
Integrating Fault-Tolerant Techniques into the

Design of Critical Systems⋆
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Abstract. Software designs equipped with specification of dependabil-
ity techniques can help engineers to develop critical systems. In this work,
we start to envision how a software engineer can assess that a given de-
pendability technique is adequate for a given software design, i.e., if the
technique, when applied, will cause the system to meet a dependability
requirement (e.g., an availability degree). So, the idea here presented is
how to integrate already developed fault-tolerant techniques in software
designs for their analysis. On the one hand, we will assume software be-
havioural designs as a set of UML state-charts properly annotated with
profiles to take into account its performance, dependability and security
characteristics, i.e., those properties that may hamper a critical system.
On the other hand, we will propose UML models for well-known fault-
tolerant techniques. Then, the challenge is how to combine both (the
software design and the FT techniques) to assist the software engineer.
We will propose to accomplish it through a formal model, in terms of
Petri nets, that offers results early in the life-cycle.

1 Introduction

Software failures chronically occur and in most cases do not cause damage.
However, a system is called critical when failures result in environmental dam-
age (safety-critical), in a non-achieved goal compromising the system (mission-
critical) or in financial losses (business-critical). Avizienis et al. [1] cleverly iden-
tified the fault-error-failure chain to support specification of intricacies occurring
in critical systems.

Fault prevention and fault tolerance, as two of the means to attain depend-
ability [1], have to be considered by designers of critical systems. The former,
for example, by means of quality control techniques, while the latter may take
the form of replication: distribution through replication confers tolerance to the
system and allows to get a higher system availability.

This paper addresses the issue of integrating already developed fault-tolerant
(FT) techniques into software designs for their analysis through automatically
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obtained formal models. The aim is to evaluate the effectiveness of a given FT
technique for a concrete software design, i.e., to verify if the design meets de-
pendability requirements using such FT technique. FT techniques have to be
efficaciously integrated with other system requirements, and this will be accom-
plished through the software design. In fact, we propose to represent a given FT
technique as a UML (Unified Modelling Language [2]) model with well-defined
interfaces. So, the software design of the critical system under analysis, also mod-
elled with UML, will be equipped with the FT while appropriate interfaces are
provided. The software design and the FT technique are eventually converted
into blocks of Petri nets [3] (using well-known translation approaches [4,5]) and
composed to get the desired analysable model that will report results about
system dependability.

The analysis of dependability requirements compels to capture dependabil-
ity properties (e.g., fault or failure description), which should be expressed in
UML designs assuming that we desire to free the software engineer from the
manual generation of the formal model. On the one hand, in this work we use
DAM [6] (Dependability Analysis and Modelling profile) for this purpose. DAM
is a MARTE [7] (Modelling and Analysis of Real-Time and Embedded systems
profile) specialisation, that will be useful to complement the dependability prop-
erties with performance ones. On the other hand, since we focus our work in the
context of intrusion-tolerant systems (i.e., those critical systems which apply FT
techniques to tolerate intrusions), this implies also the necessity to report secu-
rity requirements in the same UML designs. So, to avoid greater complexities,
we rely on SecAM [8] (Security Analysis and Modelling profile), which is prop-
erly integrated in the MARTE-DAM framework. Although it may seem that the
use of these profiles may bring some knottiness, in reality, a little part of the
stereotypes proposed by the above mentioned profiles greatly helps designers of
critical systems in their work.

The balance of the paper is as follows. Section 2 introduces the basis of the
paper, i.e., some FT techniques we will use to illustrate the proposal and UML
profiles. Section 3 presents UML and formal models for these FT techniques.
Section 4 describes the UML design of an example and illustrates how the FT
techniques can supplement it, moreover it shows how to obtain a final system
formal model. Finally, related work and some conclusions are given in Section 5.

2 Previous Concepts

Before starting the contribution, we summarise in Section 2.1 the kind of FT
techniques used along this work and in Section 2.2 we recall our proposal of a
security profile in the context of MARTE-DAM, i.e., SecAM [8].

