerabilities-Report-2021.pdf
https://www.beyondtrust.com/assets/documents/BeyondTrust-Microsoft-Vulnerabilities-Report-2021.pdf
https://www.beyondtrust.com/assets/documents/BeyondTrust-Microsoft-Vulnerabilities-Report-2021.pdf
https://www.beyondtrust.com/assets/documents/BeyondTrust-Microsoft-Vulnerabilities-Report-2021.pdf
https://www.beyondtrust.com/assets/documents/BeyondTrust-Microsoft-Vulnerabilities-Report-2021.pdf
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cwe_id=CWE-59&isCpeNameSearch=false
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cwe_id=CWE-59&isCpeNameSearch=false
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cwe_id=CWE-59&isCpeNameSearch=false
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&cwe_id=CWE-59&isCpeNameSearch=false
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=file-based+TOCTOU
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=file-based+TOCTOU
https://github.com/thephpleague/flysystem/security/advisories/GHSA-9f46-5r25-5wfm
https://github.com/thephpleague/flysystem/security/advisories/GHSA-9f46-5r25-5wfm
https://www.vmware.com/security/advisories/VMSA-2020-0023.html
https://www.vmware.com/security/advisories/VMSA-2020-0023.html
https://access.redhat.com/security/cve/cve-2021-30465
https://access.redhat.com/security/cve/cve-2021-30465
https://helpx.adobe.com/security/products/creative-cloud/apsb20-11.html
https://helpx.adobe.com/security/products/creative-cloud/apsb20-11.html
https://people.engr.tamu.edu/guofei/sec_conf_stat.htm
https://people.engr.tamu.edu/guofei/sec_conf_stat.htm

[32] D. Dean and A. J. Hu, “Fixing Races for Fun and
Profit: How to Use access(2),” in 13th USENIX Security
Symposium (USENIX Security 04). San Diego, CA:
USENIX Association, Aug. 2004, pp. 195–206.

[33] C. Ko, G. Fink, and K. Levitt, “Automated Detection
of Vulnerabilities in Privileged Programs by Execution
Monitoring,” in Tenth Annual Computer Security Appli-
cations Conference, 1994, pp. 134–144.

[34] B. Goyal, S. Sitaraman, and S. Venkatesan, “A Unified
Approach to Detect Binding Based Race Condition
Attacks,” in Int’l Workshop on Cryptology & Network
Security (CANS), 2003, p. 16.

[35] S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow
Anomaly Detection,” in 2006 IEEE Symposium on Se-
curity and Privacy (SP’06), 2006, pp. 15 pp.–62.

[36] O. Laadan, C.-C. Tsai, N. Viennot, C. Blinn, P. S. Du,
J. Yang, and J. Nieh, “Finding Concurrency Errors in
Sequential Code: OS-Level, in-Vivo Model Checking
of Process Races,” in Proceedings of the 13th USENIX
Conference on Hot Topics in Operating Systems (HotOS
XIII). Napa, CA: USENIX Association, May 2011,
p. 20.

[37] O. Laadan, N. Viennot, C.-C. Tsai, C. Blinn, J. Yang,
and J. Nieh, “Pervasive Detection of Process Races
in Deployed Systems,” in Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Princi-
ples (SOSP ’11). New York, NY, USA: Association
for Computing Machinery, 2011, pp. 353–367.

[38] T. Yu, W. Srisa-an, and G. Rothermel, “SimRacer: An
automated Framework to Support Testing for Process-
level Races,” in Proceedings of the 2013 International
Symposium on Software Testing and Analysis (ISSTA
2013), 07 2013, pp. 167–177.

[39] ——, “An Automated Framework to Support Testing
for Process-level Race Conditions,” Software Testing,
Verification and Reliability, vol. 27, no. 4-5, p. e1634,
2017.

[40] F. Capobianco, R. George, K. Huang, T. Jaeger, S. Kr-
ishnamurthy, Z. Qian, M. Payer, and P. Yu, “Employing
Attack Graphs for Intrusion Detection,” in Proceedings
of the New Security Paradigms Workshop (NSPW ’19).
New York, NY, USA: Association for Computing Ma-
chinery, 2019, pp. 16–30.

