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Abstract—Finding identical digital objects (or artifacts) dur-
ing a forensic analysis is commonly achieved by means of
cryptographic hashing functions, such as MD5, SHA1, or SHA-
256, to name a few. However, these functions suffer from the
avalanche effect property, which guarantees that if an input
is changed slightly the output changes significantly. Hence,
these functions are unsuitable for typical digital forensics
scenarios where a forensics memory image from a likely
compromised machine shall be analyzed. This memory image
file contains a snapshot of processes (instances of executable
files) which were up on execution when the dumping process
was done. However, processes are relocated at memory and
contain dynamic data that depend on the current execution
and environmental conditions. Therefore, the comparison of
cryptographic hash values of different processes from the
same executable file will be negative. Bytewise approximation
matching algorithms may help in these scenarios, since they
provide a similarity measurement in the range [0, 1] between
similar inputs instead of a yes/no answer (in the range {0, 1}).
In this paper, we introduce ProcessFuzzyHash, a Volatility
plugin that enables us to compute approximation hash values
of processes contained in a Windows memory dump.

Keywords-bytewise approximate matching, forensic memory
analysis, Windows, Volatility

I. INTRODUCTION

Computer forensic analysts usually try to find identical
digital objects (or artifacts, defined as an arbitrary byte
sequence) as a source of evidences for a posterior analysis.
For instance, they can look for the presence of known
malicious software (malware) in a forensic disk image as an
evidence of a compromise computer. When some malware
files are detected, they are analyzed in detail to measure the
impact of the threats found.

A common approach to compute the similarity between
artifacts is to use cryptographic hash functions like MD5,
SHA-1, or SHA-256. A cryptographic hash function is an
algorithm that takes a relatively (arbitrary) large amount of
input and returns a fixed-size hexadecimal string. The output
string is called the hash value or digest of the input. Hence,
a hash value of an artifact serves to unequivocally identify
it. Cryptographic hash functions are designed to be one-way
function [1], i.e., it is easy to compute on every input, but
hard to compute its inverse function. That is, given a hash
values it is difficult to know the input that generates such
an output.

A desirable property of cryptographic hash functions is
the avalanche effect property [2], which guarantees that the
hash values of two similar, but not identical, inputs (e.g.,
inputs in which only a single bit is flipped) produce radically
different outputs. Hence, cryptographic hash functions are
commonly used for data integrity and file identification of a
seized device [3].

However, the avalanche effect property has some draw-
backs since an active adversary may easily defeat this
detection and keep their files hidden by just flipping a single
bit. To overcome this situation, approximate matching has
emerged in the recent years as a prominent approach that is
more robust to active adversaries than traditional hashing [3].
Approximate matching identifies similarities between two
digital artifacts providing a measure of similarity, in the
range of [0, 1]. Hence, it is used to find artifacts that resemble
each other or to find artifacts that are contained in another
artifacts [4], providing a percentage of similarity among
them.

An approximate matching method becomes especially
suitable for the analysis of forensic memory images, which
contains a snapshot of the set of processes up on execution
when the memory image was acquired. By the intrinsic
characteristics of the underlying machine’s OS, different
executions of the same binary file generates similar but
not identical processes, residing in the addressable space
memory of the machine. Hence, although cryptographic hash
functions are useful to identify the binary file in a forensic
disk image, they become unsuitable for the same purpose
when analyzing a forensic memory image from the same
machine.

An approximate matching method is classified based on
what is considered to perform the similarity analysis [4]:
bytewise, when the method relies only on the byte sequence
of the digital artifact (i.e., no structures or meaning of the
byte stream are considered); syntactic, when the method
relies on internal structures present in digital artifacts under
analysis; and semantic, when the method uses contextual
attributes of the digital artifact to interpret it. In this paper,
we focus on bytewise approximation matching algorithms
(also known as fuzzy hashing) from a syntactic approach,
since we consider process sections as input data for the
algorithms.



