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Abstract. With the constant growth of IoT devices, software perfor-
mance and memory usage have become relevant aspects when choosing
the most suitable and optimal configuration of these resource-constrained
devices. Moreover, in certain scenarios security must be guaranteed to
protect data confidentiality, which imposes another resource consump-
tion overhead. In this work-in-progress we evaluate the resource con-
sumption of two widely-used block ciphers (AES and 3DES) and stream
ciphers (Salsa20 and Chacha20), implemented in two C++ libraries
(Crypto++ and Botan), to find out which library and algorithms are the
most efficient for such devices. In addition, we also evaluate whether the
type of input data affects the resource consumption. Our results show
that the memory consumption is similar across both libraries and algo-
rithms. In terms of CPU, Crypto++ outperforms Botan, with ChaCha20
achieving the best performance rates. Regarding the type of input data,
no major impact has been noticed.

Keywords: performance evaluation · memory usage · cryptographic li-
braries · resource-constrained devices

1 Introduction

The evaluation of a program’s resource consumption helps engineering teams
choose the system configuration in which their software programs can be op-
timally deployed. This kind of decision becomes especially critical when soft-
ware programs are intended to be run on resource-constrained devices, such as
Internet-of-Things devices or System-on-a-Chip boards [3].

In addition, these devices may require some sort of cryptography to guar-
antee data confidentiality. To incorporate this feature, software developers can
make use of cryptographic libraries that provide cryptographic primitives im-
plementing widely-known algorithms such as Advanced Encryption Standard
(AES), Data Encryption Standard (DES), or Salsa20, to name a few.

However, the large number of cryptographic libraries available can make it
difficult to choose which one is the best for a particular scenario. As the im-
plementation of the cryptographic primitives varies, some of them will be ineffi-
ciently implemented, affecting the resource utilization and, consequently, execu-
tion time and energy consumption.
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Modern cryptography is mainly divided into two types of encryption schemes:
symmetric and asymmetric [14]. In the symmetric encryption scheme the key is
used to both encrypt and decrypt data, whereas in the asymmetric scheme (also
known as public-key encryption scheme) the key used for encryption and the
one used for decryption are different but mathematically linked. For the sake of
space, in this work-in-progress we only focus on symmetric encryption. We plan
to extend this work to asymmetric encryption schemes as immediate future work.
Symmetric encryption algorithms can be further divided into block or stream
ciphers. Block ciphers split the data to be encrypted into fixed-size blocks and
encrypt one block at a time. Stream ciphers, on the contrary, break the data
down into bits and individually encrypt each one of them.

We evaluate the performance of cryptographic primitives in two crypto-
graphic libraries written in C++, which are chosen because of their popularity
and comprehensiveness. In particular, we evaluate two implementations of block
ciphers and another two implementations of stream ciphers which are common
across these libraries. These two kinds of symmetric ciphers were chosen as they
are best suitable for different use cases: block ciphers are a good choice when
the amount of data is known in advance, whereas stream ciphers are more ap-
propriate when the amount of data is either unknown or continuous (such as
in network streams). In addition, we evaluate whether the type of input data
affects the performance of the cryptographic primitives.

In brief, the research questions (RQ) that we address in this work-in-progress
are the following:

RQ1. Which cryptographic primitive is the most suitable for resource-
constrained devices?

RQ2. Does the type of input data (i.e., random, video, audio, or text data type)
affect the performance of the cryptographic algorithms?

The rest of this paper is organized as follows. Section 2 discusses the related
work. Section 3 depicts the methodology we applied when performing the eval-
uation. Section 4 details the evaluation itself, describing the selected algorithms
for comparison, the experimental setup, the discussion of the results, and the
limitations of our work. Finally, Section 5 concludes our work and establishes
future lines of work.

2 Related Work

The need of performance measurements dates several decades back [17]. One
of the most common approaches when determining the performance of software
in the discipline of software performance engineering is based on measurements
during the actual program execution [30], as opposed to other approaches like
model-based or performance prediction [4].

In any event, the evaluation of programs’ resource consumption help devel-
oper teams choose the system in which their software can be optimally deployed.
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This kind of decision becomes critical especially when software programs are
aimed to be executed in resource-constrained devices [3].

Performance of cryptographic primitives has been largely discussed in the
literature. In what follows, we focus on the works most similar to ours.