2.1 Proactive and reactive techniques

Modern critical systems (e.g., CRUTIAL [9]) incorporate fault prevention and
fault-tolerant techniques to get a more robust system protected against faults.
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They are known as intrusion-tolerant systems when protection mainly concerns
with faults coming from intrusions. Fault-tolerant techniques can be subdi-
vided [1] in several groups: fault detection, fault recovery, fault handling and
fault masking. In this work, we focus on proactive and reactive fault-tolerant
recovery techniques.

An extensive review of the application of fault-tolerant techniques to the
security domain can be found in [10]. It is also worth mentioning the work in [11],
which suggests an approach to the design of highly secure computing systems
based on fault-tolerant techniques. An interesting example of application can be
found in [12], where the authors propose a technique for fragmenting the data
and then storing the pieces in different locations (as RAID technology actually
works), which reduces losses of data in case of intrusion.

Proactive recovery transforms a system state containing one or more errors
(or even visible faults) into a state without detected errors or faults. Proactive
techniques were presented in [13] as a long-term protection against break-ins
and implemented, for example, in the scope of an on-line certification-authority
system [14]. These techniques borrow ideas from proactive discovery protocols
(e.g., IPSec [15]), session-key refreshment (SSL/TLS [16]) or secret sharing al-
gorithms [17]. Hence, proactive security is defined as a combination of periodic
refreshment and distribution [18,19].

Following Avizienis et al.’s fault taxonomy [1], reactive recovery can be clas-
sified as a fault-tolerant technique: it does a concurrent error detection, that is,
errors in the system are detected meanwhile it is working. Then, a detection
implies some actions must be performed in order to recover the system to a
free-error state.

Proactive and reactive recovery techniques should not be considered as mu-
tually exclusive but as complementary. Briefly, proactive techniques are worried
about fault prevention (passive part of the system), while reactive ones are con-
cerned with fault removal (active part). Sousa et al. presented in [20] a real
application of proactive and reactive recovery techniques to an existing critical
system, which tolerates up to f failure nodes and is able to recover in parallel up
to k nodes. The rationale behind this idea is a scheduled time-line, which will be
modelled in Section 3 (Fig. 1, adapted from [20], depicts it) and it is explained
in the following.

Reactive slot Proactive slot

Tslot = (⌈ f

k
⌉ + 1) · Tdelay

⌈ f

k
⌉ · Tdelay Tdelay

Reactive slot Proactive slot

Tslot = (⌈ f

k
⌉ + 1) · Tdelay

⌈ f

k
⌉ · Tdelay Tdelay

Tperiod = ⌈n
k
⌉ · Tslot

Fig. 1. Schedule time-line showing activations of reactive and proactive recoveries.
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A system with n distributed devices is initially divided into ⌈n
k
⌉ groups, con-

taining each one up to k devices, being k the number of simultaneous recoveries
the system can support. Assuming a period of time Tperiod, then each one is
divided in ⌈n

k
⌉ slices (called Tslot from now on) where both (i.e., proactive and

reactive) recoveries have to be performed. In a Tslot, one proactive recovery will
be activated for a selected group which has a duration equal to Tdelay, being
Tdelay the maximum expected time for recovering a device. Regarding reactive
recovery, if we assume up to f failures and k simultaneously recoveries, that
implies a maximum of ⌈ f

k
⌉ reactive activations may happen in a Tslot. As can be

inferred, Tslot has a duration equal to (⌈ f
k
⌉+1)·Tdelay. There exists a relation [20]

between values of n, f and k as is shown in Equation 1.

n ≥ 2 · f + k + 1 (1)

A deeper description of the schedule time-line for proactive and reactive
recoveries, as well as justification for inequality shown in Equation 1, can be
found in [21].