Let us illustrate the avalanche effect problem in pro-
cesses by means of a running example. Consider the “hello
world” program (coded in C) shown in Listing 1 that has a
getchar function as a way to wait for user interaction
before exiting, compiled with GNU gcc version 5.3.0
running in a Windows 7 SP1 Professional. Now, we execute
the binary file three times in the same machine, and every
time we dump the corresponding process to a file. The MD5
hashes of each dumped process file are, namely:

• c5045fa95f880dc1cf09c97ae8d32e28
• 37304f15fe397b51927ce3ba247ca397
• 016e7557c48cb91feb487b6e0919037e

As it can be clearly seen, there is not any match
between any of the hashes of the dumped process files.
However, if we compute the ssdeep hash instead (a bytewise
approximate matching algorithm), we obtain similarities
that range between 97% to 99%, and up to 100%, depending
on the byte stream of the dumped process files that we
analyze. For instance, the ssdeep hash of the byte stream that
contains the binary code executed is exactly the same value,
384:fb02XGJLkOj40sqJnwCQoVrKcBdgE/daL07ti
cdJ5bjn+lUpNNK/7RV:fxGGOdwCJxRuYDJJraR.

Listing 1: A “hello world” C program.
#include <stdio.h>

int main(int argc, char *argv[]){
printf("hello world!\n");
getchar();
return 0;

}

In this paper, we focus on processes executed on top of
Windows OS. The main reason of the differences regarding
cryptographic hashes relies on the own nature of Windows
processes. While an executable file is a static binary file,
a process of such an executable file is a dynamic binary
file. There exist several parts in a process which strongly
depend on the current time of execution, such as the content
of the stack or the heap. Besides, relocation and relative
addresses of import data or functions are likely to differ
between subsequent executions. We provide a more technical
description of the underlying reasons causing these differ-
ences in Section II-B.

In this paper, we introduce ProcessFuzzyHash, a
plugin of the Volatility framework that allows us to com-
pute approximation matching hashes of the processes inside
a memory dump. Volatility [5], published in 2007, is a
framework written in Python commonly used in computer
forensics. In particular, Volatility provides a set of plugins
to easily analyze memory dumps obtained from machines
up on execution.

This paper is organized as follows. Section II introduces
previous concepts needed to follow the rest of the paper.
Related work is covered in Section III. Then, Section IV

describes the architecture of ProcessFuzzyHash and
how it works in detail. Finally, Section V concludes the
paper and states future work.

II. PREVIOUS CONCEPTS

Here, we first describe the format of Windows OS exe-
cutables files and then the format of Windows processes.

A. Portable Executable File Format

The Portable Executable (PE) [6] file format is the file
format adopted by the Windows OS executable files. Being
a standard for packaging executable code, it is not only used
by executable files (i.e., files with .exe extension) but also
by other kind of (executable) files such as dynamic link
libraries (.dll extension), screen savers (.src extension), or
either typographic fonts files (.fon extension), to name a few.
A PE file is divided into three main headers [7]: the DOS
header, the NT header, and section headers.

In particular, the PE headers are composed as follows.
First, there appears a MS-DOS HEADER, divided into a 64-
byte size field named IMAGE_DOS_HEADER and an op-
tional DOS stub content. Although this header is a reminis-
cent component from the MS-DOS era, it is still mandatory
for any Windows executable file. It mainly contains the
magic number “MZ” plus a pointer to the relative address
where the next header starts. The optional DOS stub content
contains the minimal code to report an error message when
executing a Windows executable file in a MS-DOS OS.

The second PE header, IMAGE_NT_HEADERS, is divided
into two parts: the IMAGE_FILE_HEADER, which contains
metadata regarding the executable file, such as the partic-
ular machine for which it was compiled (Intel x86, IBM
PowerPC, ARM, etc.) or the compilation timestamp (auto-
matically set by the compiler), as well as other important
data to allow Windows to correctly parse and execute the
file, such as the number of sections or its characteristics;
and the IMAGE_OPTIONAL_HEADERS, which additional
information required for the correct execution of the file,
such as the entry point address (first instruction to execute
when the executable file is loaded), the stack size, or the
heap size, among other.

Finally, the section headers are conformed by multiple
IMAGE_SECTION_HEADER structures. Every one of these
structures defines data regarding a specific section of the
executable file, such as the names, the virtual(raw) addresses
and sizes, and its characteristics (readable, writable, and/or
executable). Data contained in each section appears after
the section headers. For instance, an executable file can be
composed of a .text section, which contains the binary code
to be executed; a .data section, which contains the read-
only data of the binary (e.g., string and numerical constant
values); and a .rsrc section, which contains other read-only
data such as icons, configuration files, or images.