In [28], Tamimi compared the performance of four of the most common cryp-
tographic algorithms (DES, 3DES, Blowfish, and AES), using their own imple-
mentation in C# and compiled with Microsoft Visual C# .NET 2003. The results
showed that Blowfish has the best performance while, on the other hand, AES
has the worst. The authors in [20] also implemented widely used cryptographic
algorithms (namely, DES, 3DES, AES, RSA, and Blowfish), but in Java language
instead of C#. Regarding the type of input, only text and image data were used.
Metrics such as performance or memory use, among others, were evaluated. An
evaluation of symmetric (AES, DES, Blowfish) as well as asymmetric (RSA)
cryptographic algorithms implemented in Java by taking different types of data
like binary, text, and image is also provided in [19].

A comprehensive performance evaluation of popular symmetric and asym-
metric key encryption algorithms is provided in [12]. The main purpose of the
evaluation is selecting the best algorithm for resource-constraint devices. The
authors tested symmetric key encryption (AES, RC4, Blowfish, CAST, 3DES,
and Twofish) and asymmetric encryption (DSA and ElGamal) algorithms im-
plemented in Python on various types of input files (text, audio, and video).

The seminal work of D. A. Menascé [18], presents a quantitative analysis
to illustrate the effect of using a specific set of cryptographic algorithms on
the performance of a computer system. In particular, the analysis is focused
on the performance of digital signatures using MD5 and SHA-1 cryptographic
hash functions and on the SSL protocol [11] using different combinations of
symmetric key algorithms (RC4 and 3DES), two hash functions (MD5 and SHA-
1 again), and three key lengths (512, 768, and 1, 024 bits). Menascé concluded
that there is a need to understand which level of security is required so as to
be protected against possible threats while minimizing performance penalties as
much as possible.

An extensive and complete analysis of eight open-source cryptography li-
braries is provided in [8], in which 15 different ciphers are examined and com-
piled using four different C++ compilers. However, unlike in this work, only
electronic code-book (ECB) encryption mode is considered for the comparison.

Recently, the authors in [27] studied the performance of symmetric key algo-
rithms (AES and DES) versus the RSA asymmetric key encryption algorithm,
concluding that RSA takes the longest time for encryption while AES takes the
shortest. Unlike ours, their work only considered text data for the evaluation.

The work most similar to ours is [1], in which the performance of ten block ci-
phers implemented in six C/C++ open source libraries under different data loads
is assessed. Unlike us, they do not limit the experimental scenario to resource-
constrained devices and only consider CBC mode for all block ciphers. However,
no details are given on the type of input used for evaluation.
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Our work differs in several ways from the works mentioned above. First,
we focused on resource-constrained devices, carrying out the evaluation on a
Raspberry Pi Model 4 B. Second, we evaluated four different cipher modes of
operations, as well as two stream ciphers. Last, we considered four data types
(random, video, audio, and textual data).

3 Methodology

The methodology we used to carry out the experiments is focused on finding out
which algorithm of each type is the best in terms of performance and memory
consumption, and then compare them.

We first evaluate and compare the block ciphers (AES and 3DES) with each
other and the stream ciphers (Salsa20 and ChaCha20) in the same way. Regard-
ing their configuration, we evaluate AES and 3DES with a key length of 192
bits in CBC, OFB, CTR, and CFB modes, and Salsa20 and ChaCha20 with key
lengths of 128 and 256 bits. We use the same initialization vector and the same
key for all algorithms. We then compare the best algorithm from each category
using the same evaluation metrics.

For the input data of the assessment, we created a corpus comprising ran-
dom data from /dev/urandom, audio data from a copyright-free version of “Psy-
chopathology of Everyday Life”1, video data from “Night of the Living Dead”2

(also copyright-free), and textual data from “El Quijote”3. These inputs were
divided into 128KiB, 256KiB, 512KiB, 1MiB, 4MiB, and 8MiB chunks.

Regarding execution, we launch one execution of each algorithm for each com-
bination of input type, input size, key-length and operation mode, measuring the
resource usage of each execution. Each execution consists of the encryption of
the given input and the decryption of the result. In addition to the time measure-
ment, we compute the MD5 of the decryption output to verify the correctness of
the operations by comparing it to the MD5 of the original input file. This process
was repeated 20 times to obtain the running average. The total execution time
of these tests was almost 5780 minutes.