[41] A. Aggarwal and P. Jalote, “Monitoring the Security
Health of Software Systems,” in 17th International
Symposium on Software Reliability Engineering, 2006,
pp. 146–158.

[42] D. Tsafrir, T. Hertz, D. Wagner, and D. Da Silva,
“Portably Solving File TOCTTOU Races with Hard-
ness Amplification,” in Proceedings of the 6th
USENIX Conference on File and Storage Technologies
(FAST’08). USA: USENIX Association, 2008.

[43] ——, “Portably Preventing File Race Attacks with
User-mode Path Resolution,” IBM Research, Yorktown
Heights, NY, Tech. Rep. RC24572 (W0806-008), 2008.

[44] S. Chari, S. Halevi, and W. Z. Venema, “Where Do You

Want to Go Today? Escalating Privileges by Pathname
Manipulation,” in Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS 2010), San
Diego, CA, Mar. 2010, pp. 1–16.

[45] M. Payer and T. R. Gross, “Protecting Applications
Against TOCTTOU Races by User-space Caching of
File Metadata,” in Proceedings of the 8th ACM SIG-
PLAN/SIGOPS conference on Virtual Execution En-
vironments. New York, NY, USA: Association for
Computing Machinery, Jul. 2012, pp. 215–226.

[46] X. Cai, R. Lale, X. Zhang, and R. Johnson, “Fixing
Races for Good: Portable and Reliable U File-system
Race Detection,” in Proceedings of the 10th ACM Sym-
posium on Information, Computer and Communica-
tions Security (ASIA CCS ’15). New York, NY, USA:
Association for Computing Machinery, 2015, pp. 357–
368.

[47] C. Cowan, S. Beattie, C. Wright, and G. Kroah-
Hartman, “RaceGuard: Kernel Protection From Tempo-
rary File Race Vulnerabilities,” in 10th USENIX Secu-
rity Symposium (USENIX Security 01). Washington,
D.C.: USENIX Association, Aug. 2001, pp. 165–176.

[48] C. Ko and T. Redmond, “Noninterference and Intrusion
Detection,” in Proceedings of the 2002 IEEE Sympo-
sium on Security and Privacy, 2002, pp. 177–187.

[49] E. Tsyrklevich and B. Yee, “Dynamic Detection and
Prevention of Race Conditions in File Accesses,” in
Proceedings of the 12th conference on USENIX Se-
curity Symposium (SSYM’03). Washington, D.C.:
USENIX Association, Aug. 2003, p. 17.

[50] J. Park, G. Lee, S. Lee, and D.-k. Kim, “RPS: An Exten-
sion of Reference Monitor to Prevent Race-attacks,” in
Advances in Multimedia Information Processing (PCM
2004). Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 556–563.

[51] K. S. Lhee and S. J. Chapin, “Detection of File-based
Race Conditions,” International Journal of Information
Security, vol. 4, no. 1-2, pp. 105–119, Feb. 2005.

[52] P. Uppuluri, U. Joshi, and A. Ray, “Preventing Race
Condition Attacks on File-systems,” in Proceedings
of the 2005 ACM symposium on Applied computing
(SAC ’05’). New York, NY, USA: Association for
Computing Machinery, 2005, pp. 346–353.

[53] J. A. Kupsch and B. P. Miller, “How to Open a File and
Not Get Hacked,” in 2008 Third International Confer-
ence on Availability, Reliability and Security, 2008, pp.
1196–1203.

[54] J. Rouzaud-Cornabas, P. Clemente, and C. Toinard, “An
Information Flow Approach for Preventing Race Con-
ditions: Dynamic Protection of the Linux OS,” in 2010
Fourth International Conference on Emerging Security
Information, Systems and Technologies, 2010, pp. 11–
16.

[55] H. Vijayakumar, J. Schiffman, and T. Jaeger, “A Rose
by Any Other Name or an Insane Root? Adventures in
Name Resolution,” in 2011 Seventh European Confer-

VOLUME 4, 2016 17

Submitted to IEEE Access

ence on Computer Network Defense, 2011, pp. 1–8.
[56] ——, “STING: Finding Name Resolution Vulnerabil-

ities in Programs,” 21st USENIX Security Symposium
(USENIX Security 12), pp. 585–599, Aug. 2012.