2.2 The Security Analysis and Modelling (SecAM) profile

The UML [2] (Unified Modelling Language) is a standard and comprehensive lan-
guage that allows to specify functional software requirements through diagrams
from architectural to deployment system views. UML can be tailored for analysis
purposes through profiling. A profile defines stereotypes and tagged values for
annotating design model elements extending its semantic. In particular, the Mod-
elling and Analysis of Real-Time and Embedded systems (MARTE) [7] profile
enables UML to support schedulability and performance analysis for real-time
(RT) and embedded systems. Although focussed on RT, MARTE sub-profiles
for performance and schedulability have also been proved useful in a wide range
of other application domains. Performance as a Non-Functional Property (NFP)
is specified in the MARTE context according to a well-defined Value Specifica-
tion Language (VSL) syntax. Recently, the non-standard Dependability Analysis
and Modelling (DAM) [6] profile was introduced to address dependability also
as a NFP in UML design models. Indeed, as DAM is a MARTE specialisation,
they can play together to specify performance and dependability NFPs in UML
models. The entire set of MARTE stereotypes can be found in [7], while DAM
stereotypes, including UML meta-classes that the stereotypes can be applied to,
can be found in [6].

The close relation among dependability and security, cleverly disclosed by
Avizienis et al. [1], was an argument in [8] for developing a new profile, called
Security Analysis and Modelling (SecAM), to model and analyse security NFPs.
Currently, the SecAM profile only addresses the topic of resilience, although
its design favours easy integration of other security concerns. As the SecAM
profile was constructed on top of DAM (indeed, as its specialisation), a joint
DAM-SecAM specification on a UML design allows to accomplish a comprehen-
sive dependability and security specification of system NFPs. The work here
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presented relies on the DAM-SecAM relation: we aim to specify fault-tolerant
techniques, a dependability issue, for intrusion-tolerant systems, a security issue.

SecAM_Library

SecAM_Library::Basic_SECA_Types

SecAM_Library::Basic_SECA_Types::Enumeration_Types

<<enumeration>>

TypeOfAttack

active

passive

<<enumeration>>

Degree

low

medium

high

SecAM_Library::Complex_SECA_Types

<<tupleType>>

SecaVulnerable

degree : Degree

<<tupleType>>

SecaAttack

type : TypeOfAttack

<<tupleType>>

SecaIntrusion

successProb : NFP_Real

origin : SecaVulnerable

cause : SecaAttack

(a)

<<profile>>

SecAM::SecAM_UML_Extensions

<<stereotype>>

DAM::DaStep

kind : StepKind

<<stereotype>>

SecaStep

vulnerability : SecaVulnerable

intrusion : SecaIntrusion

<<stereotype>>

MARTE::GQAM::

GQAM_Workload::WorkloadGenerator

pop : NFP_Integer

MARTE::GQAM::

GaWorkloadEvent

pattern : ArrivalPattern

<<stereotype>>

SecaAttackGenerator

attack : SecaAttack

<<stereotype>>

DAM::DaFaultGenerator

0..1

generator
<<stereotype>>

(b)

Fig. 2. (a) SecAM library and (b) SecAM UML extensions.
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Figure 2(b) depicts some SecAM stereotypes used in this work, concretely
secaStep and secaAttackGenerator. The SecAM library (Fig. 2(a)) describes
the types associated to the tagged values of these stereotypes. The secaStep

stereotype inherits from DAM::daStep stereotype and is meant to describe a sys-
tem vulnerability or an attack, being both security faults [8]. For description
of system malicious intrusions, the secaAttackGenerator stereotype is intro-
duced, besides, the MARTE and DAM classes it specialises (Fig. 2(b)) allow
to describe the occurrence probability pattern of the intrusion. DaFault DAM
annotation, later used in this work, supports fault definition in [1] and means
the basis for the actual SecAM annotations.