B. Structure of Windows Processes

In essence, a Windows process is the representation of
a executable file (or program) when the program is upon
execution. The main difference between a program and
process relies on the static and dynamic nature of the binary
code: while a program is a static sequence of instructions
(located in any device), a process is a container for all
resources required (e.g., other files, peripheral devices, or
sockets, among others) for the execution of the program.
Analogously to object-oriented programming, the program
is a “class” while the process is an instance of such a class,
that is, an “object” of the “class”.

In particular, a Windows process is seen as a thread-
container [8]. At a high-level abstraction, a Windows process
consists of a (private) virtual address space, the executable
program that generated the process (copied into the address
space of the process by the Windows PE loader), a list of
all required OS resources, access tokens (they define the
security context of the process), a unique process identifier
and, at least, one execution thread.

As we highlighted in previous section, two Windows
processes of the same executable file show substantial differ-
ences when comparing their memory content. This is mainly
motivated because of how the Windows PE loader works.
The Windows PE loader is the mechanism that, among other
things, maps into memory an executable file that resides in
disk prior its execution. When loaded, any relative address
to import data or functions are solved and hence, the binary
content associated to those data may differ. For instance,
any dynamic link library associated to the executable file is
almost surely mapped into different memory addresses than
previous executions, specially when executing after booting.
This issue is specially performed by Address Space Layout
Randomization (ASLR) [9], [10], a defense mechanism to
prevent control-flow hijacking attacks [11]. In this kind of
attacks, the attacker diverts the control flow of a vulnerable
process. In order to control the execution flow, the attacker
must know certain memory locations that contains pieces
of code of interest for the attacker’s goal. Hence, memory
addresses of libraries are randomized to make more difficult
a successful attack when ASLR takes in place.

Besides ASLR, the Windows image loader may relocate
the image file of the executable file when mapped to memory
prior execution. Therefore, code and data in the program are
adjusted to reflect the assigned addresses.

Furthermore, note that some memory zones contain dy-
namic data, such as the stack or the heap of the process.
These structures are strongly dependent on the execution
of the process since their data vary very often when the
process executes. Hence, two processes will almost surely
present substantial differences in the stack and heap contents
unless it is guaranteed that the capture of these contents is
done at the same moment of time after the executable file

was launched and under the same environmental conditions
(which is very unlikely to occur).

III. RELATED WORK

In [12], the authors studied the similarity of binaries using
bytewise approximation matching. Namely, the algorithms
evaluated were ssdeep and other tools such as peHash
and Imphash, explained later. Unlike our approach, again,
the authors only considered binaries in its static form. Our
tool also allows us to compute other bytewise approximation
matching algorithms instead of ssdeep.

Another work that used approximation matching algo-
rithms is [13]. There, the authors first converted binary files
into image format files and then used a bytewise approx-
imation matching algorithm to detect similarities between
known malware binaries from different malware families.
Hence, fuzzy hashing techniques were used as a cluster
mechanism. Since that approach is complementary to ours,
as further research we aim at exploring it, but using dumped
process files instead.

It is worth also mentioning other tools outside the Volatil-
ity framework that make use of bytewise approximation
matching techniques. In this regard, peHash [14] allows to
obtain hash values from Windows binaries. In particular, it
uses several properties of the Windows PE format (such as
section flags, virtual address, or initial stack size, among
others) as input data. Similarly, Imphash [15] generates
a hash considering as input the import functions of the
Windows binary, under the assumption that similar binaries
are likely to import the same functions – which is false
of the import functions are obfuscated. Note that our tool
also considers the PE properties and import data, since we
can compute hash values of the sections into the dumped
process file that contains such data. Again, these tools are
focused on binary files and not on dumped process files, as
our approach does.

Malfunction [16] is a set of tools for cataloguing and com-
paring malware at a function level. Based on Radare2 [17],
it computes hash values of every function detected into
the binary and stores them to later comparison. Although
focused on binary files, this approach is complementary to
ours and deserves further research when applied to dumped
process files. Finally, Binwally [18] is a tool that enables us
to compare binary files using ssdeep algorithm. Again, it
considers only binary files. Besides, our tool also supports
more approximate matching algorithms as well as ssdeep.

In summary, as far as we are aware, no other work or
tool was found regarding the computation of fuzzy hashes
in dumped process files. As shown, all related works focused
on computing fuzzy hashing of binaries in static form,
i.e., binary files prior execution. We believe our tool can
specifically help forensic analyst to discriminate between
legitimate versus malicious processes that attempt to appear



legitimate when analyzing a forensic memory image in a
fast and easy manner.