[57] ——, “Process Firewalls: Protecting Processes During
Resource Access,” in Proceedings of the 8th ACM
European Conference on Computer Systems (EuroSys
’13). New York, NY, USA: Association for Computing
Machinery, 2013, pp. 57–70.

[58] H. Vijayakumar and T. Jaeger, “The Right Files at the
Right Time,” in Proceedings of the 5th IEEE Sympo-
sium on Configuration Analytics and Automation (Safe-
Config 2012). Springer, Oct. 2013, pp. 119–133.

[59] H. Vijayakumar, X. Ge, M. Payer, and T. Jaeger,
“JIGSAW: Protecting Resource Access by Inferring
Programmer Expectations,” in 23rd USENIX Security
Symposium (USENIX Security 14). San Diego, CA:
USENIX Association, Aug. 2014, pp. 973–988.

[60] C. Pu and J. Wei, “A Methodical Defense against
TOCTTOU Attacks: The EDGI Approach,” in Proceed-
ings of the 2006 International Symposium on Secure
Software Engineering, May 2006.

[61] X. Zhou, G. Li, K. Lu, and S. Wang, “Enhancing the
Security of Parallel Programs via Reducing Scheduling
Space,” in 2014 IEEE 12th International Conference on
Dependable, Autonomic and Secure Computing, 2014,
pp. 133–138.

[62] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn,
and E. Witchel, “Operating System Transactions,” in
Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles (SOSP ’0). New
York, NY, USA: Association for Computing Machinery,
2009, pp. 161–176.

[63] T. Kim and N. Zeldovich, “Practical and Effective
Sandboxing for Non-root Users,” in 2013 USENIX An-
nual Technical Conference (USENIX ATC 13). San
Jose, CA: USENIX Association, Jun. 2013, pp. 139–
144.

[64] A. Bijlani and U. Ramachandran, “A Lightweight and
Fine-Grained File System Sandboxing Framework,” in
Proceedings of the 9th Asia-Pacific Workshop on Sys-
tems (APSys ’18), New York, NY, USA, 2018.

[65] C. Mulliner and B. Michéle, “Read It Twice! A Mass-
Storage-Based TOCTTOU Attack,” in 6th USENIX
Workshop on Offensive Technologies (WOOT 12),
E. Bursztein and T. Dullien, Eds. Bellevue, WA:
USENIX Association, Aug. 2012.

[66] Y. Lee, T. Li, N. Zhang, S. Demetriou, M. Zha,
X. Wang, K. Chen, X. Zhou, X. Han, and M. Grace,
“Ghost Installer in the Shadow: Security Analysis of
App Installation on Android,” in 47th Annual IEEE/I-
FIP International Conference on Dependable Systems
and Networks (DSN), 2017, pp. 403–414.

[67] N. Borisov and R. Johnson, “Fixing Races for
Fun and Profit: How to Abuse atime,” in 14th
USENIX Security Symposium (USENIX Security

05). Baltimore, MD: USENIX Association, Jul.
2005. [Online]. Available: https://www.usenix.
org/conference/14th-usenix-security-symposium/
fixing-races-fun-and-profit-how-abuse-atime

[68] X. Cai, Y. Gui, and R. Johnson, “Exploiting Unix File-
system Races via Algorithmic Complexity Attacks,” in
30th IEEE Symposium on Security and Privacy, 2009,
pp. 27–41.

[69] R. Bisbey and D. Hollingsworth, “Protection Analysis
Project Final Report,” ISI/RR-78-13, DTIC AD A, vol.
56816, 1978.

[70] N. Viennot et al., “RacePro,” [Online; https://github.
com/columbia/racepro], 2011, accessed on Oct 28,
2021.

[71] J. A. Kupsch and B. P. Miller, “Safefile Library and
Documentation,” [Online; https://research.cs.wisc.edu/
mist/safefile/], 2008, accessed on Oct 28, 2021.

[72] A. Dunn and D. Porter, “Operating System Demonstrat-
ing System Transactions,” [Online; https://github.com/
ut-osa/txos], 2017, accessed on Oct 28, 2021.

[73] H. Vijayakumar et al., “Process Firewall,” [Online;
https://github.com/siis/pfwall], 2014, accessed on Oct
28, 2021.