Furthermore, we developed a tool dubbed EvalMe to carry out all the ex-
periments presented in this work-in-progress. It monitors the usage of two main
resources: CPU and memory. We make use of Hyperfine [22], a cross-platform
command-line benchmarking tool, to measure the CPU usage. Likewise, we use
Psutil [24], a Python library for retrieving system resources utilization of run-
ning processes, to measure memory usage. EvalMe allows the user to specify
how many executions of the program should be performed and monitored. By
default, it performs 10 executions without a warm-up run. The results are the
average resource consumption for all executions. EvalMe outputs results in either

1 Available in https://archive.org/details/psychopathology_everyday_life_

ms_librivox, accessed on April 28, 2021.
2 Available in https://archive.org/details/night_of_the_living_dead, accessed
on April 28, 2021

3 Available in https://www.gutenberg.org/ebooks/2000, accessed on April 28, 2021

https://archive.org/details/psychopathology_everyday_life_ms_librivox
https://archive.org/details/psychopathology_everyday_life_ms_librivox
https://archive.org/details/night_of_the_living_dead
https://www.gutenberg.org/ebooks/2000
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human-readable or JSON format, making it easy to integrate into pipelined anal-
ysis systems. EvalMe is open source and licensed under GNU/GPL v3, publicly
available in our repository [23].

4 Evaluation

In this section we briefly present the tested algorithms, the settings we used in
our experiments, the discussion of results, and the limitations of our work.

4.1 Selected Algorithms

Regarding the symmetric key algorithms selected for evaluation, we choose two
block cipher algorithms and another two stream cipher algorithms. As block
ciphers, we select 3DES and AES as they are the most secure block ciphers at the
moment of this writing. As stream ciphers, we select Salsa20 and its evolution
ChaCha20, which is becoming one of the most used stream ciphers [15]. We
briefly explain them in the following.

Triple Data Encryption Standard (3DES). Developed in 1974, DES was
the first encryption standard to be recommended by the National Institute of
Standards and Technology (NIST). 3DES was proposed in 1998 as a replacement
for DES due to advances in key searching [5]. 3DES applies the DES cipher
algorithm three times to each data block. The block size is 64 bits and the
key length varies between 168, 112, or 56 bits. 3DES supports different modes:
ECB, Cipher Block Chaining (CBC), Cipher FeedBack (CFB), Output FeedBack
(OFB), and Counter (CTR). Among these, ECB is generally not recommended
as it is semantically insecure [2] (i.e., an adversary that merely observes an ECB-
encrypted ciphertext can gain information about the corresponding plaintext).

Advanced Encryption Standard (AES). AES was also recommended by
NIST as a replacement of DES in 1998, and standardized in 2001 [26]. The block
size is 64-bit length and the key length varies between 128, 192, and 256 bits.
As 3DES, it supports also different modes.

Salsa20. Salsa20 is a family of 256-bit stream ciphers designed in 2005 [7].
The block size is 64 bytes (512-bit) and the key length is either 128 bits or 256
bits. The encryption/decryption model used by Salsa20 is similar to the model
followed by any block cipher in CFB, OFB, and OTR modes, among others
modes (except CBC).

ChaCha20. ChaCha20 is an evolution of Salsa20, published in 2008 [6]. This
stream cipher has been selected as a replacement for RC4 in the TLS protocol,
used for Internet security. As in Salsa20, the block size is 64 bytes and the key
length is either 128 bits or 256 bits. Regarding the encryption/decryption model,
it is similar to the model used by Salsa20.
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4.2 Experimental Setup

As experimental hardware, we use a Raspberry Pi 4 Model B rev 1.1 running a
Raspbian GNU/Linux Debian 10 (buster) on top of a (32-bit little Endian ar-
chitecture) ARM Cortex-A72 1.50GHz CPU and 4GiB of RAM. As software, we
consider Crypto++ version 8.4 [9] and Botan version 2.17.3 [16]. These software
libraries were compiled with GNU g++ version 8.3.0 (Raspbian 8.3.0-6+rpi1) and
their default optimization flag (O3 in both cases). We use EvalMe to monitor re-
source consumption and automate the process as described in Section 3.

4.3 Discussion of Results

Figure 1 depicts the performance results of block ciphers in Crypto++ (top fig-
ures) and Botan (middle) and stream ciphers in Crypto++ (left-bottom) and in
Botan (right-bottom). Regarding block ciphers, we evaluate 4 operation modes
(CBC, OFB, CTR, and CFB) with 192-bit key length. AES always outperforms
3DES in every possible combination, regardless of the cryptographic library. No
major differences are observed regarding the performance of modes in 3DES-
Crypto++ (the best mode is CFB, with an average performance of 6.09 MiB/s,
while OFB is the worst with 5.58 MiB/s). Regarding AES-Crypto++, the best
performing mode is CBC (12.05 MiB/s) and the worst is CFB (10.92 MiB/s). On
the contrary, the best 3DES-Botan mode is CBC with an average performance of
5.18 MiB/s, while the worst is CTR with 2.94 MiB/s. Regarding AES-Botan, the
best operation mode is CBC (6.6 MiB/s) and the worst is CTR (3.29 MiB/s).
Concerning stream ciphers, we evaluate both 128 and 256-bit key lengths. The
difference of average performance is negligible in both libraries. In Crypto++,
ChaCha20 with a 128-bit key length is the best cipher (13.12 MiB/s), while
the worst is Salsa20 with a 128-bit key length (12.89 MiB/s). In Botan, the
best cipher is Salsa20 with a 128-bit key length (4.16 MiB/s) and the worst
is ChaCha20 with a 128-bit key length (3.93 MiB/s). As observed, Crypto++
always outperforms Botan.