IV. TOOL ARCHITECTURE AND DESCRIPTION

In this section, we introduce the architecture of
ProcessFuzzyHash and how it operates in a high-level
description, providing as well examples of its execution.

During the initial analysis phase, we considered two
(non-functional) requirements that ProcessFuzzyHash
shall fulfil: (1) ProcessFuzzyHash shall make use of
Windows process structures contained in a dumped memory
image file; and (2) the tool shall be portable, so it can be
executed in as many operating systems as possible. Consid-
ering these requirements, we opt for developing a tool with
Python language that makes use of the Volatility framework,
given that Volatility is already able to handle Windows
process structures contained in a dumped memory image
file. Besides, we decided to develop ProcessFuzzyHash
as a Volatility plugin instead of a stand-alone application
to extend its capabilities and therefore contribute to the
community of users (and developers) of Volatility.
ProcessFuzzyHash operates in two different man-

ners: hash generation and hash comparison. A high-level de-
scription of ProcessFuzzyHash is depicted in Figure 1.
As input, our tool needs a dumped memory image file for
a machine running any Windows OS accepted by Volatility.
Since our tool is a plugin of Volatility, it is executed as
a command of Volatility framework, i.e., by means of the
Python script vol.py. The output of our tool depends on
the operation being performed. In the sequel, we briefly
describe both operations.
ProcessFuzzyHash accepts a set of parameters to

customize its operative. For instance, the specific process
(or processes) for which approximate matching hash values
shall be generated can be provided by process name (full or
partial match is supported) or by process ID. Similarly, the
approximation matching algorithms to use are provided as
a comma-separated argument. Other parameters regarding
performance, such as multithreading hash generation or
specification of temporal folder, or regarding readability,
such as giving results as human-readable values, can be as
well provided.

Our tool currently supports four approximate matching
hashing methods, namely:

• dcfldd [19] is a Block-Based Hashing algorithm
that splits input data in a fixed number of segments
and concatenates cryptographic hash values of each
segment. The similarity measurement is the ratio of
equal features.

• ssdeep [20] is a Context Triggered Piecewise Hashing
algorithm that splits input data in contexts by a rolling
hash. When the rolling hash yields a specific value, it
triggers a change of context. Each context is hashed
by traditional hash methods and recorded in a digest.

The similarity measurement is based on a weighted edit
distance between the digests.

• sdhash [21] is a Statistically-Improbable Features
algorithm, which calculates the entropy of fixed-size
features of the input data. Then, the most populate
features, with more than a minimum entropy threshold,
are hashed and added to a Bloom Filter (BF). The
similarity between two digests is based on the number
of features that belong to both BF.

• TLSH [22] is a Local-Sensitive Hashing algorithm that
yields an id for each input subarray and counting it in
buckets. Then, the output digest is the concatenation
of length, ratio of quartiles, and the quartile of each
bucket. The similarity measurement is calculated by an
own weighted edit distance algorithm.

Moreover, we used a modular architecture to facilitate the
inclusion of other approximation matching algorithms.

A. Hash Generation

In hash generation operation, ProcessFuzzyHash re-
lies on the Volatility plugins procdump to obtain the
processes inside the memory dump given as input, and
on memdump to obtain all memory pages related to a
given process (which can be given by parameter also).
Besides the process (or processes) for which approximation
matching hash (or hashes) shall be computed, in this case
ProcessFuzzyHash also needs the user to provide as
argument which part of the processes shall be considered.
In this regard, ProcessFuzzyHash allows us to choose
between the following: the full memory address space of
the process, the executable file as mapped into memory
(its image file), the PE headers, or a concrete PE section.
Furthermore, the user can also choose either to consider
binary data or just string-valued data (i.e., the arrays of
printable characters in the process).

As output, ProcessFuzzyHash provides one line per
each generated hash, indicating the process name, process
ID, process creation timestamp, the part of the process
considered for the hashing operation, the algorithm used,
and the computed hash value.

An example of hash generation is illustrated in Listing 2,
where the ssdeep algorithm is computed of three different
processes. For the sake of readability, we omit part of the
create timestamps and of the hash values.

B. Hash Comparison

In the hash comparison operation, ProcessFuzzyHash
requires, at least, one (or more) hash(es) and the ap-
proximation matching algorithm used as base comparison.
ProcessFuzzyHash supports two modes of comparison
of the given hash (or hashes): either with a file containing
a bunch of hash values separated by line, or with the hash
values of processes contained in a dumped memory image
file. Furthermore, a concrete process name or process ID can
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Figure 1: System overview diagram of ProcessFuzzyHash.