3 Modelling Proactive and Reactive Recovery Techniques

We develop, in this section, a generic and reusable model of proactive and reac-
tive recovery techniques. In first term, we model them using UML state-machine
(UML-SC) diagrams annotated with the previously discussed profiles. Then, we
obtain a Coloured Petri Net (CPN) [22] which maps the behaviour of these UML
diagrams. In fact, this CPN accurately represents proactive and reactive recovery
techniques. Our intention is then to reuse such CPN through different software
designs to conclude about the appropriateness of the techniques for the design,
Section 4 will show an example. To accomplish this target, these software designs
will also be modelled using UML-SC and each one will be eventually converted
into a CPN. So, our proposal to reuse the “proactive-reactive” CPN within a
given software design has to offer adequate “interfaces” to compose both CPNs.
Then, we finally get a CPN that embeds both the proactive-reactive techniques
and the software design as explained in Section 4.

3.1 UML Modelling

We have distinguished two components, one in charge of controlling the sched-
uled time-line presented in Section 2, and the other controlling the device to be
recovered. The latter has been called Proactive and Reactive Recovery (PRR)
component following terminology in [20].

Schedule controller UML state-chart is depicted in Figure 3. Initial analysis
variables (gaAnalysisContext stereotype) are: tDelay, which determines the
duration of each recovery; f, number of faulty devices allowed; and k, number
of devices recovered in parallel. Only one controller will be placed in the system
(tag pop of gaWorkloadGenerator stereotype). Once created, it calculates in g

the first group which will be proactively recovered. Upon entrance into Reactive
slot state, it invokes event nextSchedule() for PRR devices in g to inform
them that the components they control will be proactively recovered in the next
proactive slot, so their monitoring activity will not be necessary since for sure
they will be recovered. Then, it starts the countDown() activity with duration
hostDemand equals to ⌈ f

k
⌉ · tDelay seconds (that is, it makes room for up to

⌈ f

k
⌉ parallel recoveries). Completion of countDown() activity means to schedule
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Fig. 3. Scheduler UML state-machine diagram.

elements in g and to change to Proactive slot state, where all PRR devices are
disabled and it starts the proactive countDown() activity, in this case with a
duration equal to tDelay seconds. Once finished, it enables all PRR devices and
before entering again in the Reactive slot state, it calculates the next proactive
group.

Fig. 4. PRR controller UML state-machine diagram.

Figure 4 shows UML-SM for PRR component controller. Obviously, the pop-
ulation is equal to the number of effectively monitored devices, nDevices. It
starts in Enabled state and executing the activity monitor(), which abstracts
two processes: 1) detection of errors in the monitored device and 2) checking for
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room in current time slot for a reactive recovery. So, when it positively informs,
then enters in Reactive state to perform a recovery (reactiveRecovery() ac-
tivity), which has a duration of rRecovery seconds on average. Once finished,
it comes back to Enabled state. From there, event nextSchedule() evolves to
Waiting4Schedule state, where the PRR will wait for event scheduled() invoked
by the scheduler to start the proactive recovery. In both recovery states (Reactive
or Proactive) the PRR invokes upon the entrance (recovery()) and on the exit
(recovered()) events in the monitored device switching it off/on, respectively.
Finally, note that events enable() and disable() received from the scheduler
effectively prevent the PRR to monitor its device.

Token colour definitions

type D is {1 . . . nDevices}
type G is {G1 . . . G⌈ nDevices

k
⌉}

subtype Gi is {(k · (i − 1) + 1) . . . k · i}
var i : D, g : G

Initial marking

m0(Enable) =
X

i ∈ D

m0(nextGroup) = G1

m0(Idle) = 1
m0(maxParallel) = k

Functions definitions

belonging(g : G) =
X

i ∈ G

cSubset(g : G) =
X

i ∈ D|i ∋ G

allDevices() =
X

i ∈ D

Table 1. CPN initial marking, token colour definition and functions.