[74] T. Kim and N. Zeldovich, “Mbox,” [Online; https:
//pdos.csail.mit.edu/archive/mbox/], 2013, accessed on
Oct 28, 2021.

[75] A. Bijlani et al., “SandFS. A File System Sandboxing
Framework,” [Online; https://sandfs.github.io/], 2019,
accessed on Oct 28, 2021.

[76] P. Yosifovich, A. Ionescu, M. E. Russinovich, and D. A.
Solomon, Windows Internals, Part 1: System archi-
tecture, processes,threads, memory management,and
more, 7th ed. Redmond, WA: Microsoft Press, 2017.

[77] L. Lu, A. C. Arpaci-dusseau, R. H. Arpaci-dusseau,
and S. Lu, “A Study of Linux File System Evolution
1 Introduction,” in Proceedings of the 11th USENIX
Conference on File and Storage Technologies (FAST
13). San Jose, CA: USENIX Association, Feb. 2013,
pp. 31–44.

[78] S. Designer et al., “Kernel Patches from the Openwall
Project,” [Online; https://www.openwall.com/linux/],
2002, accessed on Oct 28, 2021.

AUTHORS’ BIOGRAPHIES

Razvan Raducu received a BSc. in Computer
Science and an MSc. in Cybersecurity Research
from the University of León, Spain, in 2017 and
2019, respectively. Currently, he is pursuing a
doctorate in Computer Science at the University
of Zaragoza, Spain. His main interests include
program binary analysis, concurrency issues, and
offensive security.

18 VOLUME 4, 2016

https://www.usenix.org/conference/14th-usenix-security-symposium/fixing-races-fun-and-profit-how-abuse-atime
https://www.usenix.org/conference/14th-usenix-security-symposium/fixing-races-fun-and-profit-how-abuse-atime
https://www.usenix.org/conference/14th-usenix-security-symposium/fixing-races-fun-and-profit-how-abuse-atime
https://github.com/columbia/racepro
https://github.com/columbia/racepro
https://research.cs.wisc.edu/mist/safefile/
https://research.cs.wisc.edu/mist/safefile/
https://github.com/ut-osa/txos
https://github.com/ut-osa/txos
https://github.com/siis/pfwall
https://pdos.csail.mit.edu/archive/mbox/
https://pdos.csail.mit.edu/archive/mbox/
https://sandfs.github.io/
https://www.openwall.com/linux/

Ricardo J. Rodríguez received MSc. and PhD.
degrees in Computer Science Engineering from
the University of Zaragoza, Spain, in 2010 and
2013, respectively. His PhD. dissertation was fo-
cused on performance analysis and resource op-
timization in critical systems, with special inter-
est in Petri net modeling techniques. He is cur-
rently an Associate Professor at the University
of Zaragoza, Spain. His research interests include
performability analysis, program binary analysis,

and memory forensics. He has been involved in reviewing tasks for interna-
tional conferences and journals.

Pedro Álvarez received a Ph.D. degree in Com-
puter Science Engineering from the University of
Zaragoza, Spain, in 2004. He has worked as a
lecturer at this University since 2000. His cur-
rent research interests focus on the problems of
integration of network-based systems and the use
of novel techniques and methodologies to solve
them, as well as on the application of formal anal-
ysis techniques to mine event logs and databases.
The results of his research work have been applied

to different application domains, such as business intelligence, cybersecurity,
health and sports, and e-learning. He has participated in more than thirty
research and innovation projects and is author of more than twenty-five
articles in various high-impact international journals.

VOLUME 4, 2016 19

	Introduction
	Related Work
	Methodology of the Systematic Literature Review
	Research Questions
	Search Strategy
	Study Selection Criteria
	Articles Collected and Reviewed

	Analysis of Results
	Towards a Taxonomy for TOCTOU Defense and Attack Mechanisms
	On TOCTOU Defenses
	Description of TOCTOU Defense Solutions

	On TOCTOU Attacks
	Description of TOCTOU Attacks

	Synthesis
	Discussion of Results
	Future Research Trends and Directions
	Limitations

	Conclusions
	Razvan Raducu
	Ricardo J. Rodríguez
	Pedro Álvarez