Listing 2: ProcessFuzzyHash execution example: hash generation using ssdeep algorithm.
$ python vol.py --plugins=processfuzzyhash/ -f vmcore.elf processfuzzyhash \
> --profile=win10x86_15063 -a ssdeep -s pe -n vboxservice,winlogon,services

volatility foundation volatility framework 2.6
name pid create time section algorithm hash
winlogon.exe 500 1(...)0 pe ssdeep 6144:pzp/qv...8cijqdsyjqj
services.exe 544 1(...)3 pe ssdeep 6144:q/6kxe...jxd5
vboxservice 1060 1(...)9 pe ssdeep 12288:k/odr...cxuexsq

also be used as filtering to compare with a specific process
inside the memory dump.

As output, in this case ProcessFuzzyHash provides
one line per each hash compared with the given input hash,
indicating both hashes, the algorithm used to compute and/or
compare, and the similarity measurement (termed as score).

An example of hash comparison operation is illustrated in
Listing 3, where a hash value is compared using ssdeep
algorithm, considering processes inside the memory dump
that match the name “svchost”. As before, for the sake of
readability we deliberately omit part of the hash values.

C. Tool Availability

For the sake of reproducibility and to foster research
in the area of forensic memory analysis, we have re-
leased ProcessFuzzyHash as a plug-in included in the
Volatility Framework under GNU GPLv3 license, avail-
able at https://github.com/volatilityfoundation/community/
tree/master/ProcessFuzzyHash

D. Tool Performance

To evaluate our tool, we obtained 10 memory images
from a Windows 7 32-bit bits with 2GB RAM, running
in a VirtualBox hypervisor on top of an Intel Xeon E5606
2.13 GHz with 72GB RAM executing a Debian 9. Dumps
were obtained after fresh reboot without any user interaction.
Every memory image has a final size of 2.18 GB.

We selected 20 different system processes and hashed
them. On average, the hash generation took around 8 seconds
(s). Then, we selected the winlogon.exe process from
every memory image and compared its code section hash

with every other process in the image. The average time for
comparison of each algorithm is 6.85 s for dcfldd, 6.9
s for ssdeep, 7.02 s for sdhash, and 6.94 s for TLSH.
Further research is needed to exhaustively evaluate those
algorithms, in terms of efficiency, precision, and recall.

V. CONCLUSIONS

As part of digital forensic triage, computer forensic an-
alysts must find identical digital artifacts to determine, for
instance, the presence of malicious software. Cryptographic
hash functions are commonly used to this goal. However,
these functions are unsuitable for some forensic data, such
as forensic memory images, due to the dynamic nature of
the underlying data. For instance, processes are relocated
and its memory mapping addresses will likely change at ev-
ery execution. Bytewise approximation matching algorithms
become more suitable to find similar artifacts.

In this paper, we introduced ProcessFuzzyHash, a
tool to compute bytewise approximation matching hash val-
ues of processes sections which are contained in a Windows
memory image. We have explained our tool in detail and
provide execution examples. Our tool has been released
under GPLv3 within the Volatility Framework.

As future work, we aim at evaluating bytewise approxima-
tion matching algorithms in more detail. Preliminary results
show that processes from different executable files score
zero similarity, while processes from the same executable
file score a low to medium similarity (in the range of 30
to 50%). Furthermore, we also aim at analyzing how the
parameters of these algorithms affect to the similarity score.

https://github.com/volatilityfoundation/community/tree/master/ProcessFuzzyHash
https://github.com/volatilityfoundation/community/tree/master/ProcessFuzzyHash


Listing 3: ProcessFuzzyHash execution example: hash comparison using ssdeep algorithm.
$ python vol.py --plugins=processfuzzyhash/ -f vmcore.elf processfuzzyhash \
> --profile=win10x86_15063 -a ssdeep -s pe -n svchost > -c ’768:9n3ss...quvkp5/zm’

volatility foundation volatility framework 2.6
hash a hash b algorithm score
768:9n3ss...quvkp5/zm 768:9n3sss...qdvkp5/0m ssdeep 94
768:9n3ss...quvkp5/zm 768:9n3sss...quvkp5/zm ssdeep 100
(more output deliberately omitted)
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