3.2 Formal Modelling through Petri Nets

Following ideas in [5] we obtained two Generalized Stochastic Petri Nets (GSPNs)
[23] by model transformation of UML design (Figs. 3 and 4). Considering that
ideas proposed in [5] were given for performance analysis purposes, some minor
changes have emerged. Indeed, we used the ArgoSPE [24] tool, which imple-
ments the algorithm given in [5], to perform the transformation of UML-SCs
annotated with SPT [25] (Schedulability, Performance and Time profile, precur-
sor of MARTE) into GSPNs. Seeing that ArgoSPE does not support MARTE,
nor DAM nor SecAM profiles, the GSPNs obtained from the transformation
have been manually modified to incorporate such annotations. In the following
we summarise the algorithm implemented in ArgoSPE.

Each SC simple state is transformed in a PN place, which represents its
entrance. The latter is followed by two causally connected PN transitions which
represent, respectively, the entry action and the do-activity of the SC state. Entry
actions are modelled by immediate PN transitions (assuming its execution time
is negligible) while do-activities are represented by timed PN transitions, which
are characterised by one output place (i.e., the completion place) modelling the
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SC completion state. If the SC state has outgoing immediate transition, this is
translated into a PN immediate transition with the completion place as its input
place. For conflicting outgoing transitions, the transformation adds immediate
transitions with probabilities to stochastically resolve the choice. In this case, the
probability values are taken from the annotations attached to the transitions.

In order to take advantage of the hierarchy and symmetries in the prob-
lem, and then gaining readability, we slightly modified these semi-automatically
obtained Petri nets to gain an equivalent Coloured Petri Net (CPN) [22]. Fig-
ure 5(b,c) depicts these CPNs, while Figure 5(a) offers a hierarchical CPN [26]
view for an easy understanding of interactions between each subnet. Interac-
tions occur via event places (e enable, e nextSchedule, e schedule and e disable),
which model the real interfaces among components. Controlled devices are also
depicted (light gray box) just to highlight their communication with the PRR
controllers. CPNs in Figure 5(b,c) depict deterministic delays through grey tran-
sitions, stochastic delays through white transitions, while black transitions are
immediate ones. The initial marking, token colour and functions definition are
summarised in Table 1.

The CPN of scheduler SC (Figure 5(c)) has an initial marking represented
in places Idle and nextGroup, with values indicated in Table 1, which come
from gaWorkloadGenerator annotation and calculateNextProactive() func-
tion in the SM. Transitions fkTOut and TOut represent the reactive and proactive
countdowns and are characterised by deterministic durations given in the corre-
sponding gaStep SC annotations. Note that the firing of TOut enables all PRR
controllers (through place e enable), generates the next group which will be
proactively recovered and starts up the cycle again.

Regarding CPN of PRR controller (Figure 5(b)), its initial marking in places
Enabled and maxParallel represent the number of PRR devices in the system
and the maximum number of devices the system can recover in parallel, accord-
ing to annotations in the SC. Firing of transitions PRactions and RRactions

respectively lead the activation of proactive and reactive recovery. Monitored
devices are informed about the starting and ending of both recoveries (proactive
and reactive) through places e recovery and e recovered. Transition Detect

abstracts the activity monitor() in the SC, which once fired checks activation
conditions to, in positive case, inform the device about the starting of the reac-
tive recovery. Note that this can take place only if there exist room enough for
a new parallel recovery.
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Fig. 5. (a) Hierarchical CPN, (b) CPN of PRR controller and (c) CPN of scheduler.
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4 Example: On-line Shopping Website

Proactive and reactive recovery techniques such as the ones here described, but
also many others, can be implemented in critical systems. However, it would be
highly interesting to assess their actual convenience for a given system before
to carry out them physically. Thereby, we think that the models developed in
previous section can be useful for this purpose and with this thought in mind,
we show in this section how a software design can offer interfaces through which
eventually it will be combined, at UML level, with the FT target techniques.
The example tries to be a blueprint about how to:

(a) add proactive and reactive techniques to a critical system for improving its
fault tolerance;

(b) obtain an analysable formal model and

(c) get results from such model that can assess system dependability.