Figure 2 shows the performance results of the best block cipher against the
best stream cipher for each library with different input types and same key
length. Regarding Crypto++ (top figures), ChaCha20 achieves better overall per-
formance results than AES, regardless of the input type or its size. For AES,
there are no noteworthy differences when encrypting and decrypting different
input types with different sizes (except when working with textual data of 128
and 256 KiB and when dealing with video data of 128 KiB). The performance
of ChaCha20 also tends to be similar, regardless of input type and sizes (ex-
cept when dealing with textual and video data of 128 KiB). Regarding Botan,
AES clearly outperforms Salsa20. There is also a clear tendency toward higher
performance rates with larger files, regardless of the input type. This tendency
has been previously documented [8]. We are currently conducting more detailed
experiments in order to discover the reason for this behavior. There are also
cases in which AES underperforms, such as audio data of 128 and 256 KiB, and
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Fig. 1: Performance of block ciphers in Crypto++ (top figures) and Botan (mid-
dle) and stream ciphers in Crypto++ (left-bottom) and in Botan (right-bottom).
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Fig. 2: Performance of the best block and stream cipher in Crypto++ (top figures)
and Botan (bottom).
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Fig. 3: Average memory usage for AES in Crypto++.
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video data of 256 and 512 KiB. No major differences between input types are
observed in Salsa20.

Regarding the memory consumption, we have observed no differences be-
tween executions. On average, 0.36 MiB of RAM were consumed, regardless of
the library, algorithm, mode of operation, key length or input type. For the sake
of space, we only show the memory consumption of AES in Crypto++ (Figure 3).

4.4 Limitations

A main limitation of our work is the measurement. Since we are working at
the user-space level, monitoring and measurement of resource usage is restricted
to polling methods. While running a specified program to retrieve the resource
usage for each time period and average computation may seem appropriate, we
may be skipping consumption variations (high or low) that may occur during
execution. Using a kernel space level monitoring tool would allow us to provide
more accurate measurements.

Besides, our results are limited in terms of how the libraries were compiled
(we only evaluated one compiler) and the optimizations they were compiled with
(we used the default optimization flag). Also, we evaluated only CPU usage and
RAM consumption, when there are other crucial measurements like latency,
power consumption, or battery drainage.

5 Conclusions and Future Work

The results showed that the higher performance rates are achieved with larger
files in Botan, unlike Crypto++, in which the input size has no major impact. In
all our experiments, Crypto++ clearly outperforms Botan. Let us remark that we
have empirically observed small variations on performance between different runs
of the same configuration, which may indicate that external factors, such as the
processor’s heat, can be affecting its performance. This is an important issue for
resource-constrained devices that requires further research. The best algorithm,
in terms of performance, is ChaCha20. Regarding memory consumption, there
is no difference between any of the algorithms. Our results also showed that
the type of input data has no impact on the performance of the cryptographic
primitives, with few exceptions that we believe require further research.

Our immediate step continuing this work is to evaluate the performance and
memory consumption considering different optimization flags and different C++
compilers, such as Clang and Intel C++ Compiler. Our preliminary results
with g++ show that the executions with the default optimizer flag, O3, do not have
the shorter execution time, while memory consumption are equal across all the
executions. Moreover, we plan to extend our evaluation so as to cover asymmetric
encryption algorithms and also extend the study to other IoT devices, such as
Arduino boards and ESP8266 chips.

In addition, we also aim to assess the power consumption of the tested
devices, since power consumption is key in the context of resource-restrained
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devices. Particularly, in battery-powered devices battery drain is critical. The
power consumption of cryptographic primitives has already been measured in
the literature [29,10,25,13,21], showing that the optimal algorithm for a given
device is not necessarily the most efficient in terms of power consumption which,
in turn, certifies that choosing the “best” algorithm implies more than just se-
lecting the fastest.
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