We model a business-critical system of the kind of an on-line shopping web-
site, where a balance loader is in charge of placing customers in several servers.
Each server manages a defined number of customers in parallel. A physical view
of the system is depicted in Figure 6. Note that it incorporates an external PRR
device (assumed tamper-proof and not subjected to failures) that embeds proac-
tive and reactive recovery techniques. The system also features the scheduler
device wired to PRRDs. Even achieving a complete failure prone device it is not
a reality, this kind of device can be seen as an embedded tamper-proof device,
that is, there is no possibility of deliberate altering or adulteration of the device.
The addition of other FT techniques (e.g., replication, redundancy or diversity)
to PRR devices will still fit within the techniques presented in this paper because
the effort should be done in the modelling of the interaction between techniques.

WAN

. . .Balance
loader

Server 1

Server N

Server 2

Scheduler  

Customers
PRRD 

PRRD 

PRRD 

Fig. 6. Physical view of the system.
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4.1 UML Modelling

Figure 7 depicts the behaviour of the balance loader, of which only one copy ex-
ists (pop tagged value) and starts in Idle state. An open workload generates cus-
tomer’s requests (gaWorkloadGenerator stereotype) with an inter-arrival time
defined as an exponential distribution. Customer arrivals provoke this compo-
nent to execute an algorithm (balanceLoader()) that ends up asking a server
to attend the new customer. This component does not interplay with the tar-
get techniques, so no interface is required. However, its behaviour is mandatory
to get some system parameters such as workload (see gaWokloadEvent annota-
tion).

Server state-machine diagram is depicted in Figure 8. Initial pseudo-state
indicates nDevices servers ready in the system. Each available server can con-
currently attend up to nThreads started up through event attendCustomer(),
which indeed initiates a sub-state machine specified in Figure 9. The server has
been supplied with interfaces (recovery() and recovered()) to interact with
the PRR component via events (note that here is where we incorporate the recov-
ery techniques into the system). Consequently, the actual functional behaviour
of a server is specified in the sub-state machine, which inherits the interfaces
then allowing to abort normal behaviours. Besides, we have wanted to show
how other kinds of faults, e.g. hardware faults, can also be expressed within this
modelling approach. So, when a hardware crash occurs (daStep annotation in
Fig. 8) it will be properly handled, of course the resulting formal model will also
embed this kind of fault.

Fig. 7. Balance loader UML state-machine diagram.

During normal behaviour (Fig. 9) a server can be attacked and/or suffer
intrusions. In the example we have reduced, as much as possible, the specifi-
cation of system normal behaviour (Processing) to focus on the critical part.
Hence, the customer’s requests (attendCustomer) can be a source of attack
(see secaAttackGenerator annotation) and occasionally become an intrusion
(secaStep annotation), i.e., the attack successes. Obviously, other kind of de-
pendability faults could be here specified by means of DAM-SecAM. A final
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remark to point out that conflicting outgoing transitions of Processing state are
evidently solved by the probabilities in the annotations.

Fig. 8. Server UML state-machine diagram.

Fig. 9. Available UML sub-state machine diagram.

4.2 Formal Modelling

Again, following ideas in [5] and assisted by ArgoSPE [24] tool, we obtained
GSPNs by model transformation of UML design (Figs. 7, 8 and 9). Thereafter,
the nets were composed by interface places (e attendCustomer), simplified and
converted into a CPN (depicted in Fig. 10) for readability purposes. The initial
marking and transition rates are summarised in Table 2.

Interface light grey places allow combination with the PRR component as
depicted in Figure 5(a), so to gain the target Petri net that models both: sys-
tem behaviour and recovery techniques. Now we can discuss the role of interface
place e activationConditions, but firstly remember that a token in this place
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means for the PRR component to activate a reactive recovery. From the point
of view of our system, we desire to activate the reactive recovery whenever 7
out of 10 threads (see nThreads variable in Table 2(b)) in a given server become
hung. So, the actConditions() function in the test arc of place ThreadHung
implements the algorithm that checks out such condition and when it is true
then a token is placed in place e activationConditions. Obviously, other sys-
tems should implement this function differently, but always preserving place
e activationConditions as an interface place.

In Balance loader area, the system open workload is represented by an
exponentially distributed transition customerArrival of mean customerLoad
(taken from gaWorkloadEvent stereotype, Fig. 7). In the Thread area, transi-
tions intrusion and nonintrusion represent whether if an attack had success or
not, respectively. Finally, we manually added the part of the net called Cleaning
(indeed, composed only by two transitions) to remove tokens from Processing

and ThreadHung as long as the server becomes not available (arc inscription #Pi

means all tokens in place Pi).

Fig. 10. CPN of case study.
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Initial marking

m0(ThreadIdle) = nThreads ·
X

i ∈ D

m0(Idle) =
X

i ∈ D

Transition Parameter (type)

customerArrival 1/customerLoad (rate)
bLoader 1/balance (rate)
pCustomer 1/process (rate)
Crash 1/crash (rate)
HWrec 1/HWrec (rate)
intrusion attack · success (weight)
nonintrusion 1 − attack · success (weight)

Parameters Value
nDevices 12
k 2, 3, 4
f 1
timeOut 120, 180s
detect 100 ms
pRecovery 120 s
rRecovery 120 s
nThreads 10
crash 432000 s
HWrec 43200 s
balance 200 ms
customerLoad 0.5 customers/s
process 300 s
attack 30%
success 0% · · · 75%

(a) (b)
Table 2. (a) Example parameters and (b) experiments parameters.

4.3 Analysis and Assessment

The analysis was carried out using simulation programs of GreatSPN [27] tool.
We actually simulated the original GSPNs obtained by ArgoSPE instead of
the readable CPNs in Figures 5 and 10. Simulation parameters were set to a
confidence level of 99%, accuracy of 1%, length of evolution phase equal to
604800 time units and a length of initialisation phase equal to 86400 time units.
The Petri nets parameters and its values were summarised in Table 2(b) (note
that the number of servers was 12 (nDevices), each one able to attend up to 10
customers in parallel (nThreads)).

All values of the parameters can be known at design time: some of them, such
expected customer load, probabilities of attack and success, should be estimated
by the software engineer, while other parameters, such as time performing recov-
ery actions should be given by manufacturer of PRR device. Table 3 summarises
input analysis parameters and by whom they should be provided.

In the experiments, reactive recovery is always performed when the number
of active threads for a device drops to 3 (function activationConditions()).
Regarding proactive recovery, 12 servers allow setting several configurations that
we have tested: three proactive groups of four servers (solid lines in Figure 11),
four proactive groups of three servers (dot-dashed lines) and six proactive groups
of two servers (dashed lines). Under these parameters, we have simulated the net
to point out the best configuration among the previous ones w.r.t. throughput.
In Figure 11 we show the relation between the incoming customer throughput
(customerLoad) and the system throughput (Thr(attendCustomer)). The hor-
izontal axis represents the percentage of successful attacks (0%..75%, variable
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Input parameter Provided by Annotation (profile)

balance Manufacturer gaWorkloadEvent (MARTE)
customerLoad Designer gaStep (MARTE)

nDevices Designer gaWorkloadGenerator (MARTE)
HWrec Manufacturer gaStep

crash Manufacturer daStep (DAM)
nThreads Manufacturer resource (MARTE)
process Manufacturer secaStep (SecAM)
attack Designer secaAttackGenerator (SecAM),

paStep (MARTE)
success Designer secaStep (SecAM),

paStep (MARTE)

Table 3. Analysis parameters required in UML statecharts.

success), having the percentage of system attacks (variable attack) set to 30%
for all the experiments.

The results indicate that the more servers are simultaneously recovered, the
more throughput the system obtains. In terms of absolute time, smaller groups
recover more number of servers than bigger groups, which ensures higher avail-
ability for the formers and consequently better performance. In the example,
it could be assessed that groups of four serves are the right choice regarding
throughput. The computed measure is a performability one (i.e., performance in
the presence of faults). Although some other interesting results were obtained
(e.g., results of dependability nature) from this formal model, we do not present
them since this is not the main focus of the paper.

5 Related Work and Conclusion

Several approaches [28,29,30] in the literature bring Petri nets for the design
of critical systems. In [28] Heiner et al. used a combined model of Z and Petri
Net formalisms, the first for specifying data and its evolution and the latter
to validate the safety-critical system. The union of both formalisms allows to
obtain an approach where data-combination and behaviour are described. Ghezzi
et al. presented in [29] a high-level Petri Net formalism (TB nets, a particular
case of Timed Environment/Relationship nets) to specify control, function and
timing issues in time-critical systems. In [30], Houmb et al. quantified operational
system integrity of security critical systems using the formalism of Coloured Petri
Nets (CPN).

Regarding fault-tolerant techniques applied at software architectural level
also several works can be found [31,32,33,4,34]. In [31] Harrison and Avgeriou
studied how several fault-tolerant techniques can be carried out as best-known
architectural patterns. By the use of architectural patterns they aim to directly
create software architectures satisfying quality attributes. Nguyen-Tuong and
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Fig. 11. Simulation results.

Grimshaw presented in [32] a reflective model, called Reflective Graph & Event
(RGE), which is applied for making failure-resistant applications. Using this
reflective model they are able to express fault-tolerant algorithms as reusable
components allowing composition with user applications. Rugina et al. propose
in [33] an approach for system dependability modelling using AADL (Architec-
ture Analysis and Design Language), being the design model transformed into
GSPN. This approach was applied to an Air Traffic Control System. Bondavalli
et al. [4,34] have a vast work in the area of translating UML diagrams into de-
pendability models, having also used Petri nets as a target model in some of
these works. Their proposal of translation could be used in this paper instead
of [5], but it should be taken into account that they propose an intermediate
model as a first step.

In this paper, we have explored the idea of combining models that represent
FT techniques and software behavioural designs. The combined model is useful
for dependability assessment. Although the example has shown feasibility in
the approach to integrate well-known recovery techniques into software designs,
we are conscious that a long path has to be walked for the approach to reach
applicability. So, we want to clearly establish that, from our point of view, the
contribution of the paper is restricted to the achievements in the example, i.e.,
how to combine proactive and reactive techniques with a software design and
their analysis. However, we are confident of the second one, i.e., reuse of the
approach with other FT techniques. The key point is to gain a “library” of UML
models representing FT techniques ready to use in critical designs. Being the
crucial aspect for the UML model of a FT technique to have clearly defined
its interfaces, we strongly believe that events and conditions are the means to
attain it as we did in our proposal. Moreover, each technique has to define also
how their interfaces play in the software design, for the case of the recovery
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techniques we have advocated for a superstate which offers suitable interfaces
and embeds the system normal behaviour.

As a critic, we recognise that UML-SC should not be the only UML diagram
used in this context, since for example, sequence diagrams may help the engineer
in understanding system usage situations. So, we plan to extend our approach to
take advantage of other UML diagrams. Another critic stems from the fact that
the combination of FT techniques and software designs should be explicitly made
at UML level, instead of deferring the combination to the Petri net models. This
would bring advantage to the engineer for completely avoid the formal model.
Being aware of this fact, we are working on a feasible solution to this problem.

The use of an approach such as the one here developed should otherwise
bring several benefits from the point of view of a software engineer. The easy
integration of FT techniques into software designs and the existence of such
“library” may allow to test different techniques for the same design to find the
ones fitting better. Such “library” will also free the engineer of worrying about
how to model FT and concentrate on the problem domain. Finally, it is well-
known that the use of formal models early in the life-cycle to prove requirements
is less expensive than other approaches.
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